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ABSTRACT

While much structured semantic data is available on the
Web, we lack intuitive user interfaces enabling casual, non-
experts to query it. Natural language query systems are a
powerful approach, but current techniques are brittle in ad-
dressing the ambiguity and complexity of natural language
and require expensive labor to supply the extensive domain
knowledge they need. Keyword query systems are relatively
easy to use and implement, but are inexpressive and do
not support complex queries. We introduce a compromise
in which users specify a graphical “skeleton” for a query
and annotate it with freely chosen words, phrases and en-
tity names. We describe a framework for interpreting these
“schema-free queries” over open domain RDF data that
automatically translates them to RDF SPARQL queries.
The framework uses statistical approaches to learn domain
knowledge, thus avoiding expensive human efforts required
by natural language interface systems. We demonstrate the
feasibility of the approach with an implementation that per-
forms well in an evaluation on DBpedia data using queries
from the 2011 QALD workshop.

1. INTRODUCTION
Developing interfaces to enable casual, non-expert users to
query complex structured data has been the subject of much
research over the past forty years. Such interfaces allow
users to query data without understanding its schema, know-
ing how to refer to objects, or mastering the appropriate
formal query language. A long standing goal has been to
allow people to query a database or knowledge-base in nat-
ural language, an approach that has seen much work since
the 1970s [48, 21, 3, 16, 1]. More recently there has been
interest in developing natural language interfaces (NLIs) for
XML data [27] and collections of general semantic data en-
coded in RDF [31, 8, 47, 32, 10].

There are two major obstacles for NLI systems to be
widely adopted, however. First, current NLP techniques

are still brittle in addressing the ambiguity and complex-
ity of natural language in general [1, 24]. Second, it re-
quires extensive domain knowledge for interpreting natural
language questions. Domain knowledge typically consists
of a lexicon, which maps a user’s vocabulary to an ontol-
ogy vocabulary or logical expressions in NLI systems, and
a world model, which specifies the relationships between the
vocabulary terms (e.g., subclass relationships) and the con-
straints on the types of arguments of properties. Both can
be very expensive when dealing with data in broad/open
domains or with heterogeneous schema, such as Semantic
Web linked data [5].

Querying structured data with keywords and phrases is an
alternative approach that has gained popularity recently [22,
49, 44, 41]. Keyword query systems are more robust than
NLI systems because they typically employ a much simpler
mapping strategy: map the keywords to the set of elements
in the knowledge base that are structurally or associationally
close, such as the most specific sub-tree for XML databases
[49] and the smallest sub-graph for RDF databases [44].
However, keyword queries have limited expressiveness and
inherit ambiguity from the natural language terms used as
keywords. For example, the keyword query “president chil-
dren spouse” can be interpreted either as “give me children
and spouses of presidents” or “who are the spouses of the
children of presidents”. Li et al. [27] compared the per-
formance of a NLI system to a keyword system on a set of
complex queries and showed that the keyword system per-
formed poorly against the NLI system.

To precisely query structured data, we must be able to
specify the relational structure between the query’s key ele-
ments. While this can be done in natural language, process-
ing complex, unconstrained sentences is difficult and their
potential ambiguity makes choosing the intended interpre-
tation challenging. We introduce a compromise that we call
a Schema-Free Query (SFQ) interface, in which users spec-
ify a graphical “skeleton” for a query and annotate it with
freely chosen words, phrases and entity names. An example
is shown in Figure 1. By asking users to specify the semantic
relations between entities in a query, we avoid the difficult
problem of relation extraction from natural language sen-
tences. While the full expressive power of human language
is not supported, people are able to use familiar vocabulary
terms in composing a query.

We describe a framework for interpreting SFQs over open
domain RDF semantic data and automatically translating
them to SPARQL, the standard query language for RDF.
Instead of using a manually maintained lexicon, we em-
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Figure 1: A Schema-Free Query for “Where was the
author of the Adventures of Tom Sawyer born?”.

ploy a computational semantic similarity/relatedness mea-
sure to locate candidate ontology terms for user input terms.
Semantic similarity metrics enable our system to have a
broader linguistic coverage than that offered by synonym
expansion by recognizing non-synonymous terms with very
similar meaning. For example, the properties author of and
college are good candidates for the user terms “wrote” and
“graduated from”, respectively. Semantic similarity mea-
sures can be automatically learned from a large domain-
dependent corpus.

Knowing the strength of association between concepts and
properties is an important kind of domain knowledge that
is very useful for disambiguation. The term ‘Titanic’ in
the query “Who are the actors of Titanic” could refer to a
ship or a film, but the latter is more likely because films
commonly have actors but other potential types (e.g., ship,
book, game, place, album, etc.) do not. We know birds
can fly but trees cannot, a database table is not kitchen ta-
ble, etc. Such knowledge is essential for human language
understanding. We refer to this as Concept-level Associa-
tion Knowledge (CAK). Domain and range definitions for
properties in ontologies, argument constraint definitions of
predicates in logic systems and database schemata all belong
to this knowledge. However, manually defining this knowl-
edge for broad or open domains is tedious and expensive. In
this paper, we introduce an approach to automatically learn
this knowledge from semantically marked-up instance data.

With the automatically learned CAK and semantic simi-
larity measures, we present a straightforward but novel al-
gorithm that disambiguates a SFQ and constructs a corre-
sponding SPARQL query to produce an answer. Our al-
gorithm resolves mappings using only concept-level infor-
mation, i.e., at the schema level. This makes the approach
much more scalable than those that directly search into both
instance and concept data for possible matches since concept
space is much smaller than instance space.

Our initial experiments, briefly described in two poster
papers [18, 17], were carried on DBpedia [2], which rep-
resents data from Wikipedia as RDF. DBPedia is the key
component of the Linked Open Data (LOD) and serves as
a microcosm for larger, evolving LOD collections. It pro-
vides a broad-based, open domain ontology containing over
300 classes and 1,500 properties currently. Heterogeneity
is a problem of the DBpedia ontology because it supplants
the categories and attribute names of Wikipedia infoboxes,
which were independently designed by different communi-
ties. Terms having similar linguistic meanings are used for
different contexts. For example, the property locatedInArea
is for mountains and the property location is for companies.

Our approach can be readily applied to any RDF dataset
as long as it holds the following properties: (i) class, prop-
erty and entity names are human-readable words or short
phrases; (ii) all relations are binary, (iii) there are no blank
nodes or auxiliary nodes; and (iv) only simple value types
like xsd:integer or xsd:date are used. There is already con-
siderable data on the Web meeting these requirements and

the volume is growing. Our use of two very general concepts,
semantic similarity and association knowledge, enables the
approach to be extended to support higher arity relations or
complex structures and to be applied to similar graph rep-
resentations (e.g., Microdata, Freebase, Conceptual Struc-
tures).

In the next four sections we present our query interface,
describe the automatic learning of concept association knowl-
edge, detail the algorithm for interpreting an SFQ and trans-
lating it into SPARQL and present our implementation of se-
mantic similarity measures. An evaluation of our prototype
system on test questions from the 2011 QALD workshop is
given in Section 6. We discuss related work in Section 7 and
conclude our paper by summarizing our contributions and
plans for future work in Section 8.

