
OWL 2
Web Ontology Language

Some material adapted from presentations by Ian Horrocks and by Feroz Farazi

Introduction
• OWL 2 extends OWL 1.1 and is backward

compatible with it
• The new features of OWL 2 based on real

applications, use cases and user experience
• Adopted as a W3C recommendation in

December 2012
• All new features were justified by use cases

and examples
•Most OWL software supports OWL 2

https://www.w3.org/TR/owl2-primer/

Features and Rationale
• Syntactic sugar
• New constructs for properties
• Extended datatypes
• Punning
• Extended annotations
• Some innovations
•Minor features

Syntactic Sugar
• OWL 2 adds features that
– Don’t change expressiveness, semantics, complexity
–Makes some patterns easier to write
– Allowing more efficient processing in reasoners
• New features include:
– DisjointClasses
– DisjointUnion
– NegativeObjectPropertyAssertion
– NegativeDataPropertyAssertion

Syntactic sugar: disJointClasses
• It’s common to want to assert that a set of

classes are pairwise disjoint

-No individual can be an instance of two of the classes in set

• Faculty, staff and students are all disjoint

[a owl:allDisjointClasses;

owlmembers (:faculty :staff :students)]

• In OWL 1.1 we’d have to make three assertions

– :faculty owl:disjointWith :staff

– :faculty owl:disjointWith :student

– :staff owl:disjointWith :staff

•Which gets cumbersome for large sets

Syntactic sugar: disJointUnion
• Need for disjointUnion construct

–A :CarDoor is exclusively either

• a :FrontDoor, a :RearDoor or a :TrunkDoor
• and not more than one of them

• In OWL 2

:CarDoor a owl:disjointUnionOf (:FrontDoor :RearDoor :TrunkDoor).

• In OWL 1.1

:CarDoor owl:unionOf (:FrontDoor :RearDoor :TrunkDoor).

:FrontDoor owl:disjointWith :ReadDoor .

:FrontDoor owl:disjointWith :TrunkDoor .

:RearDoor owl:disjointWith :TrunkDoor .

Syntactic sugar: disJointUnion
• It’s common for a concept to have more than

one decomposition into disjoint union sets
• E.g.: every person is either male or female (but

not both), either a minor or adult (but not
both) and either living or dead (but not both)

foaf:Person
owl:disjointUnionOf (:Male :Female);
owl:disjointUnionOf (:Minor :Adult);
owl:disjointUnionOf (:Living :Dead);

Syntactic sugar: negative assertions

•Asserts that a property doesn’t hold between
two instances or between an instance and a
literal
• NegativeObjectPropertyAssertion
–Barack Obama was not born in Kenya
• NegativeDataPropertyAssertion
–Barack Obama is not 60 years old
• Encoded using a “reification style”

Syntactic sugar: negative assertions
@prefix dbr: <http://dbpedia.org/resource/> .
@prefix dbo: <http://dbpedia.org/ontology/> .

[a owl:NegativeObjectPropertyAssertion;
owl:sourceIndividual dbr:Barack_Obama ;
owl:assertionProperty dbo:bithPlace ;
owl:targetIndividual dbr:Kenya] .

[a owl:NegativeDataPropertyAssertion;
owl:sourceIndividual dbo:Barack_Obama ;
owl:assertionProperty dbo:age ;
owl:targetIndividual "60"] .

Syntactic sugar: negative assertions
• Note that the negative assertions are about

two individuals
• Suppose we want to say that :john has no

spouse?
• Or to define the concept of an unmarried

person?
• Can we use a negative assertion to do it?

Syntactic sugar: negative assertions
• Suppose we want to say that :john has no

spouse?
[a owl:NegativeObjectPropertyAssertion;

owl:sourceIndividual :john ;
owl:assertionProperty dbpo:spouse ;
owl:targetIndividual ????????] .

•We can’t do this with a negative assertion L
• It requires a variable, e.g., there is no ?X such

that (:john, dbpo:spouse, ?X) is true

Syntactic sugar: negative assertions
• The negative assertion feature is limited
• Can we define a concept :unmarriedPerson

and assert that :john is an instance of this?
•We can do it this way in OWL:
– An unmarried person is a kind of person
– and a kind of thing with exactly 0 spouses

John is not married
:john a :unmarriedPerson .
:unmarriedPerson

a Person;
a [a owl:Restriction;

onProperty dbpo:spouse;
owl:cardinality “0”] .

