
A Semantic Message Passing Approach for
Generating Linked Data from Tables

Varish Mulwad
Program: Ph.D., Computer Science

Ebiquity Research Lab
Advisor: Dr. Tim Finin

varish1@cs.umbc.edu

ABSTRACT
Large amounts of information is stored in tables, spread-
sheets, CSV files and databases for a number of domains,
including the Web, healthcare, e-science and public policy.
The tables’ structure facilitates human understanding, yet
this very structure makes it difficult for machine understand-
ing. We describe work on making the intended meaning of
tabular data explicit by representing it as RDF linked data,
potentially making large amounts of scientific and medical
data in important application domains understandable by
machines, improving search, interoperability and integra-
tion. Our domain-independent framework uses background
knowledge from the LOD cloud to jointly infer the seman-
tics of column headers, table cell values (e.g., strings and
numbers) and relations between columns and represent the
inferred meaning in RDF. A table’s meaning is thus captured
by mapping column headers to classes in an appropriate on-
tology, linking table cell values to literal constants, implied
measurements, or LOD entities (existing or new) and discov-
ering or identifying relations between columns. At the core
of our framework is a probabilistic graphical model that ex-
ploits existing LOD knowledge to improve a message passing
scheme during the joint inference process. We have evalu-
ated or framework on tables from the Web and Wikipedia
with promising results.

Keywords
Tables, Semantic Web, Linked Data, Graphical models

1. INTRODUCTION
Tables form an integral part of documents, technical reports,
Web pages, and papers, often recording and encoding impor-
tant information which could not represented be in other
forms. When not embedded in documents, table-like struc-
tures such as spreadsheets, CSV files and databases are used
to capture and represent information. Tables are known to
be ubiquitous in a number of domains including the Web,
healthcare, e-science and public policy. A Google study [4]

showed that the Web alone had more than 150 million high
quality relational tables, conveying important and useful in-
formation. Various nations around the world, including the
United States, share data that can be useful in informing
public policy in structured formats such as CSV files. As of
September 2012, the US government’s data sharing website
has nearly 400,000 such datasets.

Both integrating and searching over this information ben-
efits from a better understanding of its intended meaning.
Analyzing tables presents several unique challenges. The
very structure of tables which adds value and makes it easier
for human understanding also makes it harder for machine
understanding. Take the example of Web search engines.
They do an excellent job when searching over narrative text
on the Web, but perform poorly when searching for infor-
mation embedded in tables in HTML documents.

In the domain of evidence-based medicine [20], medical re-
searchers attempt to judge the efficacy or drug dosages or
treatment by performing a meta-analysis over previously
published clinical trials. This often requires them to spend
significant amounts of time manually going through the large
number of studies returned by systems like MEDLINE to
find relevant ones and then identify and extract the key data
needed to produce evidence reports. This key data is often
summarized in a relatively concise way in the form of ta-
bles. Automating this process, either fully or even partially,
is hindered because the information required to identify rel-
evant studies is often encoded in tables which are beyond
the scope of regular text processing and information extrac-
tion systems. Thus a labor-intensive data collection process
makes performing meta-analyses expensive and results in
fewer being done. Figure 1 from [5] clearly shows the huge
difference in number of meta-analysis and number of clinical
trials published every year.

Web search engines can return tables or web pages contain-
ing tables in response to queries such as “US president birth-
days” or “temperature change in the Arctic” only if they can
understand the intended meaning of column headers and
further recognize the relations implicit between columns in
a table.

Similarly the MEDLINE search system can do a better job
of finding relevant studies when it can realize that the row
headers in Figure 2 refer to drug dosages and that the cell
values in the columns represent the number of patients cured.



Figure 1: The number of papers reporting on sys-
tematic reviews and meta-analyses is small com-
pared to those reporting on individual clinical trials,
as shown in this data from MEDLINE.

However, the underlying problem with such systems is they
fail to capture and understand the intended meaning of ta-
bles, often just treating them as free narrative text.

In this paper we focus on the problem of making the in-
tended meaning of tables explicit by representing it as RDF
Linked Data [1]. We capture the complete meaning of a ta-
ble by capturing the meaning of column headers, cell values
and relations between columns. The table’s meaning is rep-
resented Linked RDF data by mapping every column header
to a class from a given ontology, linking cell values to existing
entities, literal constants or implied measurements and iden-
tifying relations between table columns and mapping them
to existing ones from the Linked Open Data Cloud [2].

We present an extensible and domain independent frame-
work, which uses background knowledge from LOD and with
little or no domain dependence, infers semantics associated
with tables. At the core of our framework, is a joint inference
module that jointly maps column headers to classes, cell val-
ues to entities and identifies relations between table columns.
We further incorporate the background knowledge obtained
from LOD to improve a message passing scheme used for
joint assignments in graphical models. Furthermore, our
framework produces Linked Data which reuses existing vo-
cabulary and maps things to URIs instead of strings, pro-
ducing what Tim Berners-Lee calls ‘five-star linked data’ [1].

The rest of the paper is organized as follows – Section 2 talks
about the process of inferring semantics associated with ta-
bles; in Section 3 we give an overview of our domain indepen-
dent framework and describe the core modules in detail; we
present details of our graphical model and inference mech-
anism using semantics in this section; Section 4 presents
evaluation of our framework and discussion; we present re-
lated work in Section 5; and we finally conclude discussing
future direction in Section 6.

2. INTERPRETING A TABLE
It might be tempting to treat table processing and text pro-
cessing to be similar in nature. After all table too contains
text. To understand the difference between text and table
processing, consider the example “Freeman A. Hrabowski,
III, has served as President of UMBC (The University of
Maryland, Baltimore County) since 1992. His research and

Figure 2: Tables in clinical trials literature have
characteristics that differ from typical, generic Web
tables. They often have row headers well as column
headers, most of the cell values are numeric, cell val-
ues are often structured and captions can contain
detailed metadata. (From [32])

publications focus on science and math education, with spe-
cial emphasis on minority participation and performance”1.
One can understand the intended meaning of the sentence by
understanding the meaning on the individual words, whose
meaning in turn can be understood with the help of context
provided by surrounding words.

