OWL 2

Web Ontology Language

Some material adapted from presentations by lan Horrocks and by Feroz Farazi

Introduction

e OWL 2 extends OWL 1.1 and is backward
compatible with it

* The new features of OWL 2 based on real
applications, use cases and user experience

* Adopted as a W3C recommendation in
December 2012

* All new features were justified by use cases
and examples

* Most OWL software supports OWL 2

https://www.w3.org/TR/owl2-primer/

Features and Rationale

* Syntactic sugar

* New constructs for properties
* Extended datatypes

* Punning

* Extended annotations

* Some innovations

* Minor features

Syntactic Sugar

e OWL 2 adds features that

— Don’t change expressiveness, semantics, complexity
— Makes some patterns easier to write
— Allowing more efficient processing in reasoners

* New features include:
— DisjointClasses
— DisjointUnion
— NegativeObjectPropertyAssertion
— NegativeDataPropertyAssertion

Syntactic sugar: disJointClasses

* [t's common to want to assert that a set of
classes are pairwise disjoint

— No individual can be an instance of two of the classes in set

* Faculty, staff and students are all disjoint

[a owl:allDisjointClasses;
owlmembers (:faculty :staff :students)]

* In OWL 1.1 we’d have to make three assertions

— .faculty owl:disjointWith :staff
— :faculty owl:disjointWith :student
— :staff owl:disjointWith :staff

* Which gets cumbersome for large sets

Syntactic sugar: disJointUnion

* Need for disjointUnion construct

— A :CarDoor is exclusively either

* a :FrontDoor, a :RearDoor or a :TrunkDoor
* and not more than one of them

*In OWL 2

:CarDoor a owl:disjointUnionOf (:FrontDoor :RearDoor :TrunkDoor).

*InOWL 1.1

:CarDoor owl:unionOf (:FrontDoor :RearDoor :TrunkDoor).
:FrontDoor owl:disjointWith :ReadDoor .
:FrontDoor owl:disjointWith :TrunkDoor .
:RearDoor owl:disjointWith :TrunkDoor .

Syntactic sugar: disJointUnion

* It’s common for a concept to have more than
one decomposition into disjoint union sets

* E.g.: every person is either male or female (but
not both), either a minor or adult (but not
both) and either living or dead (but not both)

foaf:Person

ow
ow

ow

:disjointUnionOf (:Male :Female);
:disjointUnionOf (:Minor :Adult);
:disjointUnionOf (:Living :Dead);

Syntactic sugar: negative assertions

* Asserts that a property doesn’t hold between
two instances or between an instance and a
literal

* NegativeObjectPropertyAssertion
—Barack Obama was not born in Kenya

* NegativeDataPropertyAssertion
—Barack Obama is not 60 years old

* Encoded using a “reification style”

Syntactic sugar: negative assertions

@prefix dbr: <http://dbpedia.org/resource/> .
@prefix dbo: <http://dbpedia.org/ontology/> .

[a owl:NegativeObjectPropertyAssertion;

oW
oW
oW

:sourcelndividual dbr:Barack _Obama ;
:assertionProperty dbo:bithPlace ;
:targetIindividual dbr:Kenya] .

[a owl:NegativeDataPropertyAssertion;

oW
oW
oW

:sourcelndividual dbo:Barack Obama ;
:assertionProperty dbo:age ;
:targetIindividual "60"] .

Syntactic sugar: negative assertions

* Note that the negative assertions are about
two individuals

e Suppose we want to say that :john has no
spouse?

* Or to define the concept of an unmarried
person?

* Can we use a negative assertion to do it?

Syntactic sugar: negative assertions

e Suppose we want to say that :john has no
spouse?

[a owl:NegativeObjectPropertyAssertion;
owl:sourcelndividual :john;
owl:assertionProperty dbpo:spouse ;
owl:targetindividual ???????7].

* We can’t do this with a negative assertion ®

* It requires a variable, e.g., there is no ?X such
that (:john, dbpo:spouse, ?X) is true

Syntactic sugar: negative assertions

* The negative assertion feature is limited

* Can we define a concept :unmarriedPerson
and assert that :john is an instance of this?

* We can do it this way in OWL:
— An unmarried person is a kind of person
— and a kind of thing with exactly O spouses

John is not married

:john a :unmarriedPerson .

:unmarriedPerson
a Person;

a [a owl:Restriction;
onProperty dbpo:spouse;
owl:cardinality “0”] .

New property Features

* Self restriction

* Qualified cardinality restriction
* Object properties

* Disjoint properties

* Property chain

* Keys

Self restriction

* Classes of objects that are related to
themselves by a given property

—E.g., the class of processes that regulate themselves
* It is also called local reflexivity

—E.g., Auto-regulating processes regulate themselves
* Narcissists are things who love themselves

:Narcissist owl:equivalentClass
[a owl:Restriction;
owl:onProperty :loves;
owl:hasSelf "true"Axsd:boolean] .

