{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "Import pandas using the standard naming convention" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import os" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Grab the iris dataset in CSV format " ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " % Total % Received % Xferd Average Speed Time Time Time Current\n", " Dload Upload Total Spent Left Speed\n", "100 4600 100 4600 0 0 36220 0 --:--:-- --:--:-- --:--:-- 36220\n" ] } ], "source": [ "!curl https://raw.githubusercontent.com/pydata/pandas/master/pandas/tests/data/iris.csv > ~/iris.csv" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Load the data into a data frame" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "df = pd.read_csv('~/iris.csv')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Set up matplotlib" ] }, { "cell_type": "code", "execution_count": 46, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 47, "metadata": {}, "outputs": [], "source": [ "import matplotlib" ] }, { "cell_type": "code", "execution_count": 48, "metadata": {}, "outputs": [], "source": [ "matplotlib.style.use('ggplot')" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
SepalLengthSepalWidthPetalLengthPetalWidthName
05.13.51.40.2Iris-setosa
14.93.01.40.2Iris-setosa
24.73.21.30.2Iris-setosa
34.63.11.50.2Iris-setosa
45.03.61.40.2Iris-setosa
55.43.91.70.4Iris-setosa
64.63.41.40.3Iris-setosa
75.03.41.50.2Iris-setosa
84.42.91.40.2Iris-setosa
94.93.11.50.1Iris-setosa
105.43.71.50.2Iris-setosa
114.83.41.60.2Iris-setosa
124.83.01.40.1Iris-setosa
134.33.01.10.1Iris-setosa
145.84.01.20.2Iris-setosa
155.74.41.50.4Iris-setosa
165.43.91.30.4Iris-setosa
175.13.51.40.3Iris-setosa
185.73.81.70.3Iris-setosa
195.13.81.50.3Iris-setosa
205.43.41.70.2Iris-setosa
215.13.71.50.4Iris-setosa
224.63.61.00.2Iris-setosa
235.13.31.70.5Iris-setosa
244.83.41.90.2Iris-setosa
255.03.01.60.2Iris-setosa
265.03.41.60.4Iris-setosa
275.23.51.50.2Iris-setosa
285.23.41.40.2Iris-setosa
294.73.21.60.2Iris-setosa
..................
1206.93.25.72.3Iris-virginica
1215.62.84.92.0Iris-virginica
1227.72.86.72.0Iris-virginica
1236.32.74.91.8Iris-virginica
1246.73.35.72.1Iris-virginica
1257.23.26.01.8Iris-virginica
1266.22.84.81.8Iris-virginica
1276.13.04.91.8Iris-virginica
1286.42.85.62.1Iris-virginica
1297.23.05.81.6Iris-virginica
1307.42.86.11.9Iris-virginica
1317.93.86.42.0Iris-virginica
1326.42.85.62.2Iris-virginica
1336.32.85.11.5Iris-virginica
1346.12.65.61.4Iris-virginica