2. SCHEMA­FREE QUERY INTERFACE
A schema-free query (SFQ) is represented as a graph with
nodes denoting entities and links representing semantic re-
lations between them. Each entity is described by two unre-
stricted terms: its name or value and its concept (i.e., class
or type). Figure 1 shows an example of a SFQ with three
entities (a place, person and book) linked by two relations
(born in and author). Users flag entities they want to see in
the results with a ‘?’ and those they do not with a ‘*’. Terms
for concepts can be nouns (book) or simple noun phrases
(soccer club) and relations can be verbs (wrote), prepositions
(in), nouns (author), or simple phrases (born in). Users are
free to reference concepts and relations in their own words
as in composing a NL question.

We currently require concept names from users, enabling
our system to resolve mappings in concept space rather than
instance space. The requirement stems from the observation
that people find it easy to explicitly tag the types but it
is much harder for machines to infer them. However, we
are developing techniques to relax this, as described in the
Section 8.

Relation names can be omitted when there is a single “ap-
parent” relation between two concepts that corresponds to
the user’s intended one. The “apparent” relation, which
we call the default relation, is typically a has-relation or
in-relation, as shown in the examples in Figure 2. In the
first example, a has- or in-relation exists between City and
Country and in the second, a has-relation also exists be-
tween Author and Book. Our system uses a stop word list
for filtering relation names with words like in, has, from,
belong, of and locate. In this way, a has- or in-relation is
automatically turned into a default relation. The second
example in Figure 2 differs from the first in that it can be
represented without using a default relation. An author is
a person who writes. Since the relation information is im-
plicit in one of the two connected concepts, it need not be
explicitly mentioned.

The value of entities can be something other than a name,
such as a number or date. If the value of an entity is a
number, “Number” is used as the entity’s concept. Numeri-

Figure 2: Two examples of default relation.
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cal attributes such as population, area, height, and revenue
can be thought of as either relations or concepts, but since
Number is already used as the concept, we require them to
be relations. A motivation for the rule is that numerical at-
tributes in the underlying ontology only have simple value
types (e.g., xsd:integer, xsd:float), which we can uniformly
treat as Number instances. The DBpedia ontology satisfies
this constraint.

Like a typical database query language, SFQ can express
factual queries but not why or how questions. We currently
support neither numerical restrictions on entity value nor
aggregation functions working on the entity in question. We
plan to implement these features using form-based fields and
drop-lists just below the graph area for creating SFQ. Alter-
natively, we may implement them as a set of buttons that
can be dragged and applied to the entity variables.

By using SFQ interface, we circumvent the yet unsolved
problem of relation extraction from NL sentences [6, 23,
40, 4]. This is challenging because it has to confront hard
linguistic problems such as modifier attachment, anaphora
and fine-grained named entity recognition. Extracting rela-
tions requires information not only from syntactic level but
also from semantic level (e.g., understanding the meaning of
the word “same”). Sometimes it also needs common sense
knowledge to resolve ambiguity. While modern dependency
parsers [29, 11] can achieve about 90% precision and 80% re-
call, what they generate are grammatical relations between
individual words rather than semantic relations between en-
tities. The best systems often rely on machine learning mod-
els to extract relations and use dependency parsers to pro-
duce features [6, 23], but their performance is still far from
reliable.

3. AUTOMATIC CAK LEARNING
We learn Concept-level Association Knowledge statistically
from instance data (the “ABOX” of RDF triples) and thus
avoid expensive human labor in building the knowledge man-
ually. However, instead of producing “tight” assertions such
as those used in RDF property domain and range constraints,
we generate the degree of associations. Classical logics that
make either true or false assertions are less suited in an
open-domain scenario, especially those created from hetero-
geneous data sources. For example, what is the range of the
property author in DBpedia? Both Writer and Artist are not
appropriate because the object of author could be something
other than Writer or Artist, for example Scientist. Having
Person as the range would be too general to be useful. Thus
in our case there is no a fixed range for the property author
but different classes do have varied association strengths of
being the type of an object of author.

Computing statistical association requires counting the
number of occurrences of single terms and co-occurrences of
multiple terms in the universe. DBpedia’s universe is repre-
sented by two datasets: Ontology Infobox Properties, which
contains RDF triples for all relations between instances, and
Ontology Infobox Types, which provides all type definitions
for the instances.

Figure 3 shows how we count term occurrences and co-
occurrences for one relation. On the figure’s left is an RDF
triple describing a relation and the type definitions for its
subject and object and on the right are the resulting occur-

Figure 3: This example shows how we count term
occurrences and co-occurrences in an RDF.

rences and co-occurrences of terms1. We consider direction
in counting co-occurrences between classes and properties.
The directed co-occurrences are indicated by the arrow char-
acter → between two terms, for example Book→author. The
occurrences of directed classes (e.g. Book→) are counted
separately from the occurrences of undirected classes (e.g.
Book).

Because an instance can have multiple types, the fact that
Mark Twain is the object of the property dbo:author2 re-
sults in four directed co-occurrences between the property
dbo:author and each of the types of Mark Twain. Similarly,
that The Adventures of Tom Sawyer and Mark Twain are
the subject and object of a relation produces twelve pair-
wise undirected co-occurrences between their types.

After both occurrence and co-occurrence counts are avail-
able, we employ the pointwise mutual information (PMI) [7,
19] statistical measure to compute two types of associations:
(i) directed association between classes and properties and
(ii) undirected association between two classes. Equation 1
gives the PMI formula where ft1 and ft2 are the marginal
occurrence counts of the two terms t1 and t2 and f(t1, t2) is
the co-occurrence count of t1 and t2 in the universe. N is a
constant for the size of the universe.

PMI(t1, t2) ≈ loge(
f(t1, t2) · N

ft1 · ft2

) (1)

We use the direction-sensitive
−−→
PMI to denote the association

between a class c and a property p.
−−→
PMI(c, p) measures the

association degree between c as subject and p as predicate

whereas
−−→
PMI(p, c) measures the one between p as predicate

and c as object.
−−→
PMI is computed the same way as PMI

except that its class term is directed, as shown below.

