OWL, DL and
rules

Based on slides from Grigoris Antoniou, Frank van Harmele and Vassilis Papataxiarhis

OWL and Rules

e Rule based systems are an important and useful
way to represent and reason with knowledge

e Adding rules to OWL has proved to be fraught
with problems

e We'll look at the underlying issues and several
approaches

- SWRL: failed standard that has become widely used
— RIF: a successful standard that’s not yet widely used

Semantic Web and Logic

e The Semantic Web is grounded in logic

e But what logic?
— OWL Full = Classical first order logic (FOL)
-~ OWL-DL = Description logic
— N3 rules ~=logic programming (LP) rules
- SWRL~=DL + LP

- Other choices are possible, e.g., default logic, fuzzy
logic, probabilistic logics, ...

e How do these fit together and what are the
conseguences

We need both structure and rules

e OWL’s ontologies based on DL (and thus in FOL)
- The Web is an open environment
- Reusability / interoperability

- An ontology is a model easy to understand

e Many rule systems based on logic programming

- To achieve decidability, ontology languages don’t
offer the expressiveness we want. Rules do it well

- Efficient reasoning support already exists

- Rules are well-known and often more intuitive

https://en.wikipedia.org/wiki/Logic_programming

Description Logics vs. Horn Logic

® Neither is a subset of the other

e I[mpossible in OWL DL: people who study &
live in same city are local students,

e Easily done with a a rule
studiesAt(X,U), loc(U,L), lives(X,L) — localStud(X)

e I[mpossible in horn rules: every person is either a
man or a woman

e Easily done in OWL DL:

:Person owl:disjointUnionOf (:Man :Woman).

What’s Horn clause logic

® Prolog and most ‘logic’-oriented rule languages
use horn clause logic

— Defined by UCLA mathematician Alfred Horn

e Horn clauses: a subset of FOL where every
sentence is a disjunction of literals (atoms)
where at most one is positive

“PV~QV~RVS
~“PV~QV~R

e Atoms: propositional variables (isRaining) or
predicates (married(alice, ?x))

https://en.wikipedia.org/wiki/Prolog
http://en.wikipedia.org/wiki/Horn_clause
http://en.wikipedia.org/wiki/Alfred_Horn

Alternate formulation as implications

e Horn clauses can be re-written using the
implication operator
“PVQ=P=2Q
“PV~QVR= PAQ =R
“PV~Q=PAQ=>
e What we end up with is ~ “pure prolog”
- Single positive atom as the rule conclusion

— Conjunction of positive atoms as the rule
antecedents (conditions)

— No not operator
— Atoms can be predicates (e.g., mother(X,Y))

Prolog’s synax

® Prolog syntax is a bit different, putting the rule’s
conclusion first

hasMother(?x, ?m) :- hasParent(?x, ?m), female(?m) .
head = conclusion body = conjunction of conditions

oA fact is a rule w/o a body (i.e., no conditions)
hasParent(john, tom).
hasParent(john, mary).
female(mary).

e Prolog ‘proves’ queries by matching a fact, or a
rule’s conclusion and then proving each
condition in the rule’s body

We can relax this a bit

e Head can contain a conjunction of atoms
- P AQ & Ris equivalent to P&R and Q4R
e Body can have disjunctions
- P&RV Qis equivalent to P&R and P<Q

e But somethings are just not allowed:
- No disjunction in head, e.g.,
man(?x) ; woman(?x) :- person(x)
- No logical negation operator, i.e. NOT

man(?x) :- person(x), not(woman(x))

Where are the quantifiers?

e Quantifiers (forall, exists) are implicit
— Variables in rule head are universally quantified

— Variables only in rule body existentially quantified

e Example:
— IsParent(?x) :- hasChild(?x, ?y).
— isParent(X) €< hasChild(X,Y)
— forAll X: isParent(X) if Exisits Y: hasChild(X,Y)

Facts & rule conclusions are definite

e Definite means not a disjunction
e Facts are rule with the trivial true condition

® Consider these true facts:

PV Q # either P or Q (or both) are true
P=>R # if P is true, then R is true
Q=R # if Qs true, then R is true

e What can you conclude?

e Can this be expressed in horn logic?

Facts & rule conclusions are definite

e Consider these true facts where not is classical
negation rather than “negation as failure”

not(P) = Q, not(Q) =P #i.e.PVQ
P=>R Q=R
e Horn clause reasoners can’t prove that either P
or Q is necessarily true or false so can’t show
that R must be true

The Programming in Prolog

® Prolog = PROgramming in LOGic

® Prolog’s procedural elements make it very
useful, if used in moderation

e One is it’'s unprovable operator, \+
e \+ P succeeds if and only P cannot be proven
e Often called “negation as failure”

e Example: assume a person is unmarried if we
don’t know they are married

Unmarried(?x) :- person(?x), \+ married(?x) .

