First-Order Logic:
Review



RDFS/OWL Smantics

e The semantics of RDFS and OWL are based on
First Order Logic
e Advantages:

—Familiar, well defined, well understood,
expressive, powerful

—Good procedures/tools for inference

e Disadvantages

—No agreement on how to extend for probabilities,
fuzzy representations, higher order logics, etc.

—Hard to process in parallel



First-order logic

e First-order logic (FOL) models the world in terms of
— Objects, which are things with individual identities
— Properties of objects that distinguish them from others
— Relations that hold among sets of objects

— Functions, which are a subset of relations where there is
only one “value” for any given “input”

e Examples:
— Objects: Students, lectures, companies, cars ...

— Relations: Brother-of, bigger-than, outside, part-of, has-
color, occurs-after, owns, visits, precedes, ...

— Properties: blue, oval, even, large, ...
— Functions: father-of, best-friend, second-half, more-than ...



User provides

e Constant symbols representing individuals in the
world
—Mary, 3, green

e Function symbols, map individuals to individuals
—father_of(Mary) = John
—color_of(Sky) = Blue

e Predicate symbols, map individuals to truth values
—greater(5,3)
—green(Grass)
—color(Grass, Green)



FOL Provides

e Truth values
—True, False

e Variable symbols
—E.g., x,y, foo

e Connectives

—Same as in propositional logic: not (=), and (A),
or (v), implies (—), iff (<)

e Quantifiers
—Universal Vx or (Ax)
— Existential 3x or (Ex)



Sentences: built from terms and atoms

e A term (denoting a real-world individual) is a
constant symbol, variable symbol, or n-place
function of n terms, e.g.:

—Constants: john, umbc
—Variables: x, vy, z
—Functions: mother_of(john), phone(mother(x))

eGround terms have no variables in them

—Ground: john, father of(father_of(john))
—Not Ground: father_of(X)



Sentences: built from terms and atoms

e An atomic sentence (which has value true or
false) is an n-place predicate of n terms, e.g.:

—green(Kermit))
—between(Philadelphia, Baltimore, DC)
—loves(X, mother(X))

e A complex sentence is formed from atomic
sentences connected by logical connectives:

—P, PvQ, PAQ, P—Q, P<>Q
where P and Q are sentences



Sentences: built from terms and atoms

e quantified sentences adds quantifiers V and 3
—Vx loves(x, mother(x))
—dx number(x) A greater(x, 100), prime(x)

e A well-formed formula (wff) is a sentence
containing no “free” variables, i.e., all
variables are “bound” by either a universal or
existential quantifiers

(Vx)P(x,y) has x bound as a universally
qguantified variable, but y is free



A BNF for FOL

S := <Sentence> ;
<Sentence> := <AtomicSentence> |
<Sentence> <Connective> <Sentence> |
<Quantifier> <Variable>,... <Sentence> |
"NOT" <Sentence> |
"(" <Sentence> ")";
<AtomicSentence> := <Predicate> "(" <Term>, ... ")" |
<Term> "=" <Term>;
<Term> := <Function> " (" <Term>, ... ")" |
<Constant> |
<Variable>;
"AND" | "OR" | "IMPLIES" | "EQUIVALENT";
<Quantifier> := "EXISTS" | "FORALL"
<Constant> := "A" | "X1" | "John" | ... ;

<Variable> := "a" | "x" | "s" | ...

<Connective> :

-e

-e

<Predicate> := "Before" | "HasColor" | "Raining" | ...
<Function> := "Mother" | "LeftLegOf" | ... ;

-e



Quantifiers

e Universal quantification

—(Vx)P(x) means P holds for all values of x in
domain associated with variable

—E.g., (Vx) dolphin(x) > mammal(x)
e Existential quantification

—(dx)P(x) means P holds for some value of x
in domain associated with variable

—E.g., (Ix) mammal(x) A lays_eggs(x)

—This lets us make a statement about some
object without naming it



Quantifiers (1)

e Universal quantifiers often used with implies
to form rules:

(Wx) student(x) — smart(x) means “All students are
smart’
e Universal quantification rarely used to make
blanket statements about every individual in
the world:

(Vx) student(x) A smart(x) means “Everyone in the
world is a student and is smart”



Quantifiers (2)

e Existential quantifiers usually used with “and”
to specify
a list of properties about an individual:

(Ix) student(x) A smart(x) means “There is a
student who is smart”

e Common mistake: represent this in FOL as:
(dx) student(x) — smart(x)

e \What does this sentence mean?
—?7?