1357.73.06.12.3Iris-virginica
1366.33.45.62.4Iris-virginica
1376.43.15.51.8Iris-virginica
1386.03.04.81.8Iris-virginica
1396.93.15.42.1Iris-virginica
1406.73.15.62.4Iris-virginica
1416.93.15.12.3Iris-virginica
1425.82.75.11.9Iris-virginica
1436.83.25.92.3Iris-virginica
1446.73.35.72.5Iris-virginica
1456.73.05.22.3Iris-virginica
1466.32.55.01.9Iris-virginica
1476.53.05.22.0Iris-virginica
1486.23.45.42.3Iris-virginica
1495.93.05.11.8Iris-virginica
\n", "

150 rows × 5 columns

\n", "
" ], "text/plain": [ " SepalLength SepalWidth PetalLength PetalWidth Name\n", "0 5.1 3.5 1.4 0.2 Iris-setosa\n", "1 4.9 3.0 1.4 0.2 Iris-setosa\n", "2 4.7 3.2 1.3 0.2 Iris-setosa\n", "3 4.6 3.1 1.5 0.2 Iris-setosa\n", "4 5.0 3.6 1.4 0.2 Iris-setosa\n", "5 5.4 3.9 1.7 0.4 Iris-setosa\n", "6 4.6 3.4 1.4 0.3 Iris-setosa\n", "7 5.0 3.4 1.5 0.2 Iris-setosa\n", "8 4.4 2.9 1.4 0.2 Iris-setosa\n", "9 4.9 3.1 1.5 0.1 Iris-setosa\n", "10 5.4 3.7 1.5 0.2 Iris-setosa\n", "11 4.8 3.4 1.6 0.2 Iris-setosa\n", "12 4.8 3.0 1.4 0.1 Iris-setosa\n", "13 4.3 3.0 1.1 0.1 Iris-setosa\n", "14 5.8 4.0 1.2 0.2 Iris-setosa\n", "15 5.7 4.4 1.5 0.4 Iris-setosa\n", "16 5.4 3.9 1.3 0.4 Iris-setosa\n", "17 5.1 3.5 1.4 0.3 Iris-setosa\n", "18 5.7 3.8 1.7 0.3 Iris-setosa\n", "19 5.1 3.8 1.5 0.3 Iris-setosa\n", "20 5.4 3.4 1.7 0.2 Iris-setosa\n", "21 5.1 3.7 1.5 0.4 Iris-setosa\n", "22 4.6 3.6 1.0 0.2 Iris-setosa\n", "23 5.1 3.3 1.7 0.5 Iris-setosa\n", "24 4.8 3.4 1.9 0.2 Iris-setosa\n", "25 5.0 3.0 1.6 0.2 Iris-setosa\n", "26 5.0 3.4 1.6 0.4 Iris-setosa\n", "27 5.2 3.5 1.5 0.2 Iris-setosa\n", "28 5.2 3.4 1.4 0.2 Iris-setosa\n", "29 4.7 3.2 1.6 0.2 Iris-setosa\n", ".. ... ... ... ... ...\n", "120 6.9 3.2 5.7 2.3 Iris-virginica\n", "121 5.6 2.8 4.9 2.0 Iris-virginica\n", "122 7.7 2.8 6.7 2.0 Iris-virginica\n", "123 6.3 2.7 4.9 1.8 Iris-virginica\n", "124 6.7 3.3 5.7 2.1 Iris-virginica\n", "125 7.2 3.2 6.0 1.8 Iris-virginica\n", "126 6.2 2.8 4.8 1.8 Iris-virginica\n", "127 6.1 3.0 4.9 1.8 Iris-virginica\n", "128 6.4 2.8 5.6 2.1 Iris-virginica\n", "129 7.2 3.0 5.8 1.6 Iris-virginica\n", "130 7.4 2.8 6.1 1.9 Iris-virginica\n", "131 7.9 3.8 6.4 2.0 Iris-virginica\n", "132 6.4 2.8 5.6 2.2 Iris-virginica\n", "133 6.3 2.8 5.1 1.5 Iris-virginica\n", "134 6.1 2.6 5.6 1.4 Iris-virginica\n", "135 7.7 3.0 6.1 2.3 Iris-virginica\n", "136 6.3 3.4 5.6 2.4 Iris-virginica\n", "137 6.4 3.1 5.5 1.8 Iris-virginica\n", "138 6.0 3.0 4.8 1.8 Iris-virginica\n", "139 6.9 3.1 5.4 2.1 Iris-virginica\n", "140 