

Name:__ UMBC ID: ____________________
UMBC CMSC 491/691 Final Exam, 17 December 2018
Write all of your answers on this exam, using the blank side of pages if you need more room.
The exam is closed book but you are allowed one piece of letter-sized paper with notes. You
have the two hours to work on this exam. Good luck.

1. True/False (40 points)
T F XML’s DTD XML schema language is more expressive than the XSD schema language.
False
T F An XML element cannot have two attributes with the same name. True
T F Since an XML document must have a tree structure, it cannot represent an arbitrary graph
structure. False
T F In an RDF graph, it’s impossible to have a node that is not the subject or object of a triple.
True
T F One limitation of RDF is that it can only represent simple binary relations. False
T F An RDF triple cannot have a literal as its subject. True
T F (:A rdfs:subClassOf :B) and (:B rdfs:subClassOf :A) implies that :A and :B are equiva-
lent classes. True
T F The RDFs data model does not allow a class to override information inherited from its su-
per-classes. True
T F A property with identical domain and range values is necessarily a owl:SymmetricProp-
erty. False
T F One cannot express the fact that every person has a mother using only RDFS. True
T F (owl:Nothing rdfs:subClassOf owl:Thing) is true. True
T F No OWL property can be both a owl:FunctionalProperty and owl:InverseFunctional-
Property. False
T F OWL2 added the possibility of a term denoting both an OWL class and an individual.
True
T F If an OWL reasoner is sound, it will produce all relations that are logically entailed. False
T F The OWL RL profile includes only those features that can be inferred by SWRL rules.
True
T F SWRL rules can infer facts from a graph that an OWL-DL reasoner cannot. True
T F A SPARQL SELECT query always returns a sub-graph of the knowledge graph satisfying
it. False
T F A SPARQL DESCRIBE query is used to update a knowledge-graph. False

1 2 3 4 5 6 7 total

40 20 20 20 20 20 20 160

T F Any information that can be embedded in an HTML document using RDFa can also be
embedded using Microdata. False
T F The LD in the name JSON-LD stands for Logical Data. False

2. Modeling in RDFS and OWL (20 points)
Suppose you manage an apartment building that allows pets, but only if
they are dogs, cats or birds. You want to annotate your listings with owl
data by completing the description in the box to the right to define a new
class, :OkPet, that includes only dogs, cats and birds.

2.1 Explain in a few sentences why it cannot be done in RDFS.

We could try defining OkPet as a super-class of :Dog, :Cat and :Bird, but the open world as-
sumption underlying RDFS would mean that there might be other classes of animals, like :Snake,
that are also sub-classes of :OkPet. There is no way to rule this out using only RDF and RDFS
schema terms.

2.2 Is this possible in OWL? If so, show the triples you should add in Turtle, if not explain why
it is not possible.

Here are three versions, the first two of which will expand to the third in Protege. This defines
the :OkPet class to be equal to the union of the classes :Dog, :Cat and :Bird.

:OkPet owl:unionOf (:Dog :Cat :Bird).

:OkPet a owl:Class;
 owl:unionOf (:Dog :Cat :Bird).

:OkPet a owl:Class;
 owl:equivalentClass [a owl:Class ; owl:unionOf (:Dog :Cat :Bird)].

:Person a owl:Class.
:Dog a owl:Class.
:Cat a owl:Class.
:Bird a owl:Class.

3. Negation in OWL (20)

OWL’s ability to express what is not true is limited because
allowing full negation can make reasoning more complex or
even undecidable. Describe how you can specify the fol-
lowing negative statements in OWL, preferably by giving
one or more statements in Turtle

3.1 No Beast is also a Person

:Beast owl:disjointFrom :Person.

3.2 :fido is an Beast, but is not a Cat.

:NonCat owl:complimentOf :Cat.
:fido a :Beast, NonCat.

Note: this can also be done without naming the complement, e.g.

:fido a :Beast, [a owl:Class; owl:complimentOf :Cat]

3.3 :fido is not the same as :felix.

:fido owl:differentFrom :felix.

3.4 :john has no pets.

 :john a [rdf:type owl:Restriction ;
 owl:onProperty :hasPet ;
 owl:cardinality "0"] .

3.5 :fido is not a pet of :mary

[owl:NegativePropertyAssertion ;
 owl:sourceIndividual :mary ;
 owl:assertionProperty :hasPet ;
 owl:targetIndividual :fido] .

:Animal a owl:Class.
:Person a Animal.
:Beast a Animal.
:Dog a :Beast.
:Cat a :Beast.
:Bird a :Beast.
:hasPet rdfs:domain :Person;
 rdfs:range :Beast.
:fido a owl:NamedIndividual.
:felix a owl:NamedIndividual.
:john a owl:NamedIndividual.
:mary a owl:NamedIndividual.

4. Inferences in OWL (20 points)
Suppose we have the knowledge graph shown in
the box to the right. Show all additional triples
that can be inferred by a DL-reasoner from the
graph that have either :google, :spichai or
:sundarPichai as a subject or object.

