
OWL, DL and
rules

Based on slides from Grigoris Antoniou, Frank van Harmele and Vassilis Papataxiarhis

OWL and Rules

lRule based systems are an important and useful
way to represent and reason with knowledge

lAdding rules to OWL has proved to be fraught
with problems

lWe’ll look at the underlying issues and several
approaches
– SWRL: failed standard that has become widely used
– RIF: a successful standard that’s not yet widely used

Semantic Web and Logic

lThe Semantic Web is grounded in logic
lBut what logic?

– OWL Full = Classical first order logic (FOL)
– OWL-DL = Description logic
– N3 rules ~= logic programming (LP) rules
– SWRL ~= DL + LP
– Other choices are possible, e.g., default logic, fuzzy

logic, probabilistic logics, …

lHow do these fit together and what are the
consequences

We need both structure and rules

lOWL’s ontologies based on DL (and thus in FOL)

- The Web is an open environment

- Reusability / interoperability

- An ontology is a model easy to understand

lMany rule systems based on logic programming

- To achieve decidability, ontology languages don’t

offer the expressiveness we want. Rules do it well

- Efficient reasoning support already exists

- Rules are well-known and often more intuitive

https://en.wikipedia.org/wiki/Logic_programming

Description Logics vs. Horn Logic

lNeither is a subset of the other
l Impossible in OWL DL: people who study &

live in same city are local students,
lEasily done with a a rule

studiesAt(X,U), loc(U,L), lives(X,L) ® localStud(X)

l Impossible in horn rules: every person is either a
man or a woman

lEasily done in OWL DL:
:Person owl:disjointUnionOf (:Man :Woman).

What’s Horn clause logic

lProlog and most ‘logic’-oriented rule languages
use horn clause logic

– Defined by UCLA mathematician Alfred Horn

lHorn clauses: a subset of FOL where every
sentence is a disjunction of literals (atoms)
where at most one is positive

~P V ~Q V ~R V S

~P V ~Q V ~R

lAtoms: propositional variables (isRaining) or
predicates (married(alice, ?x))

https://en.wikipedia.org/wiki/Prolog
http://en.wikipedia.org/wiki/Horn_clause
http://en.wikipedia.org/wiki/Alfred_Horn

Alternate formulation as implications
lHorn clauses can be re-written using the

implication operator
~P V Q = PèQ
~P V ~Q V R = P � Q èR
~P V ~Q = P � Q è

lWhat we end up with is ~ “pure prolog”
– Single positive atom as the rule conclusion
– Conjunction of positive atoms as the rule

antecedents (conditions)
– No not operator
– Atoms can be predicates (e.g., mother(X,Y))

Prolog’s synax
lProlog syntax is a bit different, putting the rule’s

conclusion first
hasMother(?x, ?m) :- hasParent(?x, ?m), female(?m) .

lA fact is a rule w/o a body (i.e., no conditions)
hasParent(john, tom).
hasParent(john, mary).
female(mary).

l Prolog ‘proves’ queries by matching a fact, or a
rule’s conclusion and then proving each
condition in the rule’s body

head = conclusion body = conjunction of conditions

We can relax this a bit

lHead can contain a conjunction of atoms

– P �Q ← R is equivalent to P←R and Q←R

lBody can have disjunctions

– P←R�Q is equivalent to P←R and P←Q

lBut somethings are just not allowed:

– No disjunction in head, e.g.,

man(?x) ; woman(?x) :- person(x)

– No logical negation operator, i.e. NOT

man(?x) :- person(x), not(woman(x))

Where are the quantifiers?

lQuantifiers (forall, exists) are implicit
– Variables in rule head are universally quantified
– Variables only in rule body existentially quantified

lExample:
– IsParent(?x) :- hasChild(?x, ?y).
– isParent(X) ← hasChild(X,Y)
– forAll X: isParent(X) if Exisits Y: hasChild(X,Y)

Facts & rule conclusions are definite

lDefinite means not a disjunction
lFacts are rule with the trivial true condition
lConsider these true facts:

P � Q # either P or Q (or both) are true
P è R # if P is true, then R is true
Q è R # if Q is true, then R is true

lWhat can you conclude?
lCan this be expressed in horn logic?

Facts & rule conclusions are definite

lConsider these true facts where not is classical
negation rather than “negation as failure”

not(P) è Q, not(Q) èP # i.e. P�Q
P è R, Q è R

lHorn clause reasoners can’t prove that either P
or Q is necessarily true or false so can’t show
that R must be true

The Programming in Prolog

lProlog = PROgramming in LOGic
lProlog’s procedural elements make it very

useful, if used in moderation
lOne is it’s unprovable operator, \+
l \+ P succeeds if and only P cannot be proven
lOften called “negation as failure”
lExample: assume a person is unmarried if we

don’t know they are married
Unmarried(?x) :- person(?x), \+ married(?x) .