6.7 3.1 5.6 2.4 Iris-virginica\n", "141 6.9 3.1 5.1 2.3 Iris-virginica\n", "142 5.8 2.7 5.1 1.9 Iris-virginica\n", "143 6.8 3.2 5.9 2.3 Iris-virginica\n", "144 6.7 3.3 5.7 2.5 Iris-virginica\n", "145 6.7 3.0 5.2 2.3 Iris-virginica\n", "146 6.3 2.5 5.0 1.9 Iris-virginica\n", "147 6.5 3.0 5.2 2.0 Iris-virginica\n", "148 6.2 3.4 5.4 2.3 Iris-virginica\n", "149 5.9 3.0 5.1 1.8 Iris-virginica\n", "\n", "[150 rows x 5 columns]" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Note index field that was automatically added" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Explore the data frame" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "SepalLength float64\n", "SepalWidth float64\n", "PetalLength float64\n", "PetalWidth float64\n", "Name object\n", "dtype: object" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.dtypes" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
SepalLengthSepalWidthPetalLengthPetalWidthName
05.13.51.40.2Iris-setosa
14.93.01.40.2Iris-setosa
24.73.21.30.2Iris-setosa
34.63.11.50.2Iris-setosa
45.03.61.40.2Iris-setosa
\n", "
" ], "text/plain": [ " SepalLength SepalWidth PetalLength PetalWidth Name\n", "0 5.1 3.5 1.4 0.2 Iris-setosa\n", "1 4.9 3.0 1.4 0.2 Iris-setosa\n", "2 4.7 3.2 1.3 0.2 Iris-setosa\n", "3 4.6 3.1 1.5 0.2 Iris-setosa\n", "4 5.0 3.6 1.4 0.2 Iris-setosa" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.head()" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
SepalLengthSepalWidthPetalLengthPetalWidthName
1476.53.05.22.0Iris-virginica
1486.23.45.42.3Iris-virginica
1495.93.05.11.8Iris-virginica
\n", "
" ], "text/plain": [ " SepalLength SepalWidth PetalLength PetalWidth Name\n", "147 6.5 3.0 5.2 2.0 Iris-virginica\n", "148 6.2 3.4 5.4 2.3 Iris-virginica\n", "149 5.9 3.0 5.1 1.8 Iris-virginica" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.tail(3)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "RangeIndex(start=0, stop=150, step=1)" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.index" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Index(['SepalLength', 'SepalWidth', 'PetalLength', 'PetalWidth', 'Name'], dtype='object')" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.columns" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[5.1, 3.5, 1.4, 0.2, 'Iris-setosa'],\n", " [4.9, 3.0, 1.4, 0.2, 'Iris-setosa'],\n", " [4.7, 3.2, 1.3, 0.2, 'Iris-setosa'],\n", " [4.6, 3.1, 1.5, 0.2, 'Iris-setosa'],\n", " [5.0, 3.6, 1.4, 0.2, 'Iris-setosa'],\n", " [5.4, 