
CWM
Closed World

Machine

CWM Overview

lCWM is a simple Semantic Web program that
can do the following tasks
– Read and pretty-print several RDF formats
– Store triples in a queryable triples database
– Perform inferences via forward chaining rules
– Perform builtin functions, e.g., comparing strings or

numbers, retrieving resources, using an extensible
builtins suite

lCWM was written in Python by Tim Berners-Lee
and Dan Connolly of the W3C

What’s CWM good for?

lCWM is good for experimenting with RDF and
RDFS and some OWL

lCWM’s rule based reasoner can’t cover all of
OWL

lA good Unix command line tool
l rdfs:seeAlso

– http://infomesh.net/2001/cwm/
– http://w3.org/2000/10/swap/doc/Processing

http://infomesh.net/2001/cwm/
http://www.w3.org/2000/10/swap/doc/Processing

CWM in a Nutshell

CWMrdf in various
encodings

rdf in various
encodings

Reasoning via
N3 rules

filter

CWM command line

lExample: cwm --rdf foo.rdf --n3 > foo.n3
lArgs are processed left to right (except for flags

--pipe and –help
lHere’s what happens:

– Switch to RDF/XML input-output format
– Read in foo.rdf (use a filename or URI) and

add triples to store
– Switch to --n3 input-output format
– Output triples in store to stdout in N3
– Unix redirect captures output in foo.n3

On N3 and Turtle

lN3 notation was invented by Tim Berners Lee
lNot a standard, but a large subset, Turtle, is
lWhat’s in N3 but not in Turtle

– Representing inference rules over RDF triples
– A compact syntax for reification
– Some other bits

lThe rules part is most useful
– Supplanted by SWRL and SPARQL
– And by RIF (Rule Interchange Formalism)

http://en.wikipedia.org/wiki/Turtle_(syntax)

Reasoning using N3 Rules
lN3 has a simple notation for Prolog like rules

lThese are represented in RDF, of course, and
can read these into CWM just like a data file

lCommand line args tell CWM to reason
--apply=X : read rules from X, apply to store, adding conclusions

--rules : apply once the rules in the store to the store, adding
conclusions

--filter=X : apply rules in X to the store, REPLACING the store
with the conclusions

--think : apply rules in store to the store, adding conclusions to
store, iteratively until a fix point reached, i.e. no more new
conclusions are made

https://en.wikipedia.org/wiki/Prolog

N3 facts and rules

l :Pat owl:sameAs :Patrick .

l :Man rdfs:subclassOf :Human .
:YoungMan rdfs:subclassOf :Man .

l :has_father rdfs:domain :Human; rdfs:range :Man .
:Sara :has_father :Alan .

l { ?x :has_parent ?y } => { ?y :has_child ?x } .

l {?x :has_parent ?y. ?y :has_brother ?z}
=> {?x :has_uncle ?z} .

l { :thermostat :temp ?x. ?x math:greaterThan "70" }
=> { :cooling :power "high" } .

Implications in logic
l In logic, an implication is a sentence that is

either true or false
– Forall x man(x) => mortal(x)

lOf course, we may not know if it’s true or false
l If we believe an implication is true, we can use it

to derive new true sentences from others we
believe true
– man(socrates) therefore mortal(socrates)

lThis is the basis for rule based reasoning systems
– Prolog, Datalog, Jess, etc.

Quantifiers

l In classical logic, we have two quantifiers, forall
(") and exists ($)
– "x $y has_child(x, y) => is_parent(x)

lFor all x, if there exists a y such that x has_child y,
then x is a parent, or in other words

lX is a parent if X has (at least) one child
– You only need find one child to conclude that

someone is a parent
l Variables (e.g., x and y) range over all objects in the

universe, but for KB systems, we can narrow this to
objects mentioned in the KB

Variables in rules implicitly quantified

lMost rule-based systems don’t use explicit
quantifiers

lVariables are implicitly quantified as either " or
$, typically using the following scheme:
l Variables in rule conclusion are universally quantified
l Variables appearing only in premise are existentially

quantified

lhas_child(p,c) => isa_parent(p) interpreted as
"p $c has_child(p,c) => isa_parent(p)

Variables in rules implicitly quantified

• To see why this is a reasonable design decision
for a rule language, consider
"x "y has_child(x, y) => isa_parent(x)

•What does this mean?
X is a parent if we can prove that X has every object
in our universe as a child

•Such rules are not often useful
•Many rule languages do have ways to express

them, of course

Reasoning: Forward and Backward
lRule based systems tend to use one of two

reasoning strategies (and some do both)

– Reasoning forward from known facts to new ones

(find all people who are parents; is Bob among them?)