Qualified cardinality restrictions

e Qualifies the instances to be counted
* Six varieties: {Data|Object{Min|Exact|Max} Type
e Examples

— People with exactly 3 children who are girls
— People with at least 3 nhames
— Each individual has at most 1 SSN

— E.g., pizzas with exactly four toppings all of
which are cheeses

Qualified cardinality restrictions

* Done via new properties with domain owl:Re-
striction, namely {min/max/} QualifiedCardinality
and onClass

* E.g.: people with exactly 3 children who are girls
[a owl:restriction;
owl:onProperty :hasChild;

owl:onClass [owl:subClassOf :Female;
owl:subClassOf :Minor].

QualifiedCardinality “3” .
* Or: hasChild exactly 3 Female and Minor

Object properties

* ReflexiveObjectProperty
— Globally reflexive

— Everything is part of itself
* IrreflexiveObjectProperty

— Nothing can be a proper part of itself

* AsymmetricObjectProperty

— If x is proper part of y, then the opposite does not
hold

Disjoint properties

* E.g., you can’t be both the parent of and child
of the same person

* DisjointObjectProperties (for object properties)
E.g., :hasParent owl:propertyDisjointWith :hasChild

* DisjointDataProperties (for data properties)
E.g., :startTime owl:disjointWith :endTime

* AlIDisjointProperties for pairwise disjointnhess

[a owl:AlldisjointProperties ;
owl:members (:hasSon :hasDaughter :hasParent)] .

A Dissertation Committee

Here is a relevant real-world example.

A dissertation committee has a candidate who must
be a student and five members all of whom must be

faculty. One member must be the advisor, another
can be a co-advisor and two must be readers. The

readers can not serve as advisor or co-advisor.

How can we model it in OWL?

A Dissertation Committee

A dissertation committee has a candidate who must be a
student and five members all of whom must be faculty. One
member must be the advisor, another can be a co-advisor and

two must be readers. The readers can not serve as advisor or co-
advisor.

 Define a DissertationCommittee class

* Define properties it can have along with
appropriate constraints

A Dissertation Committee

:DC a owl:class; [a owl:Restriction;
owl:onProperty :co-advisor; owl:maxCardinality “1”] .

:candidate a owl:FunctionalProperty;
rdfs:domain :DC; rdfs:range :Student.

:advisor a owl:FunctionalProperty;
rdfs:domain :DC; rdfs:range :Faculty.

:co-advisor owl:ObjectProperty;
rdfs:domain :DC; rdfs:range :Faculty,
owl:propertyDisjointWith :advisor .

Property Chains ﬁ

* A common pattern in a graph representation is a
chain of properties, e.g. parent-parent

* Properties can be defined as a composition of
other properties

* The brother of your parent is your uncle
:uncle owl:propertyChainAxiom (:parent :brother).
* Your parent’s sister’s spouse is your uncle

:uncle owl:propertyChainAxiom (:parent :sister :spouse).

Property chains: OWL vs. SPARQL

* SPARQL also supports property chains (aka paths)
and adds expressivity with a regex-like grammar

e Operators include ? (O or 1), + (one or more), *
(any number), A (inverse), # constraints, ...

Syntax Form Matches
uri A URI or a prefixed name. A path of length one.
“elt Inverse path (object to subject).

(elt) A group path elt, brackets control precedence.

eltl / elt2|A sequence path of elt1, followed by elt2
eltl "~ elt2|Shorthand foreltl / “elt2, thatis eltl followed by the inverse of el1t2.
eltl [elt2|A alternative path of elt1, or elt2 (all possibilities are tried).

elt#* A path of zero or more occurrences of elt.

elt+ A path of one or more occurrences of elt.

elt? A path of zero or one elt.

elt{n,m} A path between n and m occurrences of elt.
elt{n} Exactly n occurrences of elt. A fixed length path.
elt{n,} n or more occurrences of elt.

elt{,n} Between 0 and n occurrences of elt.

Property chains: OWL vs. SPARQL ﬁ

* Common usecase: find all of an entities types

SELECT DISTINCT ?class WHERE {
dbr:Barack_Obama rdf:type/owl:subclassOf* ?class }

* Another: find all birth places using isPartOf
SELECT DISTINCT ?place WHERE {

dbr:Barack_Obama dbo:birthplace/dbo:isPartOf* ?place}

* Another: find all ancestors
SELECT DISTINCT ?person WHERE {
dbr:Barack_Obama Adbo:child+ ?person}

Keys

* Individuals can be identified uniquely
* |dentification can be done using

—A data or object property (equivalent to inverse
functional)

—A set of properties

* Examples

foaf:Person
owl:hasKey (foaf:mbox),
(:homePhone :foaf:name).