Now contrast that to the table in Figure 2 which presents
eradication rates for H-pylori for different treatment regimes
and drug dosages. To comprehend and capture the intended
meaning of the table, one would need to understand the
row and column headers, which represent different treatment
regimes and protocols followed. One would also need to un-
derstand the relation between the row and column headers,
and map the cell values to literal constants to understand
that cell values represent eradication rates. In complex ta-
bles like the one in Figure 2, often additional evidence re-
quired to understand the meaning of the table in present in
text surrounding the table.

It is clear that the intended meaning of tables is often con-
veyed by the table (column and row) headers, row cell values
in the table and also relation between table headers. Often
additional context can be obtained from the text surround-
ing the table. How does one capture this intended meaning ?
Consider the leftmost column in the table shown in Figure 3.
The column header City represents the class and the values
Baltimore, Philadelphia, New York and Boston are instances
of that class. Thus, mapping column headers to existing
classes or types and linking the cell values to entities from
LOD can capture the meaning of column headers and row
cell values. Capturing relationship between table columns
can help confirm or deny prior understanding. Consider the
strings in the third column of the table in Figure 3. An ini-
tial analysis of the column might suggest that they seem to
Politicians. Additional information that strings in column
one represent cities, can help infer that strings in column

1source of the text : http://president.umbc.edu/



City State Mayor Population
Baltimore MD S.C.Rawlings-Blake 640,000

Philadelphia PA M.Nutter 1,500,000
New York NY M.Bloomberg 8,400,000

Boston MA T.Menino 610,000

Figure 3: A simple table representing information
about cities in United States of America

three are not only Politicians but they are also Mayors.

Producing an overall interpretation of a table is a complex
task that requires developing an overall understanding of the
intended meaning of the table as well as attention to details
of choosing the right URIs to represent both the schema as
well as instances. We break down the process into following
tasks: a) assign every column (or row header) a class label
from an appropriate ontology b) link table cell values to
appropriate LD entities, if possible c) discover rela- tionships
between the table columns and link them to linked data
properties d) generate a linked data representation of the
inferred data.

3. APPROACH
We present an extensible and domain independent frame-
work for inferring the semantics associated with tables and
representing it explicitly as Linked Data in Figure 4. Our
approach puts emphasis on domain independence and ex-
tendibility. The framework should be domain independent
because we want a single architecture or system that can deal
with tables from a variety of domains, be it from the Web,
from medical papers or datasets from sites like www.data.gov
with little or no domain dependence. Similarly, we require
an extensible framework because it should allow addition of
modules to handle practical challenges that may arise when
dealing with a very specific set of tables from a given domain
that the framework may not be addressing.

Our framework operates as follows. An input table first
goes through a set of pre-processing modules which deal
with practical challenges. After the initial pre-processing
is complete, the table is processed by the query module
which generates a ranked list of candidate assignments for
column headers, table cells values and relation between ta-
ble columns, by querying against available sources from the
LOD. Once the candidate assignments are generated, the
joint assignment module grounded in probabilistic graphical
models, jointly assigns values to column headers, cell values
and relation between columns with the goal of generating
an assignment with which column headers, table cells and
relation between columns agree. After the mapping is com-
plete, framework generates triples representing the table as
Linked Data. While the goal of our research is to develop
to a fully automated framework, achieving the highest level
of accuracy demanded for some applications will require hu-
man input. Depending upon the application wants to ex-
ploit the generated linked data, users may wish to modify
the generated interpretation. Our framework will also have
an optional module wherein users, if they wish to, can in-
spect and modify the inferred interpretation after which the
data is captured in a knowledge base for other applications
to exploit.

While in the following subsections we provide details for
each phase in the framework, the focus of this paper is on
the implementation and evaluation of two core modules: the
query and rank module that generates initial candidate as-
signments for column types, cell values and column relations
and the joint inference module that iteratively finds the most
coherent set of assignments.

3.1 Pre–processing
The pre-processing phase will consist of modules to handle
number of practical challenges encountered in the process of
understanding the semantics of tables such as handling large
tables or tables with acronyms, encoded values and literal
data in form of numbers and measurements. We envision
these pre-processing modules as pluggable modules that can
be developed independently and added to the framework
without affecting other modules or hampering the flow of
the framework. Puranik [19] in his Masters Thesis developed
and demonstrated one such module which identified whether
a column in a table consists of commonly encoded data such
as SSN, zip codes, phone numbers, address and so on. The
purpose of this module is to reduce the load on the more
complex joint inference module.

3.2 Query and Rank
The query and rank module is responsible for generating an
initial set of candidate assignments for each of the column
headers, cell values and relation between columns and rank-
ing the candidates, with the best possible assignments at the
top position. We rely on knowledge sources from the LOD
collection for generating candidate classes and entities for
column headers and cell values. Our existing framework in-
corporates data from Wikipedia based knowledge–bases DB-
pedia [3] and Yago [24]. For most general tables, especially
the ones found on the Web, these knowledge sources provide
good coverage. Based on the domain to which the tables be-
long to appropriate additional data sources from the LOD
cloud can be selected and incorporated in the framework.
Automatically selecting data sources from LOD based on the
domain to which the table belongs is an open question for
now. For practical purposes, one can expect a human expert
to select such data sources from LOD which the framework
can query.