−−→
PMI(c, p) = PMI(c →, p) (2)
−−→
PMI(p, c) = PMI(p, → c) (3)

Our CAK for the DBpedia ontology is stored as two sparse
matrices of PMI values between classes and properties and
between classes themselves. Figure 4 shows examples of top-
25 lists of most associated properties/classes for five terms

1Co-occurrences of three terms are maintained for com-
puting conditional probability of properties connecting two
given classes, which we will use in the next section.
2dbo is the RDF namespace prefix for the DBpedia ontology
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1) Writer→: @pseudonym 6.0, notableWork 6.0, influencedBy
5.7, skos:subject 5.7, influenced 5.5, movement 5.1, ethnicity 4.3,
@birthName 4.3, @deathDate 4.2, relative 4.1, occupation 4.0,
@birthDate 3.8, nationality 3.4, education 3.4, child 3.3, award
3.2, deathPlace 3.2, @activeYearsStartYear 3.2, partner 3.2, @ac-
tiveYearsEndYear 3.1, genre 3.1, spouse 3.0, birthPlace 3.0, citizen-
ship 2.9, foaf:homepage 2.8

2) →Writer: author 6.8, influencedBy 6.4, influenced 6.1, basedOn
5.3, illustrator 5.1, writer 5.1, creator 5.1, coverArtist 4.4, executive-
Producer 4.4, relative 4.2, translator 4.1, lyrics 4.0, previousEditor
3.9, editor 3.6, spouse 3.5, child 3.4, nobelLaureates 3.3, designer 3.2,
partner 3.2, associateEditor 3.2, director 3.0, narrator 3.0, chiefEditor
2.9, storyEditor 2.8, person 2.7

3) Book→: @isbn 5.8, @numberOfPages 5.8, @oclc 5.6, mediaType
5.6, @lcc 5.6, literaryGenre 5.6, @dcc 5.5, author 5.4, coverArtist 5.2,
@publicationDate 5.1, nonFictionSubject 5.1, illustrator 5.1, transla-
tor 4.9, publisher 4.9, series 4.5, language 4.0, subsequentWork 3.3,
previousWork 3.2, country 1.7, designer -1.9, @meaning -1.9, @for-
merCallsign -2.1, @review -2.4, @callsignMeaning -2.5, programme-
Format -2.6

4) →Book: notableWork 6.8, firstAppearance 6.4, basedOn 6.1,
lastAppearance 5.9, previousWork 5.8, subsequentWork 5.8, series
4.8, knownFor 3.8, notableIdea 3.1, portrayer 2.6, currentProduction
2.3, related 1.9, author 1.7, nonFictionSubject 1.7, writer 1.4, trans-
lator 1.1, influencedBy 1.1, significantProject 1.1, award 0.9, cover-
Artist 0.8, relative 0.5, movement 0.5, associatedMusicalArtist 0.5,
associatedBand 0.4, illustrator 0.3

5) author: →Writer 6.8, Musical→ 6.1, Play→ 5.4, Book→ 5.4,
Website→ 5.4, WrittenWork→ 5.1, →Journalist 5.0, →Philosopher
4.9, →Website 4.8, →Artist 4.5, →Comedian 4.1, →Person 3.9,
→ComicsCreator 3.8, →Scientist 3.6, TelevisionShow→ 3.4, Work→
3.3, →Senator 3.2, →FictionalCharacter 2.8, →PeriodicalLiterature
2.7, →Governor 2.4, →Wrestler 2.3, →MemberOfParliament 2.3,
→OfficeHolder 2.3, →Cleric 2.2, →MilitaryPerson 2.2

Figure 4: Examples of the top-25 most associated
properties/classes from DBpedia’s CAK

along with their PMI values. Examples 1 to 4 present, in or-
der, outgoing and incoming properties for two classes Writer
and Book. Note that datatype properties are indicated by
an initial @ character to distinguish them from object prop-
erties. Example 5 shows the classes that could be in domain
or range of the property author. Terms ending and starting
with → are potential domain and range classes, respectively.

In the first four examples, the top properties are the most
informative, such as @pseudonym and notableWork for Writer
and @isbn and @numberOfPages for Book. Lower ranked
properties tend to be less related to the classes. Example
two shows that both author and writer can be incoming
properties of Writer, though author is more related. On the
other hand, the third example shows that only author, not
writer, can describe Book. In the DBpedia ontology, author
and writer are used for different contexts with author used
for books. The class Writer has both author and writer as
incoming properties because writers can write things other
than books (e.g., films, songs). Example five illustrates the
heterogeneity of DBpedia’s ontology via the property au-
thor, which carries multiple senses (e.g., book author, Web
site creator). Noisy data in DBpedia can result in some ab-
normal associations, as shown in the fourth example, where
author can be an incoming property of Book. Fortunately,
their association strength is typically low.

4. TRANSLATION
We start by laying out the three-step algorithm that maps
terms in a SFQ to terms in a target ontology, in this case
the DBpedia ontology. The algorithm focuses on vocabulary

Figure 5: A ranked list of terms from the target
ontology is generated for each term in the SFQ,
“Who wrote the book Tom Sawyer and where was
he born?”.

or schema mapping, which is done without directly involv-
ing the instance data. We then discuss how to generate
SPARQL queries given the term mappings.

4.1 Mapping Algorithm

4.1.1 Step One: Candidate Generation

For each concept or relation in a SFQ, we generate a list of
the k most semantically similar candidate ontology classes
or properties. (See Section 5 for semantic similarity com-
putation). A minimum similarity threshold, currently ex-
perimentally set at 0.1, guarantees that all the terms have
at least some similarity. For a default relation, we gener-
ate the k

2
ontology properties most semantically similar to

each of its connected concepts because the semantics of a
default relation is often conveyed in one of its connected
concepts. We also generate k

4
ontology properties that are

most semantically similar to the words locate and own on the
behalf of “in” and “has”, respectively. Finally we assemble
these into a list of 3

2
k ontology properties. The value for k

is a compromise between the translation performance and
the allowed computation time and depends on the degree
of heterogeneity in the underlying ontologies and the fitness
of the semantic similarity measure. We currently use an
experimentally determined value of 20.

Figure 5 shows the candidate lists generated for the five
user terms in the query, with candidates ranked by their
similarity score. We use the Stanford part of speech (POS)
tagger and morphology package [43] to get word lemmas
with their POS and then compute their semantic similarity.
While our similarity measure is effective and works well,
it is not perfect. For example, “born in” is mistaken as
highly similar to “@cylinderBore” and relatively dissimilar
to “birthPlace”.

Classes starting with # are virtual classes that are auto-
matically derived from the object properties in the target
ontology, DBpedia in this case. Many property names are
nouns, which can be used to infer the type of the object
instance. For example, the object of the director property
should be a director. Many of these generated types are
not included in the native classes but they could neverthe-
less be entered by users as concepts in a SFQ. Some other
examples include #Chairman, #Religion, and #Address.
Adding them as auxiliary classes facilitates the mapping.
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However, unlike the specifically defined native classes, the
virtual classes can be ambiguous. Therefore, we assign them
three fourths similarity to make them subordinate to native
classes.

4.1.2 Step Two: Disambiguation

Each combination of ontology terms, with one term coming
from each candidate list, is a potential query interpretation,
but some are reasonable and others not. Disambiguation
here means choosing the most reasonable interpretations
from a set of candidates.

An intuitive measure of reasonableness for a given inter-
pretation is the degree to which its ontology terms associate
in the way that their corresponding user terms connect in
the SFQ. For example, since “Place” is connected by “born
in” in Figure 5, their corresponding ontology terms can be
expected to have good association. Therefore, the combina-
tion of Place and birthPlace makes much more sense than
that of Place and @cylinderBore or that of Place and @birth-
Date because the CAK tells us that a strong association
holds between Place and birthPlace but not @cylinderBore
or @birthDate. Thus the degree of association from CAK is
used as a measure of reasonableness. For another example,
CAK data shows that both the combinations of Writer and
writer and of Writer and author are reasonable interpreta-
tions to the SFQ connection “Author → wrote”. However,
since only author not writer has a strong association with
the class Book, the combination of Writer, author and Book
produces a much better interpretation than that of Writer,
writer and Book for the joint connection “Author → wrote
→ Book” in the SFQ.