Quantifier Scope

e FOL sentences have structure, like programs

e |In particular, the variables in a sentence have a
scope

e For example, suppose we want to say
—“everyone who is alive loves someone”
—(Vx) alive(x) — (3y) loves(x,y)

e Here’s how we scobe the variables

(Vx) alive(x) — (3y) loves(x,y)

Scope of x
— SCOpPE Of y



Quantifier Scope

e Switching order of universal quantifiers does not
change the meaning

— (Vx)(VY)P(x,y) € (Vy)(VX) P(x,y)
— “Dogs hate cats’ (i.e., “all dogs hate all cats”)
e You can switch order of existential quantifiers
— (Ix)(3y)P(x,y) <> (Fy)(3x) P(x,y)
— “A cat killed a dog”
e Switching order of universal and existential
guantifiers does change meaning:
— Everyone likes someone: (Vx)(3y) likes(x,y)
— Someone is liked by everyone: (3y)(Vx) likes(x,y)



def verifyl():
# Everyone li
for x in peop
found = Fa

Procedural example 1

kes someone: (Vx)(3y) likes(x,y)

e():

se

for y in people():

if likes(x,y): Every person has at
found = True least one individual that
they like.
break ey ke
if not Found:

return False

return True



Procedural example 2
def verify2():

# Someone is liked by everyone: (dy)(Vx) likes(x,y)
for y in people():

found = True

for x in people():

if not likes(x,y): There is a person who is
found = False liked by every person in
the universe.
break

if found
return True

return False



Connections between VYV and 1

e \We can relate sentences involving ¥V and 3 using
extensions to De Morgan’s laws:

1.(Vx) =P(x) > —(3x) P(x)
2.=(Vx) P(x) <> (3dx) =P(x)
3.(Vx) P(x) > — (3dx) =P(x)
4.(3dx) P(x) > —=(Vx) —=P(x)
e Examples
1. All dogs don’t like cats € No dogs like cats
2. Not all dogs dance <> There is a dog that doesn’t dance
3. All dogs sleep €= There is no dog that doesn’t sleep
4. There is a dog that talks €< Not all dogs can’t talk




Simple genealogy KB in FOL

Design a knowledge base using FOL that

— Has facts of immediate family relations, e.g.,
spouses, parents, etc.

— Defines of more complex relations
(ancestors, relatives)

— Detect conflicts, e.g., you are your own
parent

— Infers relations, e.g., grandparernt from
parent

— Answers queries about relationships
between people




How do we approach this?

e Design an initial ontology of types, e.g.
—e.g., person, man, woman, gender

e Add general individuals to ontology, e.g.
—gender(male), gender(female)

e Extend ontology be defining relations, e.g.
— spouse, has_child, has_parent

e Add general constraints to relations, e.g.
—spouse(X,Y) =>~X=Y
—spouse(X,Y) => person(X), person(Y)

e Add FOL sentences for inference, e.g.
—spouse(X,Y) & spouse(Y,X)
—man(X) < person(X) Ahas_gender(X, male)




Simple genealogy KB in FOL

e Has facts of immediate family relations,
e.g., spouses, parents, etc.

e Has definitions of more complex relations
(ancestors, relatives)

e Can detect conflicts, e.g., you are your own
parent

e Can infer relations, e.g., grandparernt from
parent

e Can answer queries about relationships
between people



Example: A simple genealogy KB by FOL

e Predicates:

—parent(x, y), child(x, y), father(x, y), daughter(x, y),
etc.

—spouse(x, y), husband(x, y), wife(x,y)
—ancestor(x, y), descendant(x, y)
—male(x), female(y)

—relative(x, y)

e Facts:
—husband(Joe, Mary), son(Fred, Joe)
—spouse(John, Nancy), male(John), son(Mark, Nancy)
—father(Jack, Nancy), daughter(Linda, Jack)
—daughter(Liz, Linda)
— etc.