3.9, 1.7, 0.4, 'Iris-setosa'],\n", " [4.6, 3.4, 1.4, 0.3, 'Iris-setosa'],\n", " [5.0, 3.4, 1.5, 0.2, 'Iris-setosa'],\n", " [4.4, 2.9, 1.4, 0.2, 'Iris-setosa'],\n", " [4.9, 3.1, 1.5, 0.1, 'Iris-setosa'],\n", " [5.4, 3.7, 1.5, 0.2, 'Iris-setosa'],\n", " [4.8, 3.4, 1.6, 0.2, 'Iris-setosa'],\n", " [4.8, 3.0, 1.4, 0.1, 'Iris-setosa'],\n", " [4.3, 3.0, 1.1, 0.1, 'Iris-setosa'],\n", " [5.8, 4.0, 1.2, 0.2, 'Iris-setosa'],\n", " [5.7, 4.4, 1.5, 0.4, 'Iris-setosa'],\n", " [5.4, 3.9, 1.3, 0.4, 'Iris-setosa'],\n", " [5.1, 3.5, 1.4, 0.3, 'Iris-setosa'],\n", " [5.7, 3.8, 1.7, 0.3, 'Iris-setosa'],\n", " [5.1, 3.8, 1.5, 0.3, 'Iris-setosa'],\n", " [5.4, 3.4, 1.7, 0.2, 'Iris-setosa'],\n", " [5.1, 3.7, 1.5, 0.4, 'Iris-setosa'],\n", " [4.6, 3.6, 1.0, 0.2, 'Iris-setosa'],\n", " [5.1, 3.3, 1.7, 0.5, 'Iris-setosa'],\n", " [4.8, 3.4, 1.9, 0.2, 'Iris-setosa'],\n", " [5.0, 3.0, 1.6, 0.2, 'Iris-setosa'],\n", " [5.0, 3.4, 1.6, 0.4, 'Iris-setosa'],\n", " [5.2, 3.5, 1.5, 0.2, 'Iris-setosa'],\n", " [5.2, 3.4, 1.4, 0.2, 'Iris-setosa'],\n", " [4.7, 3.2, 1.6, 0.2, 'Iris-setosa'],\n", " [4.8, 3.1, 1.6, 0.2, 'Iris-setosa'],\n", " [5.4, 3.4, 1.5, 0.4, 'Iris-setosa'],\n", " [5.2, 4.1, 1.5, 0.1, 'Iris-setosa'],\n", " [5.5, 4.2, 1.4, 0.2, 'Iris-setosa'],\n", " [4.9, 3.1, 1.5, 0.1, 'Iris-setosa'],\n", " [5.0, 3.2, 1.2, 0.2, 'Iris-setosa'],\n", " [5.5, 3.5, 1.3, 0.2, 'Iris-setosa'],\n", " [4.9, 3.1, 1.5, 0.1, 'Iris-setosa'],\n", " [4.4, 3.0, 1.3, 0.2, 'Iris-setosa'],\n", " [5.1, 3.4, 1.5, 0.2, 'Iris-setosa'],\n", " [5.0, 3.5, 1.3, 0.3, 'Iris-setosa'],\n", " [4.5, 2.3, 1.3, 0.3, 'Iris-setosa'],\n", " [4.4, 3.2, 1.3, 0.2, 'Iris-setosa'],\n", " [5.0, 3.5, 1.6, 0.6, 'Iris-setosa'],\n", " [5.1, 3.8, 1.9, 0.4, 'Iris-setosa'],\n", " [4.8, 3.0, 1.4, 0.3, 'Iris-setosa'],\n", " [5.1, 3.8, 1.6, 0.2, 'Iris-setosa'],\n", " [4.6, 3.2, 1.4, 0.2, 'Iris-setosa'],\n", " [5.3, 3.7, 1.5, 0.2, 'Iris-setosa'],\n", " [5.0, 3.3, 1.4, 0.2, 'Iris-setosa'],\n", " [7.0, 3.2, 4.7, 1.4, 'Iris-versicolor'],\n", " [6.4, 3.2, 4.5, 1.5, 'Iris-versicolor'],\n", " [6.9, 3.1, 4.9, 1.5, 'Iris-versicolor'],\n", " [5.5, 2.3, 4.0, 1.3, 'Iris-versicolor'],\n", " [6.5, 2.8, 4.6, 1.5, 'Iris-versicolor'],\n", " [5.7, 2.8, 4.5, 1.3, 'Iris-versicolor'],\n", " [6.3, 3.3, 4.7, 1.6, 'Iris-versicolor'],\n", " [4.9, 2.4, 3.3, 1.0, 'Iris-versicolor'],\n", " [6.6, 2.9, 4.6, 1.3, 'Iris-versicolor'],\n", " [5.2, 2.7, 3.9, 1.4, 'Iris-versicolor'],\n", " [5.0, 2.0, 3.5, 1.0, 'Iris-versicolor'],\n", " [5.9, 3.0, 4.2, 1.5, 