Extended datatypes

* Extra datatypes
—Examples: owl:real, owl:rational, xsd:pattern
* Datatype restrictions

—Range of datatypes
—For example, a teenager has age between 13 and 18

Extended datatypes

* Data range combinations
—Intersection of

e DatalntersectionOf(xsd:nonNegativelnteger
xsd:nonPositivelnteger)

—Union of
* DataUnionOf(xsd:string xsd:integer)

—Complement of data range

e DataComplementOf(xsd:positivelnteger)

An Example: Teenager

:Teenager a
[owl:Restriction ;
owl:onProperty :hasAge ;
owl:someValuesFrom _:y .]

_:y ardfs:Datatype ;
owl:onDatatype xsd:integer ;
owl:withRestrictions (_:z1 :z2).

_:z1 xsd:minlnclusive "13"AMxsd:integer .
_:z2 xsd:maxInclusive "19"AMxsd:integer .

An Example: Teenager (2)

:Teenager a

[owl:Restriction ;
owl:onProperty :hasAge ;
owl:someValuesFrom

[a rdfs:Datatype ;
owl:onDatatype xsd:integer ;
owl:withRestrictions

([xsd:minlInclusive "13"AAxsd:integer]
[xsd:maxInclusive "19"AMxsd:integer])]] .

Punning

* OWL 1 DL things can’t be both a class and
Instance

—E.g., :SnowlLeopard can’t be both a subclass of

‘Fe
s OW

ine and an instance of :EndangeredSpecies

| 2 DL offers better support for meta-

modeling via punning

—A URI denoting an owl thing can have two distinct
views, e.g., as a class and as an instance

—The one intended is determined by its use

—A pun is often defined as a joke that exploits the fact
that a word has two different senses or meanings

https://en.wikipedia.org/wiki/Metamodeling
https://en.wikipedia.org/wiki/Type_punning

Punning Restrictions

e Some puns are not allowed ®

* Classes and object properties also can have the
same name

—For example, :mother can be both a property and a
class of people

* But classes and datatype properties can not
have the same name

* Also datatype properties and object properties
can not have the same name

Punning Example

@prefix foaf: <http://xmlIns.com/foaf/0.1/> .
@prefix owl: <http://www.w3.0rg/2002/07/owl#> .
@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>.

foaf:Person a owl:Class.
‘Woman a owl:Class.
:Parent a owl:Class.

:mother a owl:ObjectProperty;
rdfs:domain foaf:Person;
rdfs:range foaf:Person .

:mother a owl:Class;
owl:intersectionOf (:Woman :Parent).

validate via http://owl.cs.manchester.ac.uk/validator/

file:///Validate%20via%20http/::owl.cs.manchester.ac.uk:validator:

Annotations

* In OWL annotations comprise information that carries
no official meaning

* Some properties in OWL 1 are annotation properties,
e.g., owl:comment, rdf:label and rdf:seeAlso

* OWL 1 allowed RDF reification as a way to say things
about triples, again w/o official meaning

[a rdf:Statement;
rdf:subject :Barack_Obama;
rdf:predicate dbpo:born_in;
rdf:object :Kenya;
.certainty “0.01”].

Annotations

* OWL 2 has native support for annotations,
including

—Annotations on owl axioms (i.e., triples)
—Annotations on entities (e.g., a Class)
—Annotations on annotations

* The mechanism is again reification

Annotations

:Man rdfs:subClassOf :Person .

_:x rdf:type owl:Axiom ;
owl:subject :Man;
owl:predicate rdfs:subClassOf ;

owl:object :Person;
:probability “0.99"Axsd:integer;
rdfs:label ”“Every manis a person.” .

Inverse object properties

* Some object property can be the inverse of
another property

* For example, partOf and hasPart

* ObjectIinverseOf(:partOf) expression
represents the inverse property of :partOf

* Makes writing ontologies easier by avoiding
the need to explicitly name an inverse

OWL Sub-languages

* OWL 1 had sub-languages: OWL FULL,
OWL DL and OWL Lite

* OWL FULL is undecidable
* OWL DL is worst case highly intractable

 Even OWL Lite turned out to be not very
tractable (EXPTIME-complete)

* OWL 2 introduced three sub-languages
(profiles) designed for different use cases

https://en.wikipedia.org/wiki/Undecidable_problem
https://en.wikipedia.org/wiki/Computational_complexity_theory