Non-ground entailment

lThe LP-semantics defined in terms of minimal
Herbrand model, i.e., sets of ground facts

lBecause of this, Horn clause reasoners can
not derive rules, so that can not do general
subsumption reasoning
– i.e., It can only reason about atomic facts to infer

new facts
– It can’t reason about rules and complex facts to

create new rules

https://en.wikipedia.org/wiki/Herbrand_structure

Decidability

lThe largest obstacle!
Tradeoff between expressiveness and decidability

lFacing decidability issues from
– In LP: Finiteness of the domain
– In classical logic (and thus in DL): combination of

constructs
lProblem:

Combination of “simple” DLs and Horn Logic are
undecidable. (Levy & Rousset, 1998)

SWRL: Semantic Web Rule Language

lSWRL is the union of DL and horn logic + many

built-in functions (e.g., for math)

lSubmitted to W3C in 2004, but failed to become

a recommendation (led to RIF)

lProblem: full SWRL specification leads to

undecidability in reasoning

l SWRL is well specified and subsets are widely

supported (e.g., in Pellet, HermiT)

• Based on OWL: rules use terms for OWL concepts

(classes, properties, individuals, literals…)

http://en.wikipedia.org/wiki/Semantic_Web_Rule_Language
http://www.w3.org/TR/rif-overview/
http://en.wikipedia.org/wiki/Undecidable_problem

SWRL

lOWL classes are unary predicates, properties
are binary ones
Person(?p) ^ sibling(?p,?s) ^ Man(?s) à brother(?p,?s)

l As in Prolog, bulitins can be booleans or do a
computation and unify the result to a variable
– swrlb:greaterThan(?age2, ?age1) # age2>age1
– swrlb:subtract(?n1,?n2,?diff) # diff=n1-n2

lSWRL predicates for OWL axioms and data tests
– differentFrom(?x, ?y), sameAs(?x, ?y), xsd:int(?x),

[3, 4, 5](?x), …

SWRL Built-Ins

lSWRL defines a set of built-in predicate that
allow for comparisons, math evaluation, string
operations and more

lSee here for the complete list
lExamples

– Person(?p), hasAge(?p, ?age), swrlb:greaterThan(?age, 18) -> Adult(?p)
– Person(?p), bornOnDate(?p, ?date), xsd:date(?date), swrlb:date(?date,

?year, ?month, ?day, ?timezone) -> bornInYear(?p, ?year)

lSome reasoners (e.g., Pellet) allow you to
define new built-ins in Java

https://www.w3.org/Submission/2004/SUBM-SWRL-20040521/

Drawbacks of full SWRL

lMain source of complexity:
arbitrary OWL expressions (e.g. restrictions)
can appear in the head or body of a rule

lAdds significant expressive power to OWL, but
causes undecidability
there is no inference engine that draws exactly
the same conclusions as the SWRL semantics

SWRL Sublanguages

lChallenge: identify sublanguages of SWRL
with right balance between expressivity
and computational viability

lA candidate OWL DL + DL-safe rules
– every variable must appear in a non-

description logic atom in the rule body

DL-safe rules
lStandard reasoners support only DL-safe rules

Rule variables bind only to known individuals (i.e., owl2
owl:NamedIndividual)

lExample
:Vehicle(?v) ^ :Motor(?m) ^ :hasMotor(?v,?m) -> :MotorVehicle(?v)

• Where
:Car = :Vehicle and some hasMotor Motor
:x a :Car

• Reasoner won’t bind ?m to a motor since it is not
a known individual
• Thus the rule cannot conclude MotorVehicle(:x)

Protégé 5 had SWRLTab
Add/edit rules and optionally run a separate rules engine

SWRL limitations

SWRL rules do not support many useful features
of of some rule-based systems
lDefault reasoning
lRule priorities
lNegation as failure (e.g., for closed-world

semantics)
lData structures
l…
Limitations led to RIF, Rule Interchange Format

https://www.w3.org/TR/rif-overview/

Summary

lHorn logic is a subset of predicate logic that
allows efficient reasoning, orthogonal to
description logics

lHorn logic is the basis of monotonic rules
lDLP and SWRL are two important ways of

combining OWL with Horn rules.
– DLP is essentially the intersection of OWL and Horn

logic
– SWRL is a much richer language

Summary (2)

lNonmonotonic rules are useful in situations
where the available information is incomplete

lThey are rules that may be overridden by
contrary evidence

lPriorities are sometimes used to resolve some
conflicts between rules

