
SQL

Structured Query Language

SQL

•  Data Definition Language (DDL)
– Create/alter/delete tables and their attributes
– We won’t cover this ...

•  Data Manipulation Language (DML)
– Query one or more tables – discussed next !
–  Insert/delete/modify tuples in tables

Tables in SQL

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Product

Attribute names Table name

Tuples or rows

Tables Explained

•  The schema of a table is the table name and
its attributes:

Product(PName, Price, Category, Manfacturer)

•  A key is an attribute whose values are unique;
we underline a key

Product(PName, Price, Category, Manfacturer)

Data Types in SQL

•  Atomic types:
– Characters: CHAR(20), VARCHAR(50)
– Numbers: INT, BIGINT, SMALLINT, FLOAT
– Others: MONEY, DATETIME, …

•  Every attribute must have an atomic type
– Hence tables are flat
– Why ?

Tables Explained

•  A tuple = a record
– Restriction: all attributes are of atomic type

•  A table = a set of tuples
– Like a list…
– …but it is unorderd:

no first(), no next(), no last().

SQL Query

Basic form: (plus many many more bells and whistles)

 SELECT <attributes>

 FROM <one or more relations>
 WHERE <conditions>

Simple SQL Query
PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

SELECT *
FROM Product
WHERE category=�Gadgets�

Product

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks �selection�

Simple SQL Query
PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

SELECT PName, Price, Manufacturer
FROM Product
WHERE Price > 100

Product

PName Price Manufacturer

SingleTouch $149.99 Canon

MultiTouch $203.99 Hitachi

�selection� and
�projection�

Notation

Product(PName, Price, Category, Manfacturer)

Answer(PName, Price, Manfacturer)

Input Schema

Output Schema

SELECT PName, Price, Manufacturer
FROM Product
WHERE Price > 100

Details

•  Case insensitive:
– Same: SELECT Select select
– Same: Product product
– Different: �Seattle����seattle�

•  Constants:
– �abc� - yes
– �abc� - no

The LIKE operator

•  s LIKE p: pattern matching on strings
•  p may contain two special symbols:

–  % = any sequence of characters
–  _ = any single character

SELECT *
FROM Products
WHERE PName LIKE �%gizmo%�

Eliminating Duplicates

SELECT DISTINCT category
FROM Product

Compare to:

SELECT category
FROM Product

Category

Gadgets

Gadgets

Photography

Household

Category

Gadgets

Photography

Household

Ordering the Results

SELECT pname, price, manufacturer
FROM Product
WHERE category=�gizmo� AND price > 50
ORDER BY price, pname

Ties are broken by the second attribute on the ORDER BY list, etc.

Ordering is ascending, unless you specify the DESC keyword.

SELECT Category
FROM Product
ORDER BY PName

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

?
SELECT DISTINCT category
FROM Product
ORDER BY category

SELECT DISTINCT category
FROM Product
ORDER BY PName

?
?

Keys and Foreign Keys

PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi

Product

Company

CName StockPrice Country

GizmoWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

Key

Foreign
key

Joins

Product (pname, price, category, manufacturer)
Company (cname, stockPrice, country)

Find all products under $200 manufactured in Japan;
return their names and prices.

SELECT PName, Price
FROM Product, Company
WHERE Manufacturer=CName AND Country=�Japan�
 AND Price <= 200

Join
between Product

and Company

Joins

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Product Company

Cname StockPrice Country

GizmoWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

PName Price

SingleTouch $149.99

SELECT PName, Price
FROM Product, Company
WHERE Manufacturer=CName AND Country=�Japan�
 AND Price <= 200

More Joins

Product (pname, price, category, manufacturer)
Company (cname, stockPrice, country)

Find all Chinese companies that manufacture products
both in the �electronic� and �toy� categories

SELECT cname

FROM

WHERE

A Subtlety about Joins

Product (pname, price, category, manufacturer)
Company (cname, stockPrice, country)

Find all countries that manufacture some product in the
�Gadgets� category.