New property Features

• Self restriction
• Qualified cardinality restriction
• Object properties
• Disjoint properties
• Property chain
• Keys

Self restriction
• Classes of objects that are related to

themselves by a given property
–E.g., the class of processes that regulate themselves

• It is also called local reflexivity
–E.g., Auto-regulating processes regulate themselves

• Narcissists are things who love themselves
:Narcissist owl:equivalentClass

[a owl:Restriction;
owl:onProperty :loves;
owl:hasSelf "true"^^xsd:boolean] .

Qualified cardinality restrictions
•Qualifies the instances to be counted

• Six varieties: {Data|Object}{Min|Exact|Max} Type

• Examples

– People with exactly 3 children who are girls

– People with at least 3 names

– Each individual has at most 1 SSN

– E.g., pizzas with exactly four toppings all of

which are cheeses

Qualified cardinality restrictions
• Done via new properties with domain owl:Re-

striction, namely {min|max|} QualifiedCardinality
and onClass

• E.g.: people with exactly 3 children who are girls
[a owl:restriction;

owl:onProperty :hasChild;
owl:onClass [owl:subClassOf :Female;

owl:subClassOf :Minor].
QualifiedCardinality “3” .

• Or: hasChild exactly 3 Female and Minor

Object properties
• ReflexiveObjectProperty
– Globally reflexive
– Everything is part of itself
• IrreflexiveObjectProperty
– Nothing can be a proper part of itself
• AsymmetricObjectProperty
– If x is proper part of y, then the opposite does not

hold

Disjoint properties
• E.g., you can’t be both the parent of and child

of the same person
• DisjointObjectProperties (for object properties)

E.g., :hasParent owl:propertyDisjointWith :hasChild
• DisjointDataProperties (for data properties)

E.g., :startTime owl:disjointWith :endTime
• AllDisjointProperties for pairwise disjointness

[a owl:AlldisjointProperties ;
owl:members (:hasSon :hasDaughter :hasParent)] .

A Dissertation Committee

Here is a relevant real-world example.

A dissertation committee has a candidate who must
be a student and five members all of whom must be
faculty. One member must be the advisor, another
can be a co-advisor and two must be readers. The
readers can not serve as advisor or co-advisor.

How can we model it in OWL?

A Dissertation Committee

A dissertation committee has a candidate who must be a
student and five members all of whom must be faculty. One
member must be the advisor, another can be a co-advisor and
two must be readers. The readers can not serve as advisor or co-
advisor.

• Define a DissertationCommittee class
• Define properties it can have along with

appropriate constraints

A Dissertation Committee

:DC a owl:class; [a owl:Restriction;

owl:onProperty :co-advisor; owl:maxCardinality “1”] .

:candidate a owl:FunctionalProperty;

rdfs:domain :DC; rdfs:range :Student.

:advisor a owl:FunctionalProperty;

rdfs:domain :DC; rdfs:range :Faculty.

:co-advisor owl:ObjectProperty;

rdfs:domain :DC; rdfs:range :Faculty,

owl:propertyDisjointWith :advisor .

…

Property Chains

• A common pattern in a graph representation is a
chain of properties, e.g. parent·parent
• Properties can be defined as a composition of

other properties
• The brother of your parent is your uncle

:uncle owl:propertyChainAxiom (:parent :brother).
• Your parent’s sister’s spouse is your uncle

:uncle owl:propertyChainAxiom (:parent :sister :spouse).
.

Property chains: OWL vs. SPARQL
• SPARQL also supports property chains (aka paths)

and adds expressivity with a regex-like grammar
• Operators include ? (0 or 1), + (one or more), *

(any number), ^ (inverse), # constraints, …

Property chains: OWL vs. SPARQL
• Common usecase: find all of an entities types

SELECT DISTINCT ?class WHERE {
dbr:Barack_Obama rdf:type/owl:subclassOf* ?class }

• Another: find all birth places using isPartOf
SELECT DISTINCT ?place WHERE {

dbr:Barack_Obama dbo:birthplace/dbo:isPartOf* ?place}
• Another: find all ancestors

SELECT DISTINCT ?person WHERE {
dbr:Barack_Obama ^dbo:child+ ?person}

Keys
• Individuals can be identified uniquely
• Identification can be done using
–A data or object property (equivalent to inverse

functional)
–A set of properties
• Examples

foaf:Person
owl:hasKey (foaf:mbox),

(:homePhone :foaf:name).