Generating and ranking candidates for row cell values. We
generate an initial set of candidate entities for each table
cell value using Wikitology [26, 25], a hybrid knowledge
base that combines unstructured and structured informa-
tion from Wikipedia, DBpedia and Yago. For every cell
value/row value in the table, we incorporate the context
provided by the column header and rest of the cell values
in the given row and query against Wikitology. For exam-
ple, the query for the string Baltimore consists of the query
string Baltimore and the context for ‘disambiguating’ Balti-
more which is provided the column header string City and
rest of the row values MD, S.C.Rawlings-Blake, and 640,000.
The details of how the query is formulated and mapped to
various fields in Wikitology are presented in [17]. For every
query, Wikitology returns a set of matching Wikipedia en-
tities. The query for Baltimore, for example, would return
Wikipedia entities such as Baltimore, John Baltimore, Bal-
timore Ravens etc. Furthermore for every entity returned,
we additionally query DBpedia and Yago to retrieve the en-



Figure 4: We are developing a robust domain independent framework for table interpretation that will result
in a representation of the information extracted as RDF Linked Open Data.

tity classes/types. The entity Baltimore has DBpedia classes
City, PopulatedPlace, Place and Yago types CitiesInMary-
land, GeoclassPopulatedPlace to name a few.

We train and develop an entity ranker which uses a machine
learning classifier to rank the set of candidate entities as-
sociated with each row cell value. We train a classifier to
identify whether a specified entity is a correct assignment or
not, given the string mention from row cell value and asso-
ciated features. The general architecture and approach was
adapted from one we used in [8]. Based on a set of string sim-
ilarity features and popularity features, the classifier returns
a measure of how likely the given entity URI John Baltimore
is correct assignment for a given string mention Baltimore.

The string similarity metrics used as features by the clas-
sifier include the Levenshtein distance [14], the Dice score
[22] between the string mention of row cell value and the
entity URI. The notion behind using string similarity met-
rics is that string mention in the cell and the entity URI
are likely to have a high overlap in terms on name. The set
of popularity metrics include the predicted page rank [27]
of the entity, entity’s Wikipedia article length, Wikitology’s
internal index score for the entity for the specified query and
entity’s index (or position) in the original ordering returned
by Wikitology. The notion behind popularity metrics is that
a popular entity is more likely to be the correct disambigua-
tion compared to less popular one.

Given a vector of feature values based on string similarity
and popularity metrics, the classifier generates a score of
how likely the entity URI is the correct assignment. The
entity ranker generates this score for every candidate entity

associated with a cell value and orders the candidate entity
set in decreasing order to generate a ranked list. Thus for the
cell Baltimore the classifier will generate this score for each
of the entities Baltimore, John Baltimore, Baltimore Ravens
and order this set in decreasing order of the score. Every
cell value’s initial entity assignment is the top ranked entity
from its ordered candidate set.

Generating candidate for column headers. The candidate
classes for every column header are generated based on row
cell values in the particular column as described in algorithm
1. Each row cell value is associated with a set of candidate
entities and every entity is associated a set of DBpedia and
Yago classes. The set of classes associated with a column
header is generated by simply taking a union of the set of
classes associated with each candidate entity for all the cell
values in the particular column. We generate two separate
set of candidate classes – one for DBpedia candidate classes
and the other for the Yago candidate classes.

Literal Constants. We make distinction between string men-
tions and literal constants such as numerical data in table
cell values. We believe that literal constants, unlike their
string counterparts, do not represent entities. They often
represent values that can be associated with a property or
a relation from the LOD cloud. Using regex based tech-
niques, we identify whether a cell value is a literal constant
(e.g. numerical data) or string mention. If the cell value is
a litral, candidate entities are not generated and the cell is
mapped to ‘No Annotation’. If all the cell values in a partic-
ular column map to literals, we update the column header
annotation to ‘No Annotation’.



Algorithm 1 Generate Candidate Classes for Column
Header
1: Let Cols be set of columns in a table
2: for all C in Cols do
3: Let ‘ColCandidateClasses’ be set of candidate classes

for C and RowCellValues be the set of cell values in
C

4: for all r in RowCellValues do
5: Let EntitySet be the candidate entity set for r.
6: for all Candidate Entity e in EntitySet do
7: Let t be set of types associated with e
8: Add t to ‘ColCandidateClasses’
9: end for

10: end for
11: end for

3.3 Joint Inference
Once the initial sets of candidate assignments are gener-
ated, the joint inference module assigns values to column
headers, row cell values and identifies relations between the
table columns. The result is a representation of the the
meaning of the table as a whole. Probabilistic graphical
models [12] provide a powerful and convenient framework
for expressing a joint probability over a set of variables and
performing inference or joint assignment of values to the
variables. Probabilistic graphical models use graph based
representations to encode probability distribution over a set
of variables for a given system. The nodes in such a graph
represent the variables of the system and the edges represent
the probabilistic interaction between the variables.

We represent a table as Markov network graph in which the
column headers and row cell values represent the variable
nodes and the edges between them represent their interac-
tions. We choose to model our table - graph as Markov
network since it allows to capture interaction between the
variables in which the direction of interaction (edge) does
not matter. In the case of tables, interaction between the
column headers, table cell values and relation between table
columns are symmetrical and thus Markov network is better
suited for tables.

Figure 5(a) shows interaction between the column headers
(represented by Ci where i ∈ 1 to 3) and row cell values
(represented by Rij where where i, j ∈ 1 to 3). In a typi-
cal well-formed table, each column contains data of a single
syntactic type (e.g., strings) that represent entities or values
of a common semantic type (e.g., people). For example, in a
column of cities, the column header City represents the se-
mantic type of values in the column and Baltimore, Boston
and Philadelphia are instances of that type. Thus knowing
the type (or class) of the column header, influences the deci-
sion of the assignment to the table cells in that column and
vice-versa. To capture this interaction, we insert an edge
between the column header variable and each of the row cell
values in that column.