Example Axioms

(Vx,y) has_parent(x, y) €= has_child (y, x)

(Vx,y) father(x, y) € parent(x, y) A male(x) ;similar for mother(x,
(Vx,y) daughter(x, y) <> child(x, y) A female(x) ;similar for son(x, y)
(Vx,y) husband(x, y) €2 spouse(x, y) A male(x) ;similar for wife(x, y)
(Vx,y) spouse(x, y) €> spouse(y, x) ;spouse relation is symmetric

(Vx,y
(Vx,y
(Vx,y) descendant(x, y) <> ancestor(y, x)

parent(x, y) = ancestor(x, y)

(dz) parent(x, z) A ancestor(z, y) — ancestor(x, y)

(Vx,y)(dz) ancestor(z, x) A ancestor(z, y) — relative(x, y)
(Vx,y) spouse(x, y) — relative(x, y) ;related by marriage
(Vx,y)(dz) relative(z, x) A relative(z, y) — relative(x, y) ;transitive

)
)
)
)
)
)
)
)
)
)
)
)

(Vx,y) relative(x, y) €= relative(y, x) ;symmetric



e Rules for genealogical relations

(Vx,y) parent(x, y) <> child (y, x)
(Vx,y) father(x, y) > parent(x, y) A male(x) ;similarly for mother(x, y)
(Vx,y) daughter(x, y) €<= child(x, y) A female(x) ;similarly for son(x, y)
(Vx,y) husband(x, y) €2 spouse(x, y) A male(x) ;similarly for wife(x, y)
(Vx,y) spouse(x, y) <> spouse(y, x) ;spouse relation is symmetric
(Vx,y) parent(x, y) = ancestor(x, y)
(Vx,y)(dz) parent(x, z) A ancestor(z, y) — ancestor(x, y)
(Vx,y) descendant(x, y) €= ancestor(y, x)
(Vx,y)(dz) ancestor(z, x) A ancestor(z, y) — relative(x, y)

;related by common ancestry
(Vx,y) spouse(x, y) — relative(x, y) ;related by marriage
(Vx,y)(dz) relative(z, x) A relative(z, y) — relative(x, y) ;transitive
(Vx,y) relative(x, y) €= relative(y, x) ;symmetric

e Queries
— ancestor(Jack, Fred) ; the answer is yes
— relative(Liz, Joe) ; the answer is yes

— relative(Nancy, Matthew) ;no answer, no under closed world
assumption

— (dz) ancestor(z, Fred) A ancestor(z, Liz)



Axioms, definitions and theorems

e Axioms: facts and rules that capture the (important)
facts and concepts about a domain; axioms can be used
to prove theorems

— Mathematicians dislike unnecessary (dependent) axioms, i.e.
ones that can be derived from others

— Dependent axioms can make reasoning faster, however
— Choosing a good set of axioms is a design problem

e A definition of a predicate is of the form “p(X) & ...”
and can be decomposed into two parts

— Necessary description: “p(x) = ...~
— Sufficient description “p(x) « ...”

— Some concepts have definitions (triangle) and some do not
(person)



More on definitions

Example: define father(x, y) by parent(x, y) and
male(x)

e parent(x, y) is a necessary (but not sufficient)
description of father(x, y)

father(x, y) = parent(x, y)

e parent(x, y) * male(x) * age(x, 35) is a sufficient (but not
necessary) description of father(x, y):

father(x, y) < parent(x, y) » male(x) * age(x, 35)

e parent(x, y) » male(x) is a necessary and sufficient
description of father(x, y)

parent(x, y) » male(x) €= father(x, y)



Notational differences

e Different symbols for and, or, not, implies, ...

-Vid=> < AV e D

—pv(g”™r)

—p+(q*r)
e Prolog

cat(X) :- furry(X), meows (X), has(X, claws)
e Lispy notations

(forall ?x (implies (and (furry ?x)

(meows ?x)

(has ?x claws))
(cat ?x)))



r
A example of FOL in use E‘r‘

e Semantics of W3C’s semantic web stack
(RDF, RDFS, OWL) is defined in FOL

e OWL Full is equivalent to FOL

e Other OWL profiles support a subset of FOL
and are more efficient

e However, the semantics of schema.org is
only defined in natural language text

e ..and Google’s knowledge Graph probably
(!) uses probabilities



FOL Summary

e First order logic (FOL) introduces predicates,
functions and quantifiers
e More expressive, but reasoning more complex

—Reasoning in propositional logic is NP hard, FOL is
semi-decidable

e Common Al knowledge representation language

—Other KR languages (e.g., OWL) are often defined by
mapping them to FOL

e FOL variables range over objects

—HOL variables range over functions, predicates or
sentences