– Reasoning backward from a conclusion posed as a

query to see if it is true (Is Bob a parent?)

lEach has advantages and disadvantages which

may effect its utility in a given use case

lCWM uses a forward reasoning strategy

– We often want to compute all RDF triples that follow

from a given set (i.e., find the deductive closure)

http://en.wikipedia.org/wiki/Forward_chaining
http://en.wikipedia.org/wiki/Backward_chaining
http://en.wikipedia.org/wiki/Deductive_closure

N3 Rules: premis => conclusion

lAn N3 rule has a conjunction of triples as a
premise and a conjunction as a conclusion

lE.g.: 2nd element of a triple is always a property
{ ?S ?P ?O. } => { ?P a rdf:Property. }

lE.g.: Meaning of rdfs:domain
{ ?S ?P ?O. ?P rdfs:domain ?D.} => { ?S a ?D. }

l Variables begin with a ?.

l Variable in conclusions must appear in premise

l Every way to instantiate triples in premise with a
set of KB triples yields new conclusion

Note: limited negation & disjunction

lWhat about disjunction, i.e., OR?
– You’re a parent if you have a son or a daughter

lDisjunction in the premise can be achieved
using several rules
– { ?S :has_son ?0.} => { ?S :has_child ?O.}
– { ?S :has_daughter ?0.} => { ?S :has_child ?O.}

lNo disjunction allowed in conclusion
– Allowing this requires a much more complex proof algorithm
– “When you have eliminated the impossible, whatever

remains, however improbable, must be the truth”

Note: limited negation & disjunction

lNo general logical negation is provided
– This is a common constraint in rule based

systems, e.g., Prolog
– This makes reasoning amenable to efficient

algorithms with some loss of expressive
power

lNegation and disjunction supported in other
ways in OWL and RIF and in other reasoners

http://en.wikipedia.org/wiki/Rule_Interchange_Format

N3 rules use cases

lUse N3 rules to implement the semantics of
RDF, RDFS, and OWL vocabularies
– See rdfs-rules.n3
– See owl-rules.n3

lUse N3 rules to provide domain/application
specific rules
– See gedcom-relations.n3

http://cs.umbc.edu/courses/graduate/691/spring18/07/examples/n3/rdfs-rules.n3
http://cs.umbc.edu/courses/graduate/691/fall18/07/examples/n3/rdfs-rules.n3
http://cs.umbc.edu/courses/graduate/691/spring18/07/examples/n3/rdfs-rules.n3
http://cs.umbc.edu/courses/graduate/691/fall18/07/examples/n3/owl-rules.n3
http://cs.umbc.edu/courses/graduate/691/fall18/07/examples/n3/gedcom-relations.n3

A simple example

% more simple1.n3

A simple example

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix : <#> .

:john a foaf:Person;
foaf:name "John Smith";
foaf:gender "Male";
foaf:name "John Smith" .

Invoking CWM (1)

% cwm simple1.n3
Processed by Id: cwm.py,v 1.197 2007/12/13 15:38:39 syosi Exp

using base file:///Users/finin/Sites/691s13/examples/n3/simple1.n3

Notation3 generation by notation3.py,v 1.200 2007/12/11 21:18:08 syosi
Exp

Base was: file:///Users/finin/Sites/691s13/examples/n3/simple1.n3

@prefix : <#> .

:john a <http://xmlns.com/foaf/0.1/Person>;

<http://xmlns.com/foaf/0.1/gender> "Male";
<http://xmlns.com/foaf/0.1/name> "John Smith" .