Extended datatypes

• Extra datatypes
–Examples: owl:real, owl:rational, xsd:pattern
• Datatype restrictions
–Range of datatypes
–For example, a teenager has age between 13 and 18

Extended datatypes

• Data range combinations
–Intersection of
• DataIntersectionOf(xsd:nonNegativeInteger
xsd:nonPositiveInteger)

–Union of
• DataUnionOf(xsd:string xsd:integer)

–Complement of data range
• DataComplementOf(xsd:positiveInteger)

An Example: Teenager
:Teenager a

[owl:Restriction ;
owl:onProperty :hasAge ;
owl:someValuesFrom _:y .]

_:y a rdfs:Datatype ;
owl:onDatatype xsd:integer ;
owl:withRestrictions (_:z1 _:z2) .

_:z1 xsd:minInclusive "13"^^xsd:integer .
_:z2 xsd:maxInclusive "19"^^xsd:integer .

An Example: Teenager (2)
:Teenager a

[owl:Restriction ;
owl:onProperty :hasAge ;
owl:someValuesFrom

[a rdfs:Datatype ;
owl:onDatatype xsd:integer ;
owl:withRestrictions

([xsd:minInclusive "13"^^xsd:integer]
[xsd:maxInclusive "19"^^xsd:integer])]] .

Punning
• OWL 1 DL things can’t be both a class and

instance
–E.g., :SnowLeopard can’t be both a subclass of

:Feline and an instance of :EndangeredSpecies

• OWL 2 DL offers better support for meta-
modeling via punning
–A URI denoting an owl thing can have two distinct

views, e.g., as a class and as an instance
–The one intended is determined by its use
–A pun is often defined as a joke that exploits the fact

that a word has two different senses or meanings

https://en.wikipedia.org/wiki/Metamodeling
https://en.wikipedia.org/wiki/Type_punning

Punning Restrictions

• Some puns are not allowed L
• Classes and object properties also can have the

same name
–For example, :mother can be both a property and a

class of people
• But classes and datatype properties can not

have the same name
• Also datatype properties and object properties

can not have the same name

Punning Example
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

foaf:Person a owl:Class.
:Woman a owl:Class.
:Parent a owl:Class.

:mother a owl:ObjectProperty;
rdfs:domain foaf:Person;
rdfs:range foaf:Person .

:mother a owl:Class;
owl:intersectionOf (:Woman :Parent).

validate via http://owl.cs.manchester.ac.uk/validator/

file:///Validate%20via%20http/::owl.cs.manchester.ac.uk:validator:

Annotations
• In OWL annotations comprise information that carries

no official meaning
• Some properties in OWL 1 are annotation properties,

e.g., owl:comment, rdf:label and rdf:seeAlso
• OWL 1 allowed RDF reification as a way to say things

about triples, again w/o official meaning
[a rdf:Statement;

rdf:subject :Barack_Obama;
rdf:predicate dbpo:born_in;
rdf:object :Kenya;
:certainty “0.01”].

Annotations

• OWL 2 has native support for annotations,
including
–Annotations on owl axioms (i.e., triples)
–Annotations on entities (e.g., a Class)
–Annotations on annotations
• The mechanism is again reification

Annotations

:Man rdfs:subClassOf :Person .
_:x rdf:type owl:Axiom ;

owl:subject :Man ;
owl:predicate rdfs:subClassOf ;
owl:object :Person ;
:probability “0.99"^^xsd:integer;
rdfs:label ”Every man is a person.” .