Table cells across a given row are also related. Consider a
table cell with a value Beetle. It might be referring to an
insect or a car. The next table cell has a value red which is
a color. The value in the last table cell is Gasoline, a type of
fuel source. All the values considered together, indicate that

the row is representing values of a car rather than an insect.
Thus to disambiguate a table cell correctly, the context from
the rest of table cells in the row should be used. This co-
relation when considered between pairs of table cell values
between two columns can also be used to identify relation
between table columns. To capture this context, we insert
edges between all the table cells in a given row.

Similar interaction also exist between the column headers.
The column header City might suggest that the strings in
the columns are cities. However if City appears in the table
with other columns which are Basketball players, Coach and
Division, we can infer that the column of cities is referring
to a team itself an example of metonymy in which the team
is referenced by one of its significant properties, the location
of it’s base. This interaction is captured by inserting edges
between column header variables.

To perform any meaningful inference over the graph, one
needs to parametrize the graph. We do so by represent-
ing the graph in Figure 5(a) as a factor graph as shown
in Figure 5(b). The square nodes in the graph represent
what are known as ‘factor nodes’. Factor nodes computes
and captures affinity or agreement between interacting vari-
ables. For example, ψ3 in Figure 5(b) computes agreement
between the class assigned to column header and entities
linked to the row cell values in that column; ψ4 between row
cell values and ψ5 between column headers.

The factor nodes allow the joint inference process to oper-
ate. Typical inference algorithms such as Belief Propaga-
tion, Message Passing rely on pre–computed joint probabil-
ity distribution tables stored at each of the factor nodes.
For example, the factor node ψ3 for column header vari-
able C1 would store a probability distribution table over the
variables C1, R11, R12, R13; i.e. ψ3 would pre–compute and
store a joint distribution table over the column header and
all row cell values. As the candidate set / possible values
that Ci and Rij can be mapped to increase, the size of prob-
ability distribution table would rapidly grow. Let us assume
that the candidate set for each variable is set to 25; in that
case ψ3 associated with the variables C1, R11, R12, R13 would
have 390,625 entries in the joint distribution table!

We propose an alternate variation of a inference algorithm
which incorporates semantics and background knowledge
from LOD to avoid the problem of computing large joint
probability distribution tables at factor nodes. Our algo-
rithm, dubbed ‘SemMessPass’ or ‘Semantic Message Pass-
ing’ is conceptually similar to the idea of Message Passing
schemes. Algorithm 2 gives a high level overview of our
proposed Semantic Message Passing algorithm.

The variable nodes in the graph send their current assign-
ment or value to all the factor nodes it is connected to. For
example, R11 sends its current assignment to factors ψ3 and
ψ4. Once the factor nodes receive values from all connected
variable nodes, it attempts to compute agreement between
the assigned values it receives. Thus, in one of the iterations,
ψ3 might receive values City, Baltimore Ravens, Philadel-
phia, New York and Boston. The goal of ψ3 is to identify if
all the assignments agree and identify any outliers. In this
case ψ3 will be able to identify that Baltimore Ravens is an



(a) (b)

Figure 5: (a) This graph represents the interactions between the variables in a simple table. Only some of the
connections are shown to keep the figure simple. (b) This factor graph is a parameterized Markov network
with nodes for variables and factors.

Algorithm 2 Semantic Message Passing

1: Let V ars be the set of Variable Nodes and Factors the
set of factor nodes in the graph

2: for all v in V ars do
3: Let F ′ be set of Factor nodes v is connected to
4: for all f ′ in F ′ do
5: Send current assignment value to f ′

6: end for
7: end for
8: for all f in Factors do
9: Compute agreement between received values

10: Identify variable node that may have sent incor-
rect/outlier value

11: Send message of “NO–CHANGE” to nodes that are
agreement with other nodes as determined by f

12: Send message “CHANGE” and characteristic of ex-
pected value to nodes that have incorrect assignment
as determined by f

13: end for
14: for all v in V ars do
15: Let Messages be the set of messages received by v
16: If all m ∈ Messages are NO–CHANGE, do nothing
17: If few or all m ∈ Messages are CHANGE, update

assignment by choosing value from candidate set in-
corporating characteristics sent by factor nodes

18: end for
19: Repeat till convergence

outlier and sends a message of “CHANGE” to R11. It also
sends characteristics of the value that R11 should update to
i.e. in this case ψ3 will inform R11 to update to an entity of
type City. For rest of the variable nodes, ψ3 sends a message
of “NO–CHANGE”. This process will be performed by all
factor nodes. Once a variable node receives messages from
all the connected factor nodes, it decides whether to update
its value or not. If it receives a message of “NO–CHANGE”
from all factor nodes, it implies its current assignment is
in agreement with others and it need no update its value.
If the variable node receives a message of “CHANGE” from
some or all factor nodes, it updates it current assignment by
taking into consideration the recommended characteristics
send by the factor nodes. If the variable nodes update their
value, the entire process repeats until convergence or agree-

ment over the entire graph is achieved. A hard convergence
metric could be repeat the process until no variable node
receives a message of “CHANGE”

Our proposed Semantic Message Passing algorithm thus cir-
cumvents the problem of computing joint distribution ta-
bles at factor nodes, by computing agreement over current
assigned values. Furthermore, our scheme, not only pro-
poses to detect individual variable nodes that have incor-
rect assignment, but it also proposes to send characteristics
or semantics associated with the value that a variable node
should update to. The trick lies in defining powerful factor
nodes that can perform such functions. For the purposes
of this paper, we implemented and evaluated one key rela-
tion from the graph; the factor node ψ3 – the interaction
between the column headers and row cell values in each col-
umn which jointly maps column header to a LOD class from
an ontology and links the cell values to LOD entities.