We use two types of connections in a SFQ when com-
puting the overall association of an interpretation: connec-
tions between concepts and their relations (e.g., “Author”
and “wrote”) and between direct connected concepts (e.g.,
“Author” and “Book”). We exclude indirect connections
(e.g., between “Book” and “born in” or between “Book”
and “Place”) because they do not necessarily entail good
associations. This distinguishes from the coarse-grained dis-
ambiguation methods [50] where context is a simple a bag
of words without compositional structure.

If candidate ontology terms ideally contained all the sub-
stitutable terms, we could rely solely on their associations
for disambiguation. However, in practice many other related
terms are also included and therefore the similarity of the
candidate ontology terms to the user’s terms is important
in identifying the best interpretations. We experimentally
found that weighting their associations by their similarities
produced a better disambiguation algorithm.

To formalize our approach, suppose the query graph Gq

has m edges and n nodes. Each concept or relation xi in
Gq has a corresponding set of candidate ontology terms Yi.
Our interpretation space H is the Cartesian product over
the sets Y1, ..., Ym+n.

H = Y1 × ... × Ym+n = {(y1, ..., ym+n) : yi ∈ Yi}

Each interpretation h ∈ H also describes a function h(x)
that maps xi to yi for i ∈ {1, ..., m + n}.

Let us define a fitness function Φ(h, G) that returns the
fitness score of an interpretation h on a query graph or sub-
graph G. We seek the interpretation h∗ ∈ H that maximizes
the fitness on the query graph Gq, which is computed as the

summation of the fitness on each link Li in Gq, i from 1 to
m. More specifically,

h
∗ = argmax

h∈H

Φ(h, Gq) (4)

.
= argmax

h∈H

m
X

i=1

Φ(h, Li) (5)

where link Li is a tuple with three elements: subject concept
si, relation ri and object concept oi. Formula 5 achieves
joint disambiguation because the joint concepts of different
links should be mapped to the same ontology class.

Before computing the fitness of link Li, we first resolve
the direction of the ontology property h(ri) because h(ri)
is semantically similar to ri but they may have opposite
directions. For example, the relation wrote in Figure 5 is
semantically similar to the property author which, however,
connects from Book to Author. Whether the direction of
h(ri) should be inverse to the one of ri is decided in For-
mula 6.

A =
−−→
PMI(h(si), h(ri)) +

−−→
PMI(h(ri), h(oi))

A
′ =

−−→
PMI(h(oi), h(ri)) +

−−→
PMI(h(ri), h(si))

(ŝi, ôi) =

(

(oi, si), if A′ − A > α

(si, oi), if A′ − A 6 α
(6)

The association terms A and A′ measure the degrees of rea-
sonableness for the original and inverse directions, respec-
tively. If the inverse direction is significantly more reason-
able than the original, we reverse the direction by switch-
ing the classes that h(ri) connects; otherwise we respect
the original direction. Currently, the reverse threshold α is
2.0, based on experimental evidence. The hypothesis behind
Formula 6 is that if the two classes are different (e.g., Author,
Book), the properties connecting them tend to go with one
direction only (e.g., wrote); if the two classes are the same
or similar (e.g., Actor, Person) their connecting properties
can go with both directions (e.g., spouse) but we observed
no large differences between the degrees of reasonableness
of two directions. Formula 6 works very well empirically.
As Section 6 shows, none of incorrect translations of the
evaluation queries were caused by mis-resolved directions.

Finally, the fitness on link Li is the sum of three pair-
wise associations: the directed association from subject class
h(ŝi) to property h(ri), the directed association from prop-
erty h(ri) to object class h(ôi), and the undirected associa-
tion between subject class h(ŝi) and object class h(ôi), all
weighted by semantic similarities between ontology terms
and their corresponding user terms. More specially,

Φ(h, Li) =
−−→
PMI(h(ŝi), h(ri)) · sim(ŝi, h(ŝi)) · sim(ri, h(ri))

+
−−→
PMI(h(ri), h(ôi)) · sim(ôi, h(ôi)) · sim(ri, h(ri))

+2·PMI(h(ŝi), h(ôi)) · sim(ŝi, h(ŝi)) · sim(ôi, h(ôi))
(7)

We use a weight of two for the undirected association term
since there are two directed association terms. Moreover,
the higher weight for undirected association terms helps in
the situations where the corresponding property fails to be
in the candidate list of length k. The higher weight gives
us a better chance to map the concepts to the correspond-
ing classes via the undirected association term. To facilitate
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Figure 6: A joint disambiguation example

this, we also impose a lower bound of zero on the two di-
rected association terms to deal with cases where the prop-
erty h(ri) fits too poorly with its two classes (their values
can be −∞). In these situations the fitness is solely deter-
mined by the undirected association term.

Our algorithm can successfully find the correct mappings
(marked as bold) for the SFQ in Figures 5. It can also handle
more complicated cases such as the one in Figure 6. Some
of the mappings are ranked at only 10th and 14th places.
The example in Figure 6 is a demonstration of joint disam-
biguation, which requires taking the context as a whole. The
reason #Chairman is selected, instead of President, is that
President only means the president of a country in the DB-
pedia ontology and SoccerClub has much higher association
with #Chairman than with President. However, if we take
the single link “President → born in → Place” out of the
context, President will then be preferred over #Chairman
because almost all presidents are described with their birth
places in Wikipedia but not true for “chairmen”.

If each candidate list contains k semantically similar terms,
the complexity of a straightforward disambiguation algo-
rithm is O(kn+m) simply because the total number of inter-
pretations is kn+m. We can significantly reduce this com-
plexity by exploiting locality. The optimal mapping choice
of a property can be determined locally when the two classes
it links are fixed. So, we only iterate on all kn combinations
of classes. Moreover, we can iterate in a way such that the
next combination differs from current combination only on
one class with others remaining unchanged. This means we
need only re-compute the links involving the changed class.
The average number of links in which a class participates is
2m
n

. On the other hand, finding the property that maximizes
the fitness of a link requires going through all k choices in
the candidate list, resulting in O(k) running time. Put them
together, the total computational complexity is reduced to
O(kn m

n
k).

Although the running time is still exponential in the num-
ber of concepts in Gq, it is not a serious issue in practical
applications for three reasons. First, we expect that short
queries with a small number of entities will dominate. Sec-
ond, we can do a much better job in concept mapping than
in relation mapping so a small k can be used for producing
candidates of concepts and a large k for relations. Finally,
we can achieve further improvement by decomposing the
graph into subgraphs and/or exploiting parallel computing.

4.1.3 Step Three: Refinement

The best interpretation typically gives us the most appropri-
ate classes and properties for the user terms. For properties,
however, two cases that require additional work. The first
arises when two connected concepts in Gq are mapped to the
correct classes but we are unable to find a reasonable map-
ping for the relation connecting them. The second occurs
when the property being mapped to is an appropriate one
but it is not a major property used in the context. Because
the two connected concepts are already disambiguated, we
use these as the context and consider all of the properties
that can connect instances of their corresponding classes.