Inverse object properties

• Some object property can be the inverse of
another property
• For example, partOf and hasPart
• ObjectInverseOf(:partOf) expression

represents the inverse property of :partOf
•Makes writing ontologies easier by avoiding

the need to explicitly name an inverse

OWL Sub-languages
• OWL 1 had sub-languages: OWL FULL,

OWL DL and OWL Lite
• OWL FULL is undecidable
• OWL DL is worst case highly intractable
• Even OWL Lite turned out to be not very

tractable (EXPTIME-complete)

• OWL 2 introduced three sub-languages
(profiles) designed for different use cases

https://en.wikipedia.org/wiki/Undecidable_problem
https://en.wikipedia.org/wiki/Computational_complexity_theory

OWL 2 Profiles

• EL: polynomial time reasoning for schema & data
–Useful for ontologies with large conceptual part
• QL: fast (logspace) query answering using RDBMs

via SQL
–Useful for large datasets already stored in RDBs
• RL: fast (polynomial) query answering using rule-

extended DBs
–Useful for large datasets stored as RDF triples

OWL Profiles
• Profiles considered
–Useful computational properties, e.g., reasoning

complexity
–Implementation possibilities, e.g., using RDBs
• There are three profiles
–OWL 2 EL
–OWL 2 QL
–OWL 2 RL

OWL 2 EL
• A (near maximal) fragment of OWL 2 such that

–Satisfiability checking is in PTime (PTime-Complete)

–Data complexity of query answering is PTime-Complete

• Based on EL family of description logics

–Existential (someValuesFrom) + conjunction

• Does not allow disjunction or universal restrictions
• Saturation is an efficient reasoning technique

• It can capture the expressive power used by many

large-scale ontologies, e.g., SNOMED CT

http://en.wikipedia.org/wiki/SNOMED_CT

Basic Saturation-based Technique

Normalise ontology axioms to standard form:

• Saturate using inference rules:

• Extension to Horn fragment requires (many)
more rules

Saturation is a general reasoning technique in which you first compute the deductive
closure of a given set of rules and add the results to the KB. Then run your prover.

Performance with large bio-medical ontologies

Saturation-based Technique

Galen and Snomed are large ontologies of medical terms; both have OWL versions. NCI is
a vocabulary of cancer-related terms. GO is the gene ontology.

http://en.wikipedia.org/wiki/OpenGALEN
http://en.wikipedia.org/wiki/SNOMED_CT
http://www.obofoundry.org/cgi-bin/detail.cgi?id=ncithesaurus
http://www.geneontology.org/

OWL 2 QL
• The QL acronym reflects its relation to the

standard relational Query Language
• It does not allow existential and universal

restrictions to a class expression or a data range
– enable a tight integration with RDBMSs
– reasoners can be implemented on top of standard

relational databases
• Can answer complex queries (in particular,

unions of conjunctive queries) over the instance
level (ABox) of a DL knowledge base

OWL 2 QL

We can exploit query rewriting based
reasoning technique
– Computationally optimal
– Data storage and query evaluation can be

delegated to standard RDBMS
– Can be extended to more expressive

languages (beyond AC0) by delegating
query answering to a Datalog engine

http://en.wikipedia.org/wiki/Datalog

What is Datalog?
• Truly declarative logic programming language that’s a

subset of Prolog
– Just rules and facts
–No data structures, cut
– Rule ordering unimportant

• Used as a query language for deductive databases
• Queries on finite sets sets guaranteed to terminate

parent(bill,mary).
parent(mary,john).

ancestor(X,Y) :- parent(X,Y).
ancestor(X,Y) :- parent(X,Z),ancestor(Z,Y).

http://en.wikipedia.org/wiki/Datalog
http://en.wikipedia.org/wiki/Deductive_database

Query Rewriting Technique (basics)
• Given ontology O and query Q, use O to

rewrite Q as Q0 such that, for any set of ground
facts A:

ans(Q, O, A) = ans(Q0, ;, A)
• Resolution based query rewriting
–Clausify ontology axioms
–Saturate (clausified) ontology and query using

resolution
–Prune redundant query clauses

OWL 2 RL
• RL acronym reflects relation to Rule Languages
• OWL 2 RL designed to accommodate
–OWL 2 applications that trade full expressivity for

efficiency
–RDF(S) applications needing added expressivity from

OWL 2

• Not allowed: existential quantification to a class,
union and disjoint union to class expressions
• It can be implemented using rule-based

technologies such Datalog, Jess, Prolog, etc.

Profile Selection…

Depends on
–Expressiveness required by the application
–Priority given to reasoning on classes or data
–Size of the datasets

Conclusion

•Most of the new features of OWL 2 in
comparing with the initial version of OWL have
been discussed
• Rationale behind the inclusion of the new

features have also been discussed
• Three profiles – EL, QL and RL – are provided

that fit different use cases and implementation
strategies