ψ3 – The Column header and row cell value agreement
function. Algorithm 3 gives an overview of the function
that computes agreement between the class to be mapped
to column header and entities to be assigned to row cell
values in that column. That is agreement between City,
Baltimore Ravens, Philadelphia, New York and Boston Re-
call that at the end of the query and rank phase, every row
cell value has an initial entity assignment and every column
header has a set of candidate classes.

In our current implementation every column header Ci main-
tains two separate set of candidate classes – one from the
Yago ontology and other from the DBpedia ontology. Each
row cell value in the given column is mapped to an initial
entity e which in itself has its own set of yago and dbpedia
classes. The initial entities assigned to row cell values in the
column perform a majority voting over Yago and DBpedia
class set to pick the top yago and dbpedia class. Each entity
votes and increments the score of a class from the candidate
set by 1 if the class is present in the class set associated with
e.

The Yago and DBpedia candidate class sets are ordered
by votes, with one at the top having maximum number of
‘votes’. ψ3 computes the top score for each of the top classes.



Algorithm 3 ψ3 Column Header – Row Values Agreement

1: Let Y ago and DBp be set of candidate classes from the
Yago and DBpedia ontology for a column Ci

2: Let the initial score for all classes in Y ago and DBp be
zero.

3: Let RowV als be the set of row cell values in Ci

4: for all r in RowV als do
5: Let e be the current assigned entity to r
6: Let ty, td be the set of yago and dbpedia classes for e
7: Majority Vote Score : For all types in ty that are also

present in Y ago, increment score by 1 for each such
class in Y ago. Similarly, using td increment scores for
classes in DBp

8: end for
9: for all y in Y ago do

10: Get “granularity” score for y
11: end for
12: Order Y ago in descending, first by Vote Score and then

by granularity score. The yago class at the top of the list
is one with maximum votes and also with best “granu-
larity score”. Let this class be topy

13: Order DBp in descending by Vote Score only. The class
at the top is one with maximum votes. Let this class be
topd

14: Let topScorey and topScored be scores for top
Y ago and DBp classes respectively. topScore =
numberOfV otes/numberOfRows

15: Check if topScorey and topScored are below threshold.
16: If scores are below threshold, send message“LOW CON-

FIDENCE” and “NO–CHANGE” variable nodes
17: Use topy, topd if their scores are above threshold in the

send message and update process. If either of the class
score is above threshold and other is below, check if the
classes are “aligned”. If the classes are aligned, the class
with below threshold is used during update process.

18: for all r in RowV als do
19: Let e be the current assigned entity to r
20: If ty, td for e, do not contain either topy or topd, send

message CHANGE. Send the topy, topd as the poten-
tial classes for Entity r should update to.

21: If ty, td for e, contain either topy or topd, send message
NO–CHANGE

22: end for

The top score is simply equal to numberOfVotesForTopClass
/numberOfRows. The Yago classes are further ordered by
what we call as ‘specificity’ or ‘granularity’ score. Ideally,
we want to pick more specific classes (e.g. City) over general
classes(e.g. Place) when making an assignment to column
headers. Thus, if the mutiple yago classes have received the
same number of maximum votes, we use this score as a tie-
breaker. We pre–computed specificity scores for all Yago
classes. The specificity score is computed by simply divid-
ing the number of instances that belong to the class by the
total number of instances and subtracting the result from
one. This assigns a higher score to specific classes and a
lower score to general classes.

Once the top class(es) are identified and their scores com-
puted, ψ3 checks if they can be used in the process of send
message and update process. It checks whether the top
scores for the classes are below are certain threshold. If the

scores are below a certain threshold, it implies confidence
and agreement between row cell values is less and the top
classes cannot be relied upon. In such scenarios ψ3 sends a
message of “LOW–CONFIDENCE” and “NO–CHANGE” to
the variable nodes. ψ3 also maps the column header class to
“No Annotation”.

If scores for both top yago and dbpedia class are above
threshold, ψ3 assigns both the classes to the column header
and uses them in the process of send message and update.
However if either of the class is below threshold, it checks if
the classes are aligned. We define the two classes as aligned
if either the DBpedia class is a subclass of the Yago class
or vice-versa. The subclass relation between DBpedia and
Yago classes is obtained via the PARIS project2 [23]. If
the alignment exists, then ignoring the lower score to either
Yago or DBpedia, the ψ3 picks both the classes as the Yago
and DBpedia assignments to column header respectively. If
the alignment does not exist, the class with the lower score
is ignored, and the one with score above threshold is picked
as the class for the column header. Once the column header
is mapped to class assignments, ψ3 revisits each entity as-
signment in the column. All row cell value (variable nodes)
whose current assigned entity e include the top class(es) in
their class set are sent a message of NO–CHANGE; whereas
the ones whose entity do contain the top class in their class
set are sent a message of CHANGE. These variable nodes
are also provided with the top class(es) as semantic /char-
acteristic that their next entity assignment should fulfill.

Updating the entity annotations for row cell value
variables. Row cell values that receive a message of CHANGE
update their entity assignments. The row cell value variable
node picks the next best candidate entity from it’s ranked
candidate set, that either has one of the top classes in their
set of classes. In cases where only the top Yago or only the
top DBpedia class is present, the available class is used to
update any incorrect assignments.

However, there is an exception to the above process when
the candidate set of entities returned by Wikitology for cell
value are all low confidence entities. If the index score as-
sociated with all the entities is below a certain threshold
(index threshold) it indicates that the entity that can be
mapped to the row cell value is not present in the candidate
set and perhaps the entity is absent from the knowledge
base. In such cases, the algorithm maps the row cell value
to“No Annotation”. In cases where, the class assignment for
column header is “No Annotation”, we retain the initial en-
tity assignment. The only update is, in the case of low confi-
dence candidate entities as described above, wherein the row
cell value is mapped to ‘No Annotation’. In our current im-
plementation, the inference process stops here. Our message
passing scheme chooses the the assignments recommended
by ψ3 as final assignments. When other factor nodes in the
graph are activated the inference process would define a new
convergence metric.