'Iris-versicolor'],\n", " [6.0, 2.2, 4.0, 1.0, 'Iris-versicolor'],\n", " [6.1, 2.9, 4.7, 1.4, 'Iris-versicolor'],\n", " [5.6, 2.9, 3.6, 1.3, 'Iris-versicolor'],\n", " [6.7, 3.1, 4.4, 1.4, 'Iris-versicolor'],\n", " [5.6, 3.0, 4.5, 1.5, 'Iris-versicolor'],\n", " [5.8, 2.7, 4.1, 1.0, 'Iris-versicolor'],\n", " [6.2, 2.2, 4.5, 1.5, 'Iris-versicolor'],\n", " [5.6, 2.5, 3.9, 1.1, 'Iris-versicolor'],\n", " [5.9, 3.2, 4.8, 1.8, 'Iris-versicolor'],\n", " [6.1, 2.8, 4.0, 1.3, 'Iris-versicolor'],\n", " [6.3, 2.5, 4.9, 1.5, 'Iris-versicolor'],\n", " [6.1, 2.8, 4.7, 1.2, 'Iris-versicolor'],\n", " [6.4, 2.9, 4.3, 1.3, 'Iris-versicolor'],\n", " [6.6, 3.0, 4.4, 1.4, 'Iris-versicolor'],\n", " [6.8, 2.8, 4.8, 1.4, 'Iris-versicolor'],\n", " [6.7, 3.0, 5.0, 1.7, 'Iris-versicolor'],\n", " [6.0, 2.9, 4.5, 1.5, 'Iris-versicolor'],\n", " [5.7, 2.6, 3.5, 1.0, 'Iris-versicolor'],\n", " [5.5, 2.4, 3.8, 1.1, 'Iris-versicolor'],\n", " [5.5, 2.4, 3.7, 1.0, 'Iris-versicolor'],\n", " [5.8, 2.7, 3.9, 1.2, 'Iris-versicolor'],\n", " [6.0, 2.7, 5.1, 1.6, 'Iris-versicolor'],\n", " [5.4, 3.0, 4.5, 1.5, 'Iris-versicolor'],\n", " [6.0, 3.4, 4.5, 1.6, 'Iris-versicolor'],\n", " [6.7, 3.1, 4.7, 1.5, 'Iris-versicolor'],\n", " [6.3, 2.3, 4.4, 1.3, 'Iris-versicolor'],\n", " [5.6, 3.0, 4.1, 1.3, 'Iris-versicolor'],\n", " [5.5, 2.5, 4.0, 1.3, 'Iris-versicolor'],\n", " [5.5, 2.6, 4.4, 1.2, 'Iris-versicolor'],\n", " [6.1, 3.0, 4.6, 1.4, 'Iris-versicolor'],\n", " [5.8, 2.6, 4.0, 1.2, 'Iris-versicolor'],\n", " [5.0, 2.3, 3.3, 1.0, 'Iris-versicolor'],\n", " [5.6, 2.7, 4.2, 1.3, 'Iris-versicolor'],\n", " [5.7, 3.0, 4.2, 1.2, 'Iris-versicolor'],\n", " [5.7, 2.9, 4.2, 1.3, 'Iris-versicolor'],\n", " [6.2, 2.9, 4.3, 1.3, 'Iris-versicolor'],\n", " [5.1, 2.5, 3.0, 1.1, 'Iris-versicolor'],\n", " [5.7, 2.8, 4.1, 1.3, 'Iris-versicolor'],\n", " [6.3, 3.3, 6.0, 2.5, 'Iris-virginica'],\n", " [5.8, 2.7, 5.1, 1.9, 'Iris-virginica'],\n", " [7.1, 3.0, 5.9, 2.1, 'Iris-virginica'],\n", " [6.3, 2.9, 5.6, 1.8, 'Iris-virginica'],\n", " [6.5, 3.0, 5.8, 2.2, 'Iris-virginica'],\n", " [7.6, 3.0, 6.6, 2.1, 'Iris-virginica'],\n", " [4.9, 2.5, 4.5, 1.7, 'Iris-virginica'],\n", " [7.3, 2.9, 6.3, 1.8, 'Iris-virginica'],\n", " [6.7, 2.5, 5.8, 1.8, 'Iris-virginica'],\n", " [7.2, 3.6, 6.1, 2.5, 'Iris-virginica'],\n", " [6.5, 3.2, 5.1, 2.0, 'Iris-virginica'],\n", " [6.4, 2.7, 5.3, 1.9, 'Iris-virginica'],\n", " [6.8, 3.0, 5.5, 2.1, 'Iris-virginica'],\n", " [5.7, 2.5, 5.0, 2.0, 'Iris-virginica'],\n", " [5.8, 2.8, 5.1, 2.4, 