SELECT Country
FROM Product, Company
WHERE Manufacturer=CName AND Category=�Gadgets�

Unexpected duplicates

A Subtlety about Joins

Name Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Product Company

Cname StockPrice Country

GizmoWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

Country

 ??

 ??

What is
the problem ?
What�s the
solution ?

SELECT Country
FROM Product, Company
WHERE Manufacturer=CName AND Category=�Gadgets�

Tuple Variables

SELECT DISTINCT pname, address
FROM Person, Company
WHERE worksfor = cname

Which
address ?

Person(pname, address, worksfor)
Company(cname, address)

SELECT DISTINCT Person.pname, Company.address
FROM Person, Company
WHERE Person.worksfor = Company.cname

SELECT DISTINCT x.pname, y.address
FROM Person AS x, Company AS y
WHERE x.worksfor = y.cname

Meaning (Semantics) of SQL
Queries

SELECT a1, a2, …, ak
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE Conditions

Answer = {}
for x1 in R1 do
 for x2 in R2 do
 …..
 for xn in Rn do
 if Conditions
 then Answer = Answer ∪ {(a1,…,ak)}
return Answer

SELECT DISTINCT R.A
FROM R, S, T
WHERE R.A=S.A OR R.A=T.A

An Unintuitive Query

Computes R ∩ (S ∪ T) But what if S = φ ?

What does it compute ?

Subqueries Returning Relations

 SELECT Company.city
 FROM Company
 WHERE Company.name IN
 (SELECT Product.maker
 FROM Purchase , Product
 WHERE Product.pname=Purchase.product
 AND Purchase .buyer = �Joe Blow�);

Return cities where one can find companies that manufacture
products bought by Joe Blow

Company(name, city)
Product(pname, maker)
Purchase(id, product, buyer)

Subqueries Returning Relations

 SELECT Company.city
 FROM Company, Product, Purchase
 WHERE Company.name= Product.maker
 AND Product.pname = Purchase.product
 AND Purchase.buyer = �Joe Blow�

Is it equivalent to this ?

Beware of duplicates !

Removing Duplicates

Now
they are
equivalent

 SELECT DISTINCT Company.city
 FROM Company
 WHERE Company.name IN
 (SELECT Product.maker
 FROM Purchase , Product
 WHERE Product.pname=Purchase.product
 AND Purchase .buyer = �Joe Blow�);

 SELECT DISTINCT Company.city
 FROM Company, Product, Purchase
 WHERE Company.name= Product.maker
 AND Product.pname = Purchase.product
 AND Purchase.buyer = �Joe Blow�

Subqueries Returning Relations

 SELECT name
 FROM Product
 WHERE price > ALL (SELECT price
 FROM Purchase
 WHERE maker=�Gizmo-Works�)

Product (pname, price, category, maker)
Find products that are more expensive than all those produced
By �Gizmo-Works�

You can also use: s > ALL R
 s > ANY R
 EXISTS R

Question for Database Fans
and their Friends

•  Can we express this query as a single
SELECT-FROM-WHERE query, without
subqueries ?

Question for Database Fans
and their Friends

•  Answer: all SFW queries are
monotone (figure out what this means).
A query with ALL is not monotone

Correlated Queries

 SELECT DISTINCT title
 FROM Movie AS x
 WHERE year <> ANY
 (SELECT year
 FROM Movie
 WHERE title = x.title);

 Movie (title, year, director, length)
 Find movies whose title appears more than once.

Note (1) scope of variables (2) this can still be expressed as single SFW

correlation

Complex Correlated Query
Product (pname, price, category, maker, year)
•  Find products (and their manufacturers) that are more expensive

than all products made by the same manufacturer before 1972

Very powerful ! Also much harder to optimize.