4. EVALUATION
We divide the evaluation section into two parts – the first
section discusses experiments and evaluations for column

2http://webdam.inria.fr/paris/



Column header Annotation 0.6486
Row Cell Value Annotation 0.7591

Figure 6: F1 score for column header annotations
and Accuracy for Row Cell Value annotations

header and row cell value annotations; the second section
talks about the performance of the entity ranker.

4.1 Column Header & Cell Value Annotations
For the purposes of evaluation, we use a subset of 80 tables
extracted from Wikipedia articles, belonging to the ‘wiki-
links’ dataset obtained from [15]. The dataset is labeled
and every cell value is either linked to an entity from the
Yago knowledge base or ‘NA’ (which represents No Anno-
tation) in cases where the entity does not exists. We use
their entity annotations as ground truth for evaluating our
framework’s entity annotation part. The dataset also pro-
vide annotations for column headers, by mapping column
headers either to Yago or Wordnet classes. We choose not
to use their class annotations for our evaluation purpose,
since our current setup includes classes from the DBPedia
and Yago ontologies.

Our existing knowledge source used for generating candidate
classes and entities is largely based on Wikitology and DB-
pedia. The version of Wikitology we use was built from early
2010 dump of Wikipedia and is likely to miss entities that
may be added Wikipedia post that time period. We obtain
DBpedia classes and Yago classes associated with DBpe-
dia / Wikipedia entities via the DBpedia dumps available
at http://wiki.dbpedia.org/Downloads38. In the evaluation
results described below the parameter index threshold is set
to 10 and the top class score threshold is set to 0.5.

We compute accuracy or the percentage of correctly linked
entities in the evaluation of mapping row cell values to enti-
ties. We compare our annotation against the ground truth in
our dataset and consider our annotation to be correct when
it matches the ground truth. For column header annota-
tions we report F1 score. For every column, our framework
produces top three classes from the Yago candidate classes
as well top three from the DBpedia candidate classes. We
let human judges evaluate the produced output. We di-
vided the dataset of 80 tables between four different judges.
Judges marked a predicted class label ‘Good’ if they found
the prediction to be correct, ‘Okay’ if they found the pre-
dicted label correct, but not specific enough and Incorrect
if they thought the predicted label was incorrect. Recollect,
in cases where the column contained all literals like numeri-
cal constants, we choose to predict NA and such predictions
considered correct by the judges. However if we predicted
a class for column instead of NA, judges considered such
predictions to be incorrect. Similar to strategy in [29], to
compute precision we assign a score of 1 if a human judge
marked our predicted class label as good, 0.5 if the judge
marked it as okay and 0 if the judge marked it as incorrect.
Similarly while computing recall, the predicted class label
was assigned as score of 1 if it was marked good or okay and
0 if it was marked incorrect.

For every column header, our system attempted to produce

Figure 7: Individual F1 score for the top three Yago
and DBpedia classes.

the top three Yago and top three DBpedia classes, which
is not always possible, since some instances on DBpedia are
tagged with only Yago classes or only DBpedia classes. Over
the dataset of 80 tables, our system was able to produce
a combination of 1203 class labels (which included NA as
well). Our human judges marked 522 classes to be good,
259 to be okay and 436 to be incorrect. We obtain an F1 of
0.6486 over 1203 classes. While a direct comparison between
our evaluation and [15] is not possible due to difference in
datasets for column header annotation as well as evaluation
strategy, we do note that our F1 score is better previously
reported score of 0.56 [15] and slightly lower than 0.67 re-
ported in [29]. We also compute separate F1 score for each
of the top three yago and dbpedia classes (Figure 7). The
F1 scores for our top–ranked Yago and top–ranked DBpe-
dia classes across our dataset are better than any previously
reported scores.

We now present results for entity linking. The dataset of
80 tables had in all 3981 cell values which could be either
linked to LOD entities or mapped to NA. Our framework
linked 3022 entities correctly obtaining an accuracy of 75.91
%. While computing accuracy, we haven’t accounted for
the cases, where the ground truth is an entity missing from
our knowledge base and our framework may have correctly
predicted as NA and the reverse case where ground truth
is NA, but our framework may have correctly predicted an
entity. We expect the entity annotation accuracy to increase
when these cases are accounted for.

4.2 Entity Ranker
As described in the approach section, the entity ranker con-
sists of a machine classifier model that generates a metric of
how likely the given entity is correct assignment for a given
string mention. The training and test datasets were gen-
erated using the ground truth for entity annotations from
our dataset of 80 tables. For every string mention in the
table, we queried Wikitology as described in Section 3.2 to
generate a set of candidate entities. For each pair of string
mention and candidate entity, feature values for the string
similarity and popularity metrics were generated. A class
label of ‘Yes’ (or 1) was assigned if the candidate entity was
the correct assignment (available via ground truth in the
dataset) else a class label of ‘No’ (or 0) was assigned. The
training set included 600 instances and was evenly split with



Class Precision Recall F-Measure
Yes 0.959 0.849 0.901
No 0.871 0.966 0.916

Figure 8: Precision, Recall and F-Measure for the
Naive Bayes model

300 positive (i.e label = yes) and 300 negative (i.e label =
no) instances. The test set included in all 681 instances with
331 positive and 350 negative instances.

The model used in the entity ranker is trained using Naive
Bayes. We choose to use Naive Bayes because the features
(string similarity and popularity metrics) are fairly indepen-
dent of each other. The model was trained over the training
set described above using default parameters and its perfor-
mance was evaluated against the test set. Out of the 681
instances, the model was able to correctly classify 619 in-
stances with an accuracy of 90.89 %. The precision, recall
and F-measure are presented in Figure 8.