#ENDS

file:///localhost/Users/finin/Sites/691s13/examples/n3/simple1.n3

Invoking CWM (2)

n3> cwm –n3=/d simple1.n3
Processed by Id: cwm.py,v 1.197 2007/12/13 15:38:39 syosi Exp
using base file:///Users/finin/Sites/691s13/examples/n3/simple1.n3
Notation3 generation by notation3.py,v 1.200 2007/12/11 21:18:08 syosi Exp
Base was: file:///Users/finin/Sites/691s13/examples/n3/simple1.n3

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<#john> a foaf:Person;
foaf:gender "Male";
foaf:name "John Smith" .

file:///localhost/Users/finin/Sites/691s13/examples/n3/simple1.n3

Some useful CWM flags

l CWM command has a lot of flags and switches

l Do cwm --help to see them

l Here are a few

--rdf Input & Output ** in RDF/XML insead of n3 from now on

--n3 Input & Output in N3 from now on. (Default)

--n3=flags Input & Output in N3 and set N3 flags

--ntriples Input & Output in NTriples (equiv --n3=usbpartane -bySubject -quiet)

--apply=foo Read rules from foo, apply to store, adding conclusions to store

--think as -rules but continue until no more rule matches (or forever!)

--think=foo as -apply=foo but continue until no more rule matches (or forever!)

--data Remove all except plain RDF triples (formulae, forAll, etc)

--help print this message

RDFS in N3 (1)

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
…

rdfs:comment rdfs:domain rdfs:Resource; rdfs:range rdfs:Literal.
rdfs:domain rdfs:domain rdf:Property; rdfs:range rdfs:Class.
rdfs:label rdfs:domain rdfs:Resource; rdfs:range rdfs:Literal.
rdfs:range rdfs:domain rdf:Property; rdfs:range rdfs:Class.
rdfs:seeAlso rdfs:domain rdfs:Resource; rdfs:range rdfs:Resource.

rdfs:subClassOf rdfs:domain rdfs:Class; rdfs:range rdfs:Class.
rdfs:subPropertyOf rdfs:domain rdf:Property; rdfs:range rdf:Property.
rdf:type rdfs:domain rdfs:Resource; rdfs:range rdfs:Class.
…

RDFS in N3 (2)

{?S ?P ?O} => {?P a rdf:Property}.
{?S ?P ?O} => {?S a rdfs:Resource}.
{?S ?P ?O} => {?O a rdfs:Resource}.

{?P rdfs:domain ?C. ?S ?P ?O} => {?S a ?C}.
{?P rdfs:range ?C. ?S ?P ?O} => {?O a ?C}.

{?Q rdfs:subPropertyOf ?R. ?P rdfs:subPropertyOf ?Q}
=> {?P rdfs:subPropertyOf ?R}.

{?P rdfs:subPropertyOf ?R. ?S ?P ?O} => {?S ?R ?O}.

{?A rdfs:subClassOf ?B. ?S a ?A} => {?S a ?B}.
{?B rdfs:subClassOf ?C. ?A rdfs:subClassOf ?B}

=> {?A rdfs:subClassOf ?C}.

Demonstration

l Install cwm
– pip install cwm

lDownload files in the n3 examples directory
http://cs.umbc.edu/courses/graduate/691/fall
18/07/examples/n3/

http://cs.umbc.edu/courses/graduate/691/fall18/07/examples/n3/

HW3

Summary

lCWM is a relatively simple program that lets
you manipulate and explore RDF and Semantic
Web technology

l It’s limited in what it can do and not very
efficient

lBut useful and “close to the machine”
lWritten in Python
lThere are related tools in Python, see rdflib
lAnd lots more tools in other languages

http://en.wikipedia.org/wiki/RDFLib

genesis
A simple example of family relations using

the gedcom vocabulary.

@prefix gc:
<http://www.daml.org/2001/01/gedcom/
gedcom#>.

@prefix log:
<http://www.w3.org/2000/10/swap/log#
>.

@prefix owl:
<http://www.w3.org/2002/07/owl#>.

@prefix : <#> .
data from the Bible in GEDCOM form
:fam1 a gc:Family.

:Able gc:sex gc:Male;
gc:givenName "Able";
gc:childIn :fam1;
owl:differentFrom :Cain.

:Cain gc:sex gc:Male;
gc:givenName "Cain";
gc:childIn :fam1;
owl:differentFrom :Able.

:Adam gc:sex gc:Male;
gc:givenName "Adam";
gc:spouseIn :fam1;
owl:differentFrom :Eve.

:Eve gc:sex gc:Female;
gc:givenName "Eve";
gc:spouseIn :fam1;
owl:differentFrom