For a missing property, we map the relation to its most
semantically similar property among all connecting proper-
ties. In the case of a minor property, our goal is to find the
major properties in the context, which may be less similar
to the user relation than the minor property but have much
higher conditional probabilities. Thus, we use the formula
in Equation 8 to identify major properties from all connect-
ing properties. This formula simply trades similarity for
popularity. The logarithmic scale is used so that a large dif-
ference on popularity can count for only a small difference
on similarity. β (currently 0.8) is a coefficient that balances
precision and recall.

log(
Probmajor

Probminor

) · β >
Simminor

Simmajor

(8)

4.2 SPARQL Generation
After user terms are disambiguated and mapped to appro-
priate ontology terms, translating a SFQ to SPARQL is
straightforward. Figure 7 shows the SPARQL query pro-
duced from the SFQ in Figure 5. Classes are used to type
the instances, such as ?x a dbo:Writer, and properties used
to connect instances as in ?0 dbo:author ?x. The bif:contains
property is a Virtuoso [12] built-in text search function which
finds literals containing specified text. The named entities
in the SFQ can be disambiguated by the constraints in the
SPARQL query. In this example, Tom Sawyer has two con-
straints: it is in the label of some book and it is written by
some writer.

We also generate a concise SPARQL query which is pro-
duced from the regular one by removing unnecessary class
conditions. Removing them compensates for a deficiency in
DBpedia: many instances do not have all of the appropriate
type assertions. For example, Bill Clinton is not asserted
to be of type President. To address this, we compute the

PREFIX dbo: <http://dbpedia.org/ontology/>
SELECT DISTINCT ?x, ?y WHERE {

?0 a dbo:Book .
?0 rdfs:label ?label0 .
?label0 bif:contains ’"Tom Sawyer"’ .
?x a dbo:Writer .
?y a dbo:Place .
{?0 dbo:author ?x) .
{?x dbo:birthPlace ?y} .

}

Figure 7: This SPARQL query was automatically
generated from the SFQ in Figure 5, “Who wrote
the book Tom Sawyer and where was he born?”.
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semantic similarity between properties and classes qualify-
ing the same instance. If they are very similar, we drop
the class conditions. For example, in the SPARQL query
in Figure 7, ?x has an incoming property author which is
semantically similar to its class Writer. In this case, we
remove the statement ?x a dbo:Writer because it could be
inferred from the property author.

5. SEMANTIC SIMILARITY
We need to compute semantic similarity between concepts
in the form of noun phrases (e.g., City and Soccer Club) and
between relations in the form of short phrases (e.g., crosses
and birth date). One way is distributional similarity [20],
a statistical approach using a term’s collective context in-
formation drawn from a large text corpus to represent the
meaning of the term. Distributional similarity is usually ap-
plied to words but it can be generalized to phrases [30]. How-
ever, the large number of potential input phrases precludes
precomputing and storing distributional similarity data and
computing it dynamically as needed would take too long.
Thus, we assume the semantics of a phrase is compositional
on its component words and apply an algorithm to compute
similarity between two phrases using word similarity.

For two given phrases P1 and P2, we pair the words in
P1 to the words in P2 in a way that it maximizes the sum
of word similarities of the resulting word-pairs. The maxi-
mized sum of word similarities is further normalized by the
number of word-pairs. The same process is repeated for the
other direction, i.e., from P2 to P1. The scores from both
directions are then combined using average. The specific
metric is shown in Formula 9. Our metric follows the one
proposed by Mihalcea [33], but we allow pairing words with
different parts-of-speech.

sim(P1, P2) =

P

w1∈{P1}
max

w2∈{P2}
sim(w1, w2)

2 · |P1|

+

P

w2∈{P2}
max

w1∈{P1}
sim(w2, w1)

2 · |P2|
(9)

Computing semantic similarity between noun phrases re-
quires additional work. Before running algorithm on two
noun phrases, we compute the semantic similarity of their
head nouns. If it exceeds an experimentally determined
threshold we apply the above metric but with their head
nouns being prior-paired and if not, the phrases have simi-
larity of zero. Thus we know that dog house is not similar
to house dog.

Our word similarity measure is based on distributional
similarity and latent semantic analysis, which is further en-
hanced using information from WordNet. Our distributional
similarity approach is based on [39], which yields the best
performance to date on the TOEFL synonym test [25], with
a correctness of 92%. By using a simple context of bag
of words, the similarity between words even with different
parts of speech can also be computed.

Although distributional similarity has an advantage that
it can compute similarity between words that are not strictly
synonyms, the human judgments of synonymy found in Word-
Net are more reliable. Therefore, we give higher similarity
to word pairs which are in the same WordNet synset or one
of which is the immediate hypernym of the other by adding

0.5 and 0.2 to their distributional similarities, respectively.
We also boost similarity between a word and its derivation-
ally related forms by increasing their distributional similar-
ity by 0.3. We do so because a word can often represent
the same relation as its derivationally related forms in our
context. As examples, “writer” work as the almost same
relation to “write” and so does “produce” to “product” be-
cause “writer” means the subject that writes and “product”
means the thing being produced.

The parameters 0.5, 0.2 and 0.3 were experimentally de-
rived as follows. We first manually generated a set of param-
eter combinations guided by the intuition that the synonym
parameter should be given the highest value and the hyper-
nym and derivational form parameters given values about
half as large. We then used a set of test cases from training
questions to evaluate each combination of parameters and
picked the one yielding the best performance.

In our case, the lexical categories of words are not impor-
tant; only their semantics matters. However, the value of
distributional similarity of words is lowered if they are not in
the same lexical category. To counteract this drawback, we
put words into the same lexical category using their deriva-
tional forms and compute distributional similarity between
their aligned forms. Then we compare this value with their
original similarity and use the larger one as their similarity.

6. EVALUATION

Dataset. We evaluated our system using a dataset devel-
oped for the 2011 Workshop on Question Answering over
Linked Data (QALD) [38]. This dataset was designed to
evaluate ontology-based question answering (QA) systems
and includes 100 natural language (NL) questions (50 train-
ing and 50 test) over DBpedia (version 3.6) along with their
ground truth answers.

We selected 33 of the 50 test questions (see Table 1)
that could be answered using only the DBpedia ontology,
i.e., without the additional assertions in the YAGO ontol-
ogy. Eight of these were slightly modified and their IDs are
tagged with a *. Q10, 14, 24, 30, 35, 44 and 45 required
modification because they needed operations currently un-
supported by our prototype system: aggregation functions
(Which locations have more than two caves?) and Boolean
answers (Was U.S. President Jackson involved in a war?).
Our changes included removing the unsupported operations
or changing the answer type but preserving the relations.
For example, the above two questions were changed to Give
me the location of Ape Cave and What wars were U.S. Pres-
ident Jackson involved in?. Although we introduce an aux-
iliary entity Ape Cave for the first question, the entity name
does not affect the mapping process since it is done at the
schema level and the entity names are not used. In Q37, we
substituted “Richard Nixon” for “Bill Clinton” because the
original question cannot be answered using the DBpedia on-
tology only but an entity name change makes it answerable.