5. RELATED WORK
Our work is closely related to two threads of research, one
that focuses on pragmatically generating RDF and linked
data from databases, spreadsheets and CSV files and a more
recent one that addresses understanding and inferring the
implicit semantics of tables.

Several systems have been implemented to generate seman-
tic web data from databases [21, 28, 18], spreadsheets [10,
13] and CSV files [7]. All are manual or only partially auto-
mated and none have focused on automatically generating
linked RDF data for the entire table. These systems have
mainly focused on relational databases where the schema is
available or on simple spreadsheets. In the domain of open
government data, [7] presents techniques to convert raw data
(CSV, spreadsheets) to RDF. However the generated RDF
data does not use existing classes or properties for column
headers, nor does it link cell values to entities from the LOD
cloud. To generate a richer, enhanced mappings, users will
need to manually specify a configuration file.

The key shortcomings of these systems are twofold: they
rely heavily on users who must be Semantic Web experts
and they do not produced linked data. These systems do
not automatically link classes and entities generated from

<rdf:Description rdf:about=“#entry1”>
<value>6444</value>
<label>Number of Farms</label>
<group>Farms with women principal operators</group>
<county fips>000</county fips>
<state fips>01</state fips>
<state>Alabama</state>
<rdf:type rdf:resource=“http://data-gov.tw.rpi.edu/2009
/data-gov-twc.rdf#DataEntry”/>
</rdf:Description>

Figure 9: A portion of the RDF representation from
dataset 1425 - Census of Agriculture Race, Ethnicity
and Gender Profile Data from data.gov.

their mapping to existing Semantic Web resources – their
output turns out to be just raw string data represented as
RDF, instead of fully linked RDF. Figure 9 shows a part of
RDF representation of dataset 1425 from data.gov [6]. The
property names in the representation are column headers
from the raw dataset and the values of the properties repre-
sent row values for the respective columns.

The representation fails to use existing vocabulary terms to
annotate the raw data and most of the column headers are
mapped to properties local to the RDF file. Mapping column
headers to classes and properties from the LOD cloud, pro-
vides richer description as compared to the local properties.
Such a representation often uses string identifiers for table
cell values instead of linking them to existing entities in the
LOD cloud. Linking the string cell values can further enrich
the semantic representation of the data. Our framework will
link and reuse existing classes, properties and entities with
dereferenceable URIs from the LOD cloud. Our goal is to
generate linked data in a form which is identified as “five
star” by Tim Berners-Lee [1].

Early work in table understanding focused on extracting ta-
bles from documents and web pages [11, 9] with more recent
research attempting to understand their semantics. Wang et
al. [30] began by identifying a single ‘entity column’ in a ta-
ble and, based on its values and rest of the column headers,
associates a concept from the Probase [31] knowledge base
with the table. Their work does not attempt to link the ta-
ble cell values or identify relations between columns. Ventis
et al. [29] associate multiple class labels (or concepts) with
columns in a table and identify relations between the ‘sub-
ject’ column and the rest of the columns in the table. Both
the concept identification for columns and relation identifi-
cation is based on maximum likelihood hypothesis, i.e., the
best class label (or relation) is one that maximizes the prob-
ability of the values given the class label (or relation) for the
column. Their work also does not attempt to link the table
cell values. Limaye et al. [15] use a graphical model which
maps every column header to a class from a known ontology,
links table cell values to entities from a knowledge-base and
identifies relations between columns. They rely on Yago for
background knowledge.

The core of our framework is a probabilistic graphical model
that captures a much richer semantics, including relation
between column headers as well relation between entities
across a given row. Our model has a single ‘factor’ node to
capture relation between column header and strings in the
column, which makes it possible to deal with missing values
(e.g., absent column header).

Current systems for interpreting tables rely on semantically
poor and possibly noisy knowledge-bases and do not attempt
to produce a complete interpretation of a table. None of
the current systems propose or generate any form of linked
data from the inferred meaning. The work mentioned above
will work well with string based tables but we know of no
systems that interpret columns with numeric values and use
the results as evidence in the table interpretation. Doing so
is essential for many domains, including medical research.

6. CONCLUSIONS



Generating an explicit representation of the meaning im-
plicit in tabular data will support automatic integration and
more accurate search. Clues for a table’s intended meaning
are present in column and row headers, cell values, implicit
relations between columns, and any descriptive text. We
described general techniques grounded in graphical models
and probabilistic reasoning to infer a tables meaning rel-
ative to a knowledge base of general and domain-specific
knowledge expressed in the Semantic Web language OWL.
We represent a table’s meaning as a graph of OWL triples
where the columns have been mapped to classes, cell values
to literals, measurements, or knowledge-base entities and
relations to triples. Our joint inference model incorporates
semantics and background knowledge from the LOD to im-
prove on existing message passing schemes and evaluation
shows promising results. An immediate future goal would
be extending the implementation of our graphical model.
Converting tabular data to RDF or high quality linked data
has been long standing challenge for the Semantic Web com-
munity. We believe our extendable and domain independent
framework can address and overcome the existing challenges
and in this paper, we presented a building block for realizing
such this framework.

7. REFERENCES
[1] T. Berners-Lee. Linked data.

http://www.w3.org/DesignIssues/LinkedData.html,
July 2006.

[2] C. Bizer. The emerging web of linked data. IEEE
Intelligent Systems, 24(5):87–92, 2009.

[3] C. Bizer, J. Lehmann, G. Kobilarov, S. Auer,
C. Becker, R. Cyganiak, and S. Hellmann. Dbpedia - a
crystallization point for the web of data. Journal of
Web Semantics, 7(3):154–165, 2009.

[4] M. J. Cafarella, A. Y. Halevy, Z. D. Wang, E. Wu,
and Y. Zhang. Webtables: exploring the power of
tables on the web. PVLDB, 1(1):538–549, 2008.