:google a :Company
:google :hasCEO :spichai .
:google :hasEmployee :spichai .
:google :hasCEO :sundarPichai.
:google :hasEmployee :sundarPichai.

:spichai a :Person.
:spichai :worksFor :google.
:spichai :ceoOf :google.
:spichai owd:sameIndividualAs :sundarPichai.

:sundarPichai a :Person.
:sundarPichai :worksFor :google.
:sundarPichai :ceoOf :google.
:sundarPichai owl:sameIndividualAs :spichai.

:Company a owl:Class .
:Person a owl:Class .

:worksFor a owl:ObjectProperty;
 rdfs:domain :Person;
 rdfs:range :Company;
 owl:inverseOf :hasEmployee.

:ceoOf rdfs:subPropertyOf :worksFor;
 rdfs:domain :Person;
 rdfs:range :Company;
 a owl:InverseFunctionalProperty;
 owl:inverseOf :hasCEO.

:google :hasCEO :spichai.
:sundarPichai :ceoOf :google.

5. Finding co-workers with SPARLQ query (20 points)

Assume we have the knowledge graph shown in in the
box to the right with instances of :Person and :Com-
pany and two relations, :partOf that links a company to
another company it is part of, and :worksFor, that links
a person to the company they (directly) work for.

Write a SPARQL query to find co-workers, i.e. pairs of
people who work for the same company or for compa-
nies are ultimately part of the same company (e.g.,
:loon and :waymo in the example). In this example,
:john and :mary are co-workers. Your query should not
return a pair where both people are the same (e.g.,
:mary and :mary)

HINT: use property chains and the * or + operators and a FILTER condition.

PREFIX : <http://ex.org/q5#>
SELECT * WHERE {
 ?p1 :worksFor/:partOf* ?c1.
 ?p2 :worksFor/:partOf* ?c1.
 filter (?p1 != ?p2)
 }

:partOf a owl:ObjectProperty;
 rdfs:domain :Company;
 rdfs:range :Company.
:coworker a owl:ObjectProperty;
 rdfs:domain :Person;
 rdfs:range :Person.

:loon :partOf :google.
:google :partOf :alphabet.
:waymo :partOf :alphabet.
:john :worksFor :loon.
:mary :worksFor :waymo.

 6. Finding co-workers with rules (20 points)
Suppose we want to enable a triple store to infer
:coworker relations that holds for two people if they work
for the same company or for companies are ultimately part
of the same company. The box on the right shows the new
relations we want to infer in bold. As in the previous
problem, the :coworker relation should not hold between a
person and herself.

Show additional owl assertions and rules in using N3 or
SWRL notation that will allow a system with a owl-DL
reasoner and rule-based engine to add :coworker rela-
tions.

HINT: You can do this with just rules, or with a combina-
tion of additional OWL axioms and rules.

Add additional OWL axioms in Turtle syntax

Rules in N3 or SWRL notation

(1) worksFor(?p1, ?c1), worksFor(?p2, ?c2), partOf(?c1, c), part of(?c2, ?c) -> coworker(?p1, ?p2)
company(?x) -> partOf(?x, ?x)

(2) if you do include the owl axiom that :partOf is reflexive:

worksFor(?p1, ?c1), worksFor(?p2, ?c2), partOf(?c1, c), part of(?c2, ?c) -> coworker(?p1, ?p2)

(3) if you don’t define part of as transitive in owl, you can do it with a rule

partOf(?x, ?y), partOf(?y, ?z) -> partOf(?x, ?z)

:partOf a owl:TransitiveProperty

You might also include :partOf a owl:reflexiveProperty

:partOf a owl:ObjectProperty;
 rdfs:domain :Company;
 rdfs:range :Company.
:coworker a owl:ObjectProperty;
 rdfs:domain :Person;
 rdfs:range :Person.

:loon :partOf :google.
:google :partOf :alphabet.
:waymo :partOf :alphabet.
:john :worksFor :loon.
:mary :worksFor :waymo.

:mary :coworker :john.
:john :coworker :mary.

7. Default reasoning in OWL and SPARQL (20)
Default reasoning allows a system to make assumptions in
the absence of contradictory evidence. Suppose the :Stu-
dent class has three subclasses, :FullTimeStudent, :Part-
TimeStudent and :SpecialStudent, and we follow a policy
of assuming an instance of a :Student is a :FullTimeStudent
if we don't know what subclass she belongs to. Such rea-
soning is not supported in OWL, but can be achieved using
SPARQL.

Write a SPARQL Select query that finds students who are either known to be instances of
:FullTimeStudent or can be assumed to be a :FullTimeStudent using the policy above.

Select ?s WHERE {
 {?s a :FullTimeStudent}
 UNION
 {?s a :Student
 FILTER NOT EXISTS {?s a :PartTimeStudent}
 FILTER NOT EXISTS {?s a :SpecialStudent}
 }
}

:Student a owl:Class.
:FullTimeStudent
 rdfs:subClassOf :Student.
:PartTimeStudent
 rdfs:subClassOf :Student.
:SpecialStudent
 rdfs:subClassOf :Student.