OWL 2 Profiles

 EL: polynomial time reasoning for schema & data
—Useful for ontologies with large conceptual part

e QL: fast (logspace) query answering using RDBMs
via SQL

—Useful for large datasets already stored in RDBs

 RL: fast (polynomial) query answering using rule-
extended DBs

—Useful for large datasets stored as RDF triples

OWL Profiles

* Profiles considered

—Useful computational properties, e.g., reasoning
complexity

—Implementation possibilities, e.g., using RDBs
* There are three profiles

—OWL 2 EL
—OWL2 QL
—OWL 2 RL

OWL 2 (Full)

OWL 2 EL

* A (near maximal) fragment of OWL 2 such that
—Satisfiability checking is in PTime (PTime-Complete)
—Data complexity of query answering is PTime-Complete

* Based on EL family of description logics
—Existential (someValuesFrom) + conjunction

* Does not allow disjunction or universal restrictions

e Saturation is an efficient reasoning technique

* |t can capture the expressive power used by many
large-scale ontologies, e.g., SNOMED CT

http://en.wikipedia.org/wiki/SNOMED_CT

Basic Saturation-based Technique

Normalise ontology axioms to standard form:
ACB AnNBCC ACJdR.B dRBCC

e Saturate using inference rules:
ACB BCC ACB ACC BnccbD

ACC AC D
ACdR.B BCC 3JRCCD
ACD
* Extension to Horn fragment requires (many)

more rules

Saturation is a general reasoning technique in which you first compute the deductive
closure of a given set of rules and add the results to the KB. Then run your prover.

Saturation-based Technique

Performance with large bio-medical ontologies

GO NCI | Galen v.0 | Galen v.7 | SNOMED
Concepts: | 20465 | 27652 2748 23136 | 389472
FACT++ 1524 | 6.05| 465.35 — 650.37
HERMIT 199.52 | 169.47 45.72 — —
PELLET 72.02 | 26.47 — — —
CEL 1.84| 5.76 — — | 1185.70
CB 1.17| 3.57 0.32 9.58 49.44
Speed-Up: | 1.57X| 1.61X 143X o | 13.15X

Galen and Snomed are large ontologies of medical terms; both have OWL versions. NCl is

a vocabulary of cancer-related terms. GO is the gene ontology.

http://en.wikipedia.org/wiki/OpenGALEN
http://en.wikipedia.org/wiki/SNOMED_CT
http://www.obofoundry.org/cgi-bin/detail.cgi?id=ncithesaurus
http://www.geneontology.org/

OWL 2 QL

* The QL acronym reflects its relation to the
standard relational Query Language

* It does not allow existential and universal
restrictions to a class expression or a data range
— enable a tight integration with RDBMSs
— reasoners can be implemented on top of standard

relational databases

e Can answer complex queries (in particular,

unions of conjunctive queries) over the instance
level (ABox) of a DL knowledge base

OWL 2 QL

We can exploit query rewriting based
reasoning technique
— Computationally optimal

— Data storage and query evaluation can be
delegated to standard RDBMS

— Can be extended to more expressive
languages (beyond AC®) by delegating
guery answering to a Datalog engine

http://en.wikipedia.org/wiki/Datalog

What is Datalog?

* Truly declarative logic programming language that’s a
subset of Prolog
— Just rules and facts

— No data structures, cut
— Rule ordering unimportant

e Used as a query language for deductive databases
* Queries on finite sets sets guaranteed to terminate

parent(bill, mary).
parent(mary,john).

ancestor(X,Y) :- parent(X)Y).
ancestor(X,Y) :- parent(X,Z),ancestor(Z)Y).

http://en.wikipedia.org/wiki/Datalog
http://en.wikipedia.org/wiki/Deductive_database

Query Rewriting Technique (basics)

* Given ontology O and query Q, use O to
rewrite Q as Q°such that, for any set of ground
facts A:

ans(Q, O, A) = ans(Q? ;, A)
* Resolution based query rewriting

—Clausify ontology axioms

—Saturate (clausified) ontology and query using
resolution

—Prune redundant query clauses

OWL 2 RL

* RL acronym reflects relation to Rule Languages

* OWL 2 RL designed to accommodate

—OWL 2 applications that trade full expressivity for
efficiency

—RDF(S) applications needing added expressivity from
OWL 2

* Not allowed: existential quantification to a class,
union and disjoint union to class expressions

* It can be implemented using rule-based
technologies such Datalog, Jess, Prolog, etc.

Profile Selection...

Depends on
—Expressiveness required by the application
—Priority given to reasoning on classes or data
—Size of the datasets

Conclusion

* Most of the new features of OWL 2 in
comparing with the initial version of OWL have
been discussed

e Rationale behind the inclusion of the new
features have also been discussed

* Three profiles — EL, QL and RL — are provided
that fit different use cases and implementation
strategies