Among the 33 questions, six contain two relations (Q2,
3, 29, 35, 37 and 42, marked as italic in Table 1) and the
rest only one. In fact, all of the QALD questions have the
following patterns that are customized for ontology-based
NLI systems: (i) most contain one relation and no more
than two; (ii) single answer type or variable; and (iii) no
anaphora used. They pose less challenge to NLP parsers
but do not fully explore the advantages of graph query.
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ID query
reg., w/o step 3 con., w/o step 3 reg., w/ step 3 con., w/ step 3 time non-empty

prec. recall prec. recall prec. recall prec. recall (sec.) prec. recall

1 Which companies are in the computer software industry? 1 0.998 1 0.998 1 0.998 1 0.998 2.667 1 0.998

2 Which telecommunications organizations are located in Belgium? 0.681 0.852 0.681 0.852 0.681 0.852 0.681 0.852 3.845 0.681 0.852

3 Give me the official websites of actors of the television show Charmed. 0.667 0.667 0.667 0.667 1 1 1 1 3.928 1 1

5 What are the official languages of the Philippines? 1 1 1 1 1 1 1 1 1.902 1 1

6 Who is the mayor of New York City? 0 0 0 0 0.125 1 0.125 1 1.730 0.125 1

7 Where did Abraham Lincoln die? 0.667 1 0.556 1 0.667 1 0.556 1 2.101 0.556 1

8 When was the Battle of Gettysburg? 0.667 0.667 0.667 0.667 0.667 0.667 0.667 0.667 1.886 1 1

10* What is the wife of President Obama called? 0 0 0 0 0 0 0 0 2.311 0.667 0.667

11 What is the area code of Berlin? 0.250 1 0.250 1 0.250 1 0.250 1 2.155 0.250 1

13 In which country is the Limerick Lake? 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 1.994 0.333 0.333

14* What wars was U.S. President Jackson involved in? 0 0 0 0 0.667 0.389 0.667 0.389 1.637 1 0.583

16 Who is the owner of Universal Studios? 0 0 0 0 0 0 0 0 1.729 0 0

19 What is the currency of the Czech Republic? 1 1 1 1 1 1 1 1 2.247 1 1

24* What mountains are in Germany? 1 1 1 1 1 1 1 1 2.214 1 1

25 Give me the homepage of Forbes. 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 1.735 0.333 0.333

26 Give me all soccer clubs in Spain. 0 0 0 0 1 1 1 1 2.018 1 1

27 What is the revenue of IBM? 0.250 1 0.250 1 0.250 1 0.250 1 2.069 0.250 1

29 In which films directed by Garry Marshall was Julia Roberts starring? 1 1 1 1 1 1 1 1 2.762 1 1

30* Give me all proteins. 1 1 1 1 1 1 1 1 0.567 1 1

32 Which television shows were created by Walt Disney? 1 0.069 1 0.069 1 0.201 1 0.201 1.716 1 0.201

34 Through which countries does the Yenisei river flow? 0 0 0 0 1 0.500 0.500 0.500 2.022 0.500 0.500

35* What city is Egypt’s largest city and also its capital? 0 0 1 1 0 0 1 1 1.887 1 1

37* Who is the daughter of Richard Nixon married to? 1 1 1 1 1 1 1 1 2.464 1 1

40 Who is the author of WikiLeaks? 1 1 1 1 1 1 1 1 2.589 1 1

41 Who designed the Brooklyn Bridge? 0 0 0 0 0 0 0 0 1.734 1 1

42 Which bridges are of the same type as the Manhattan Bridge? 0 0 0 0 0 0 0 0 2.099 0 0

43 Which river does the Brooklyn Bridge cross? 1 1 1 1 1 1 1 1 1.644 1 1

44* Give me the location of Ape Cave. 1 1 1 1 1 1 1 1 1.717 1 1

45* What is the height of the mountain Annapurna? 0.500 1 0.500 1 0.500 1 0.500 1 1.564 0.500 1

46 What is the highest place of Karakoram? 0.672 1 0.672 1 0.672 1 0.672 1 1.456 0.672 1

47 What did Bruce Carver die from? 1 1 1 1 1 1 1 1 1.721 1 1

49 How tall is Claudia Schiffer? 1 1 1 1 1 1 1 1 1.744 1 1

50 In which country does the Nile start? 0 0 0 0 1 1 1 1 1.693 1 1

Average on 33 queries 0.546 0.604 0.573 0.634 0.671 0.736 0.683 0.766 2.047 0.754 0.832

Table 1: Average precision, recall and translation time for SPARQL queries generated from 33 questions.

Our system took as input two datasets from DBpedia 3.6:
Ontology Infobox Properties and Ontology Infobox Types.
These contain all of the “ABOX” data in the DBpedia on-
tology. As described in Section 3, we statistically learned
Concept-level Association Knowledge from the two datasets
and did not use the DBpedia Ontology dataset that specifies
the class hierarchy and human-crafted domain and range
definitions for properties.

Methods and Results. Our system ran on a computer
with a 2.33GHz Intel Core2 CPU and 8GB memory. We
translated some of the 50 training questions to SFQs and
used them to tune our system, including setting various
thresholds and coefficients.

Three computer science graduate students who were unfa-
miliar with DBpedia and its ontology independently trans-
lated the 33 test questions into SFQs. We first familiarized
the subjects with the SFQ concept and its rules as specified
in Section 2 and then trained them with ten questions from
the training dataset. We asked them to first identify the en-
tities in a natural language query and their types and then
link the entities with the relations given by the query. We
also gave them a few simple constraints, e.g., if the entity
value is a number, use “Number” as the type of the entity.
However, the major force of learning to create the structural
queries is by examples. The subjects quickly learned from
the ten examples and found the concepts intuitive and easy
to understand. The entire learning process took less than
half an hour. Finally, we asked each subject to create SFQs
for the 33 test questions. Because our graphical web inter-
face was under development, the users drew the queries on

paper. None of the subjects had difficulty in constructing
the SFQs and all finished within half an hour.

Three versions of the 33 SFQs were given to our sys-
tem which automatically translated them into four SPARQL
queries which are the regular and concise queries obtained
from the best interpretation with and without step three in
the translation process. Table 1 shows the average time to
translate a SFQ to the four SPARQL queries, measured in
seconds. The queries were then run on public SPARQL end-
points loaded with DBpedia 3.6 to produce answers, which
took a few seconds per query. The answers were evalu-
ated for precision and recall, averaging on three versions,
as shown in Table 1. The concise queries performed bet-
ter than regular ones and step three improved performance
significantly.

We also evaluated the strategy of issuing multiple queries
sequentially until non-empty results are returned. If the
concise query generated from the best interpretation with
step three gives empty result, we remove the link which has
the lowest fitness value and send the modified query again.
This process is repeated until no link remains in the query.
If no result was obtained, we accepted for the second best in-
terpretation and so on. The performance of this non-empty
strategy is also shown in Table 1.

Discussion. Relation mapping is more challenging than
concept mapping in translating the SFQs to SPARQL be-
cause equivalent relations can go beyond synonyms, they
can be context-dependent and many of them involve default
relations. Examples include mapping “actor” to starring,
“marry” to spouse, “die from” to deathCause, “mayor” to
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leaderName, “tall” to height, “start” to sourceCountry and
“involved” to commander. Thanks to the semantic similar-
ity measure, we are still able to recognize them. Some of
them are not similar enough to enter the candidate lists so
that they cannot be found at step two. At step three, with
context information provided by the disambiguated concepts
we then could locate them. For example, in Q50 when we
narrow down to the properties occurring between the two
classes River and Country, sourceCountry then becomes the
most similar to “start”. This explains why the performance
of Q6, 14, 26, 34 and 50 was improved by step three.