Non-ground entailment

® The LP-semantics defined in terms of minimal
Herbrand model, i.e., sets of ground facts

® Because of this, Horn clause reasoners can

not derive rules, so that can not do general
subsumption reasoning

— i.e., It can only reason about atomic facts to infer
new facts

— It can’t reason about rules and complex facts to
create new rules

https://en.wikipedia.org/wiki/Herbrand_structure

Decidability

e The largest obstacle!
Tradeoff between expressiveness and decidability
e Facing decidability issues from

— In LP: Finiteness of the domain

— In classical logic (and thus in DL): combination of
constructs

® Problem:

Combination of “simple” DLs and Horn Logic are
undecidable. (Levy & Rousset, 1998)

SWRL: Semantic Web Rule Language

e SWRL is the union of DL and horn logic + many
built-in functions (e.g., for math)

e Submitted to W3C in 2004, but failed to become
a recommendation (led to RIF)

e Problem: full SWRL specification leads to
undecidability in reasoning

e SWRL is well specified and subsets are widely
supported (e.g., in Pellet, HermiT)

e Based on OWL: rules use terms for OWL concepts
(classes, properties, individuals, literals...)

http://en.wikipedia.org/wiki/Semantic_Web_Rule_Language
http://www.w3.org/TR/rif-overview/
http://en.wikipedia.org/wiki/Undecidable_problem

SWRL

e OWL classes are unary predicates, properties
are binary ones
Person(?p) ” sibling(?p,?s) » Man(?s) = brother(?p,?s)

e As in Prolog, bulitins can be booleans or do a
computation and unify the result to a variable
- swrlb:greaterThan(?age2, ?agel) # age2>agel
— swrlb:subtract(?n1,?n2,?diff) # diff=n1-n2

® SWRL predicates for OWL axioms and data tests

— differentFrom(?x, ?y), sameAs(?x, ?y), xsd:int(?x),
[3, 4, 5](?x), ...

SWRL Built-Ins

e SWRL defines a set of built-in predicate that
allow for comparisons, math evaluation, string
operations and more

@ See here for the complete list

e Examples
— Person(?p), hasAge(?p, ?age), swrlb:greaterThan(?age, 18) -> Adult(?p)

— Person(?p), bornOnDate(?p, ?date), xsd:date(?date), swrlb:date(?date,
?year, ?month, ?day, ?timezone) -> borninYear(?p, ?year)

® Some reasoners (e.g., Pellet) allow you to
define new built-ins in Java

https://www.w3.org/Submission/2004/SUBM-SWRL-20040521/

Drawbacks of full SWRL

e Main source of complexity:

arbitrary OWL expressions (e.g. restrictions)
can appear in the head or body of a rule

e Adds significant expressive power to OWL, but
causes undecidability

there is no inference engine that draws exactly
the same conclusions as the SWRL semantics

SWRL Sublanguages

e Challenge: identify sublanguages of SWRL
with right balance between expressivity
and computational viability

e A candidate OWL DL + DL-safe rules

— every variable must appear in a non-
description logic atom in the rule body

DL-safe rules

e Standard reasoners support only DL-safe rules

Rule variables bind only to known individuals (i.e., owl2
owl:NamedIndividual)

e Example
:Vehicle(?v) » :Motor(?m) ” :hasMotor(?v,?m) -> :MotorVehicle(?v)
* Where
:Car = :Vehicle and some hasMotor Motor
:X a :Car
* Reasoner won’t bind ?m to a motor since it is not
a known individual

* Thus the rule cannot conclude MotorVehicle(:x)

Protégé 5 had SWRLTab

Add/edit rules and optionally run a separate rules engine

peeps (http://ebig.org/ontologies/peeps/) : [/Users/finin/Sites/691f17/examples/owl_examples/peeps/peeps.owl]

[NON)
s Search... &

< > ® peeps (http://ebig.org/ontologies/peeps/)
Active Ontology x Entities x Object Properties x| Data Properties x Individuals by class x SWRLTab x

Name Rule

S1 peeps:hasAge(?pl, ?al) A peeps:hasAge(?p2, 7a2) A swrlb:lessThan(?al, ?a2) -> youngerThan(?p1, ?p2)
S2 peeps:Woman(?p2) A peeps:hasParent(?p1, ?p2) -> hasMother(?p1, ?p2)

New Edit Clone Delete

Control | Rules | Asserted Axioms | Inferred Axioms | OWL 2 RL

Using the Drools rule engine.

Press the 'OWL+SWRL->Drools' button to transfer SWRL rules and relevant OWL knowledge to the rule engine.

Press the 'Run Drools' button to run the rule engine.
Press the 'Drools->OWL' button to transfer the inferred rule engine knowledge to OWL knowledge.

The SWRLAPI supports an OWL profile called OWL 2 RL and uses an OWL 2 RL-based reasoner to perform reasoning.
See the 'OWL 2 RL' sub-tab for more information on this reasoner.

OWL+SWRL->D... Run Drools Drools->0WL

To use the reasoner click Reasoner > Start reasoner Show Inferences

A Wy,

SWRL limitations

SWRL rules do not support many useful features
of of some rule-based systems

e Default reasoning
e Rule priorities

e Negation as failure (e.g., for closed-world
semantics)

® Data structures

Limitations led to RIF, Rule Interchange Format

https://www.w3.org/TR/rif-overview/

Summary

e Horn logic is a subset of predicate logic that
allows efficient reasoning, orthogonal to
description logics

e Horn logic is the basis of monotonic rules
e DLP and SWRL are two important ways of

combining OWL with Horn rules.

— DLP is essentially the intersection of OWL and Horn
logic

- SWRL is a much richer language

Summary (2)

® Nonmonotonic rules are useful in situations
where the available information is incomplete

e They are rules that may be overridden by
contrary evidence

® Priorities are sometimes used to resolve some
conflicts between rules