[5] A. Cohen, C. Adams, J. Davis, C. Yu, P. Yu,
W. Meng, L. Duggan, M. McDonagh, and
N. Smalheiser. Evidence-based medicine, the essential
role of systematic reviews, and the need for automated
text mining tools. In Proc. 1st ACM Int. Health
Informatics Symposium, pages 376–380. ACM, 2010.

[6] Dataset 1425 - Census of Agriculture Race, Ethnicity
and Gender Profile Data.
http://explore.data.gov/Agriculture/Census-of-
Agriculture-Race-Ethnicity-and-Gender-Pr/yd4n-fk45.
2009.

[7] L. Ding, D. DiFranzo, A. Graves, J. R. Michaelis,
X. Li, D. L. McGuinness, and J. A. Hendler. Twc
data-gov corpus: incrementally generating linked
government data from data.gov. In Proc 19th Int.
Conf. on the World Wide Web, pages 1383–1386, New
York, NY, USA, 2010. ACM.

[8] M. Dredze, P. McNamee, D. Rao, A. Gerber, and
T. Finin. Entity disambiguation for knowledge base
population. In COLING, pages 277–285, 2010.

[9] D. W. Embley, D. P. Lopresti, and G. Nagy. Notes on
contemporary table recognition. In Document Analysis
Systems, pages 164–175, 2006.

[10] L. Han, T. Finin, C. Parr, J. Sachs, and A. Joshi.
RDF123: from Spreadsheets to RDF. In Proc. 7th Int.

Semantic Web Conf. Springer, October 2008.

[11] M. Hurst. Towards a theory of tables. IJDAR,
8(2-3):123–131, 2006.

[12] D. Koller and N. Friedman. Probabilistic Graphical
Models: Principles and Techniques. MIT Press, 2009.

[13] A. Langegger and W. Wob. Xlwrap - querying and
integrating arbitrary spreadsheets with SPARQL. In
Proc. 8th Int. Semantic Web Conf., October 2009.

[14] V. I. Levenshtein. Binary codes capable of correcting
deletions, insertions, and reversals. Technical
Report 8, Soviet Physics Doklady, 1966.

[15] G. Limaye, S. Sarawagi, and S. Chakrabarti.
Annotating and searching web tables using entities,
types and relationships. In Proc. 36th Int. Conf. on
Very Large Databases, 2010.

[16] V. Mulwad, T. Finin, and A. Joshi. A Domain
Independent Framework for Extracting Linked
Semantic Data from Tables. In Search Computing -
Broadening Web Search, pages 16–33. Springer, July
2012. LNCS volume 7538.

[17] V. Mulwad, T. Finin, Z. Syed, and A. Joshi. Using
linked data to interpret tables. In Proc. 1st Int.
Workshop on Consuming Linked Data, Shanghai,
2010.

[18] S. Polfliet and R. Ichise. Automated mapping
generation for converting databases into linked data.
In Proc. 9th Int. Semantic Web Conf., November 2010.

[19] N. Puranik. A specialist approach for classification of
column data. Master’s thesis, University of Maryland,
Baltimore County, August 2012.

[20] D. Sackett, W. Rosenberg, J. Gray, R. Haynes, and
W. Richardson. Evidence based medicine: what it is
and what it isn’t. Bmj, 312(7023):71, 1996.

[21] S. S. Sahoo, W. Halb, S. Hellmann, K. Idehen,
T. Thibodeau Jr, S. Auer, J. Sequeda, and A. Ezzat. A
survey of current approaches for mapping of relational
databases to rdf. Technical report, W3C, 2009.

[22] G. Salton and M. J. Mcgill. Introduction to Modern
Information Retrieval. McGraw-Hill, Inc., New York,
NY, USA, 1986.

[23] F. M. Suchanek, S. Abiteboul, and P. Senellart.
PARIS: Probabilistic Alignment of Relations,
Instances, and Schema. PVLDB, 5(3):157–168, 2011.

[24] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: A
Core of Semantic Knowledge. In 16th Int. World Wide
Web Conf., New York, 2007. ACM Press.

[25] Z. Syed. Wikitology: A Novel Hybrid Knowledge Base
Derived from Wikipedia. PhD thesis, University of
Maryland, Baltimore County, August 2010.

[26] Z. Syed and T. Finin. Creating and Exploiting a
Hybrid Knowledge Base for Linked Data. Springer,
April 2011.

[27] Z. Syed, T. Finin, V. Mulwad, and A. Joshi.
Exploiting a Web of Semantic Data for Interpreting
Tables. In Proceedings of the Second Web Science
Conference, April 2010.

[28] K. N. Vavliakis, T. K. Grollios, and P. A. Mitkas.
Rdote - transforming relational databases into
semantic web data. In Proc. 9th Int. Semantic Web
Conf., November 2010.

[29] P. Venetis, A. Halevy, J. Madhavan, M. Pasca,



W. Shen, F. Wu, G. Miao, and C. Wu. Recovering
semantics of tables on the web. In Proc. 37th Int.
Conf. on Very Large Databases, 2011.

[30] J. Wang, B. Shao, H. Wang, and K. Q. Zhu.
Understanding tables on the web. Technical report,
Microsoft Research Asia, 2011.

[31] W. Wu, H. Li, H. Wang, and K. Zhu. Towards a
probabilistic taxonomy of many concepts. Technical
report, Microsoft Research Asia, 2011.

[32] R. Zagari, G. Bianchi-Porro, R. Fiocca, G. Gasbarrini,
E. Roda, and F. Bazzoli. Comparison of 1 and 2 weeks
of omeprazole, amoxicillin and clarithromycin
treatment for helicobacter pylori eradication: the
hyper study. Gut, 56(4):475, 2007.