Structural mismatches between the SFQ and the DBpe-
dia ontology resulted in problems that our current approach
has not addressed. We identified two structure mismatch
categories: indirect properties and nominal compounds [13].

Wikipedia infoboxes and DBpedia describe the most rele-
vant attributes or relations of concepts, which we call direct
property. Examples include population, area and the capital
of a country, the actors of a film and the maker of a product.
Indirect properties are the composition of direct properties.
For example, acted under between an actor and a director is
the composition of two direct properties (starring and direc-
tor) joined by a film. As long as the user intentionally uses
direct properties to compose a SFQ, we expect this kind of
structure mismatch would occur infrequently. As for the 33
NL questions, only Q42 contains one indirect property.

Some direct properties contain duplicate information when
one can be inferred by another. For example, in DBpedia
there are duplicate releaseDate properties associated to both
a music album and each song in it. This is unlike normal-
ized relational databases since Wikipedia infoboxes do not
preclude redundancy of data. This redundancy also helps
alleviate the problem of structural mismatch.

We observed that our users differed in whether a nomi-
nal compound should be entered as a phase or decomposed,
leading to another category of structure mismatch. For
example, two subjects kept the noun phrase “U.S. Presi-
dent” as a single unit while the other decomposed it into
two units President and Country which are linked by the
relation in. In the DBpedia ontology, however, there are
no links between U.S. Presidents and the country United
States3. Therefore, the SPARQL query translated from the
decomposed noun phrase yields an empty result. Q2 and
14 fall in this category. We will present future work dealing
with structure mismatch in the last section.

The missing DBpedia class types4 caused empty results
in two queries. In Q10 the entity Obama lacks the type
President and in Q41 the true answer lacks either Architect
or Person type in the DBpedia Ontology. In their second
best interpretations “President” is mapped to the virtual
class #President and the answer type in Q41 is mapped to
Thing. Their corresponding SPARQL queries can then pro-
duce answers. The missing City type for Egypt also resulted
in worse performance of regular queries than concise queries
in Q35.

The low precision of several queries (Q6, 7, 11, 27 and 45)
is caused by entity ambiguity. Q7, for example, might rea-
sonably be interpreted to be about the death of the 16th US
president. However, DBpedia includes information on three

3The term “President of United States” appears as the value
of a string property of U.S. Presidents, however DBpedia
currently does not extract relations from strings
4Some of them have been resolved in DBpedia 3.7.

people with this name, the 16th US president, his grand-
father and grandson. Instead of choosing the most notable
one, our system generated all. From user’s perspective, it
may be best to show a table of all answers along with their
URIs and let the user to discriminate herself.

User interpretation of a question can influence its result.
In Q7, one subject used the concept President for Abraham
Lincoln, enabling our system to produces the correct answer
only. In Q16 all of three subjects interpret “Who” as a Per-
son type. However, the type that leads to the correct answer
is Organization. In Q42 all the subjects decomposed the re-
lation “the same type as” to two relations linking to the
same “Type” entity. However, their queries still cannot be
translated because the target property, architecturalBureau,
was not semantically similar to “Type”.

Our disambiguation algorithm sometimes fails due to the
flexibility of human expressions. For example, one subject
translated Q8 into a “Battle” entity and a “Year” entity
which are connected by the relation “took place”. Our sys-
tem was misled by “took place” because it is much more
similar to the property place than to date. Hence, it mapped
“Battle”, “Year” and “took place” to #Commander5, Event
and inversed place respectively, as the best interpretation.

Comparison. The QALD 2011 report [37] showed results
of two systems, FREyA and PowerAqua, on the 50 test
questions. Both systems modified or reformulated some of
the questions that their NLP parsers have difficulties in un-
derstanding. We compared our system with them using 30
questions in Table 1. Q24, 44 and 45 were excluded because
they had been simplified by removing aggregation opera-
tions. Among the 30 questions, FREyA modified four ques-
tion (Q1, 2, 37 and 50) and PowerAqua eight (Q1, 8, 10, 14,
34, 41, 46 and 50). Average precision and recall of the three
systems over the 30 questions is shown in Table 2. We also
present their performance on the six questions consisting of
two relations. FREyA performs best but it is an interac-
tive system incorporating dialogs to disambiguate questions
[10]. This means FREyA sometimes needs users to manu-
ally specify the mappings between user terms and ontology
terms. PowerAqua’s performance dropped dramatically on
the six two-relation questions while FREyA and our system
remained the same.

30 questions 6 two-relations
Prec. Recall Prec. Recall

FREyA 0.829 0.849 0.855 0.789
PowerAqua 0.698 0.757 0.167 0.167

Our system
con., w/ step 3 0.668 0.742 0.780 0.809
non-empty 0.746 0.816 0.780 0.809

Table 2: Comparison on 30 test questions

There are several reasons why our system yields the same
performance on six two-relation queries as on other single
relation queries. First, we relied on humans to create the
relational structure of the queries but PowerAqua uses NLP
techniques. Second, two-relation queries give more informa-
tion and therefore have less ambiguity than single relation
queries. The good performance also has something to do
with the nature of six two-relation queries. They are fact
questions with almost all direct properties. However, the

5Many #Commander instances are countries, resulting in
good association between →#Commander and place
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more relations a query has, the more likely structural mis-
matches will occur in the mapping. So in general, we would
expect performance degrade of our system when working
with queries composed of multiple relations but it would
still be much better than systems using NLP techniques to
understand them.

We also evaluated all 33 test questions on two online sys-
tems, PowerAqua [36] and True Knowledge [45] in August
2011. Both include DBpedia as part of their knowledge
bases. The true answers of most of the test questions are
complete but some are not, which means that PowerAqua
and True Knowledge can return correct answers that are
not in the true answers of some questions. For these cases,
we manually checked the results to identify all correct an-
swers in computing precision. PowerAqua shows the dataset
used to derive answers, allowing us to use answers only from
DBpedia and ignored others. The results are presented in
Table 3.

33 questions 6 two-relations
Prec. Recall Prec. Recall

True Knowledge 0.469 0.535 0.0 0.0
PowerAqua 0.372 0.483 0.168 0.278

Our system
con., w/ step 3 0.683 0.766 0.780 0.809
non-empty 0.754 0.832 0.780 0.809

Table 3: Comparison to two online systems.

Ontology-based open domain QA is a new research area
and the QALD workshop is the first known to us to provide
an evaluation dataset. A direct comparison of our system
against others is difficult due to different settings. Systems
in the comparisons used slightly different query sets and ran
on datasets not completely the same. The two online sys-
tems have not been tuned using QALD training questions.
Moreover, our user interface differs from others. Some peo-
ple may think either NLI or SFQ interface is just a means
to allowing users to describe their information needs and we
can directly compare their results. Others may believe the
comparison is biased because our system benefits from user
interpretation of NL questions.