SELECT DISTINCT pname, maker
FROM Product AS x
WHERE price > ALL (SELECT price
 FROM Product AS y
 WHERE x.maker = y.maker AND y.year < 1972);

Aggregation
SELECT count(*)
FROM Product
WHERE year > 1995

Except count, all aggregations apply to a single attribute

SELECT avg(price)
FROM Product
WHERE maker=�Toyota�

SQL supports several aggregation operations:

 sum, count, min, max, avg

COUNT applies to duplicates, unless otherwise stated:

SELECT Count(category)
FROM Product
WHERE year > 1995

same as Count(*)

We probably want:

SELECT Count(DISTINCT category)
FROM Product
WHERE year > 1995

Aggregation: Count

Purchase(product, date, price, quantity)

More Examples

SELECT Sum(price * quantity)
FROM Purchase

SELECT Sum(price * quantity)
FROM Purchase
WHERE product = �bagel�

What do
they mean ?

Simple Aggregations Purchase

Product Date Price Quantity
Bagel 10/21 1 20

Banana 10/3 0.5 10
Banana 10/10 1 10
Bagel 10/25 1.50 20

SELECT Sum(price * quantity)
FROM Purchase
WHERE product = �bagel�

50 (= 20+30)

Grouping and Aggregation
Purchase(product, date, price, quantity)

SELECT product, Sum(price*quantity) AS TotalSales
FROM Purchase
WHERE date > �10/1/2005�
GROUP BY product

Let�s see what this means…

Find total sales after 10/1/2005 per product.

Grouping and Aggregation

1. Compute the FROM and WHERE clauses.

2. Group by the attributes in the GROUPBY

3. Compute the SELECT clause: grouped attributes and aggregates.

1&2. FROM-WHERE-GROUPBY

Product Date Price Quantity
Bagel 10/21 1 20
Bagel 10/25 1.50 20

Banana 10/3 0.5 10
Banana 10/10 1 10

3. SELECT

SELECT product, Sum(price*quantity) AS TotalSales
FROM Purchase
WHERE date > �10/1/2005�
GROUP BY product

Product Date Price Quantity
Bagel 10/21 1 20
Bagel 10/25 1.50 20

Banana 10/3 0.5 10
Banana 10/10 1 10

Product TotalSales

Bagel 50

Banana 15

GROUP BY v.s. Nested Quereis

SELECT product, Sum(price*quantity) AS TotalSales
FROM Purchase
WHERE date > �10/1/2005�
GROUP BY product

SELECT DISTINCT x.product, (SELECT Sum(y.price*y.quantity)
 FROM Purchase y
 WHERE x.product = y.product
 AND y.date > �10/1/2005�)
 AS TotalSales
FROM Purchase x
WHERE x.date > �10/1/2005�

Another Example

SELECT product,
 sum(price * quantity) AS SumSales
 max(quantity) AS MaxQuantity
FROM Purchase
GROUP BY product

What does
it mean ?

HAVING Clause

SELECT product, Sum(price * quantity)
FROM Purchase
WHERE date > �10/1/2005�
GROUP BY product
HAVING Sum(quantity) > 30

Same query, except that we consider only products that had
at least 100 buyers.

HAVING clause contains conditions on aggregates.

General form of Grouping and
Aggregation

SELECT S
FROM R1,…,Rn
WHERE C1
GROUP BY a1,…,ak
HAVING C2

S = may contain attributes a1,…,ak and/or any aggregates but NO OTHER

ATTRIBUTES
C1 = is any condition on the attributes in R1,…,Rn
C2 = is any condition on aggregate expressions

Why ?

General form of Grouping and
Aggregation

Evaluation steps:
1.  Evaluate FROM-WHERE, apply condition C1
2.  Group by the attributes a1,…,ak
3.  Apply condition C2 to each group (may have aggregates)
4.  Compute aggregates in S and return the result

SELECT S
FROM R1,…,Rn
WHERE C1
GROUP BY a1,…,ak
HAVING C2