Nevertheless, the comparisons with top systems show our
approach works well. Our system also has three desirable
features that others lack. First, our approach saves ex-
pensive human effort in crafting schema of data and the
mapping lexicon. True Knowledge, FREyA and PowerAqua
all depend on such knowledge in performing disambigua-
tion and addressing vocabulary mismatch problem that can-
not be solved by synonym expansion [46, 10, 32]. Second,
our system has the advantage over automatic NLI systems
in answering questions containing two or more relations.
It can even handle more complicated queries, such as the
ones in Figures 5 and 6, while their corresponding NL ques-
tions would inevitably involve multiple answer types and
anaphora. Third, our system is fast. FREyA reported 36
seconds on average in answering a question [10]. PowerAqua
did not report execution time on QALD questions but our
experiment of testing 33 questions on its website showed an
average of 143.7 seconds.

7. RELATEDWORK
NLIDB systems have been extensively studied since the 1970s
[1] and typically take NL sentences as queries and used syn-
tactic, semantic and pragmatic knowledge to produce cor-

responding SQL queries. Early systems like LUNAR [48]
and LADDER [21] were heavily customized to a particu-
lar application and difficult to port to other application do-
mains. Later systems, including TEAM [16], ASK [42] and
MASQUE [3]. were designed to be portable, allowing knowl-
edge engineers to reconfigure the system before moving to a
new domain or letting end users add unknown words through
user interaction.

PRECISE [35], a more recent NLIDB system, reduced
question interpretation to a maximum bipartite matching
problem between the tokens in a NL query and database
elements and achieved excellent accuracy on the Mooney
dataset without using deep NLP techniques.

Learning semantic parsers are systems that use machine
learning methods to map the NL questions into logical forms.
These systems, such as SCISSOR [15], have shown very good
performance but require manually annotated training data
for a specific domain.

A number of portable NLI systems have been developed
for ontologies [31, 8, 47, 10] and XML databases [27]. NaLIX
[27] translates NL questions to XML queries by mapping the
adjacent NL tokens in the parse tree to the neighboring XML
elements in the database. ORAKEL [8] constructs a logical
lambda-calculus query from a NL question using a recursive
computation guided by the question’s syntactic structure.
FREyA [10] generates a parse tree, maps linguistic terms
in the tree to ontology concepts, and formulates a SPARQL
query from them with their associated domain and range
restrictions. Aqualog [31] and PANTO [47] translating the
NL query to linguistic or query triples and then lexically
match these to ontology triples. While these systems are
portable, they work on one domain at a time.

The last few years have seen a growing interest in open
domain NLI systems. True Knowledge [46] and PowerAqua
[32] choose pragmatic approaches to turn NL questions into
relations. True Knowledge creates 1,200 translation tem-
plates to match NL questions. PowerAqua first performs
shallow parsing to obtain tokens, POS tags and chunks from
NL questions and then use a set of manually-made pat-
tern rules to generate question types and relations. True
Knowledge supports user interaction and exploits a reposi-
tory storing user rephrasing of the questions it cannot un-
derstand. PowerAqua extended Aqualog by adding compo-
nents for merging facts from different ontologies and ranking
the results using confidence measures. It runs a potentially
expensive graph matching algorithm comparing the query
graph to the RDF graph at both data and metadata lev-
els. Treo [14] reduce a NL query to a list of ordered terms
guided by the query’s dependency structure and matches the
terms to RDF paths using semantic similarity measures. It
requires recognizing a named entity as the pivot starting a
spreading activation process. To our best knowledge, Treo
is the only NLI system that also uses semantic similarity
to find matchings, but it resolves mapping locally at the
instance level and returns ranked triple paths as output.

Substantial research has been done on applying keyword
search on structured data, including relational database [22],
XML [49, 41] and RDF [44]. Such keyword-based approaches
cannot express complex queries and often mix textual con-
tent from meta-data and data. A number of approaches
[9, 26] extend keyword queries with limited structure infor-
mation, allowing to specify entity types and attribute-value
pairs. However, they are still unable to support querying
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complex semantics.
A research work closely related to ours is Schema-Free

XQuery [28] as it also seeks a middle ground between XQuery
(the formal XML query language) and keywords query. The
approach allows casual users to create a XQuery without
specifying the path expressions between meaningfully re-
lated nodes. Instead, a new XQuery operator MLCAS is
introduced for “group” the nodes. MLCAS also stands for
a XML structure that defines the most specific query con-
text for the related nodes. MLCAS extends the notion LCA
(Lowest Common Ancestor) that is commonly used in the
XML keyword-based approaches. The Schema-Free XQuery
approach focuses on addressing structure mismatch problem
while assuming there is no vocabulary mismatch problem or
it can simply be solved by synonym expansion. It also re-
quires users understand the XQuery syntax and depends on
the LCA structure that is available for trees but not graphs.

8. CONCLUSION AND FUTUREWORK
Large collections of structured semantic data like DBpedia
provide essential knowledge for many applications and po-
tentially for end users, but are difficult for non-experts to
query and explore. The schema-free structured query ap-
proach allows people to query RDF datasets without master-
ing SPARQL or acquiring detailed knowledge of the classes,
properties and individuals in the underlying ontologies and
the URIs that denote them. Our system uses statistical
data about lexical semantics and the target RDF datasets
to generate plausible SPARQL queries from a user’s intuitive
query. We obtained a promising results in an evaluation on
DBpedia with users who sought answers for 33 QALD test
questions: precision of 0.754 and recall of 0.832.

A key challenge in our ongoing and future work is to move
beyond DBpedia and make it easier to apply our SFQ ap-
proach to new RDF data collection and to a large LOD
cloud. In addition, we are currently working on three more
modest extensions.

The first extension makes entering terms for concepts op-
tional. Consider the SFQ in Figure 5, where the user might
omit the concept name for the named entity “Tom Sawyer”.
Our solution is to find all possible types of entities lexically
matching “Tom Sawyer”, put the classes into the candidate
list of Tom Sawyer and run the same algorithm to identify
the right class.

The second handles some mismatches between a user’s
conceptualization of the domain and the target ontology’s
structure, e.g., a user imagines a acted under relation from
actors to directors which is absent in the ontology. To sup-
port indirect properties, we compute a second-order CAK
matrix that holds the association degree of concepts two
links away. This matrix will be used at step two for measur-
ing undirected association degree between classes. Once the
correct classes for the concepts are located, we narrow to
their context at step three and find the path matching the
indirect property. For nominal compounds, we decompose
the nouns into two entities linked by a default relation and
compute the normalized fitness score (divided by the num-
ber of links) for the decomposed query, comparing it with
the old score to decide if the noun-noun phrase should be
broken.

The last incorporates user interaction to give more credi-
bility to answers and improve their accuracy. Instead of di-
rectly returning answers we can turn the schema-free query

into several “schema-based” queries by replacing terms us-
ing the mappings in the top interpretations. Since the user
can handle the schema-free query she should be able to un-
derstand the “schema-based” queries and choose the most
reasonable one or further edit the query. Moreover, infor-
mation in CAK can be used for creating suggestions that
helps users explore concepts in the domain.
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