'Iris-virginica'],\n", " [6.4, 3.2, 5.3, 2.3, 'Iris-virginica'],\n", " [6.5, 3.0, 5.5, 1.8, 'Iris-virginica'],\n", " [7.7, 3.8, 6.7, 2.2, 'Iris-virginica'],\n", " [7.7, 2.6, 6.9, 2.3, 'Iris-virginica'],\n", " [6.0, 2.2, 5.0, 1.5, 'Iris-virginica'],\n", " [6.9, 3.2, 5.7, 2.3, 'Iris-virginica'],\n", " [5.6, 2.8, 4.9, 2.0, 'Iris-virginica'],\n", " [7.7, 2.8, 6.7, 2.0, 'Iris-virginica'],\n", " [6.3, 2.7, 4.9, 1.8, 'Iris-virginica'],\n", " [6.7, 3.3, 5.7, 2.1, 'Iris-virginica'],\n", " [7.2, 3.2, 6.0, 1.8, 'Iris-virginica'],\n", " [6.2, 2.8, 4.8, 1.8, 'Iris-virginica'],\n", " [6.1, 3.0, 4.9, 1.8, 'Iris-virginica'],\n", " [6.4, 2.8, 5.6, 2.1, 'Iris-virginica'],\n", " [7.2, 3.0, 5.8, 1.6, 'Iris-virginica'],\n", " [7.4, 2.8, 6.1, 1.9, 'Iris-virginica'],\n", " [7.9, 3.8, 6.4, 2.0, 'Iris-virginica'],\n", " [6.4, 2.8, 5.6, 2.2, 'Iris-virginica'],\n", " [6.3, 2.8, 5.1, 1.5, 'Iris-virginica'],\n", " [6.1, 2.6, 5.6, 1.4, 'Iris-virginica'],\n", " [7.7, 3.0, 6.1, 2.3, 'Iris-virginica'],\n", " [6.3, 3.4, 5.6, 2.4, 'Iris-virginica'],\n", " [6.4, 3.1, 5.5, 1.8, 'Iris-virginica'],\n", " [6.0, 3.0, 4.8, 1.8, 'Iris-virginica'],\n", " [6.9, 3.1, 5.4, 2.1, 'Iris-virginica'],\n", " [6.7, 3.1, 5.6, 2.4, 'Iris-virginica'],\n", " [6.9, 3.1, 5.1, 2.3, 'Iris-virginica'],\n", " [5.8, 2.7, 5.1, 1.9, 'Iris-virginica'],\n", " [6.8, 3.2, 5.9, 2.3, 'Iris-virginica'],\n", " [6.7, 3.3, 5.7, 2.5, 'Iris-virginica'],\n", " [6.7, 3.0, 5.2, 2.3, 'Iris-virginica'],\n", " [6.3, 2.5, 5.0, 1.9, 'Iris-virginica'],\n", " [6.5, 3.0, 5.2, 2.0, 'Iris-virginica'],\n", " [6.2, 3.4, 5.4, 2.3, 'Iris-virginica'],\n", " [5.9, 3.0, 5.1, 1.8, 'Iris-virginica']], dtype=object)" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.values" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
SepalLengthSepalWidthPetalLengthPetalWidth
count150.000000150.000000150.000000150.000000
mean5.8433333.0540003.7586671.198667
std0.8280660.4335941.7644200.763161
min4.3000002.0000001.0000000.100000
25%5.1000002.8000001.6000000.300000
50%5.8000003.0000004.3500001.300000
75%6.4000003.3000005.1000001.800000
max7.9000004.4000006.9000002.500000
\n", "
" ], "text/plain": [ " SepalLength SepalWidth PetalLength PetalWidth\n", "count 150.000000 150.000000 150.000000 150.000000\n", "mean 5.843333 3.054000 3.758667 1.198667\n", "std 0.828066 0.433594 1.764420 0.763161\n", "min 4.300000 2.000000 1.000000 0.100000\n", "25% 5.100000 2.800000 1.600000 0.300000\n", "50% 5.800000 3.000000 4.350000 1.300000\n", "75% 6.400000 3.300000 5.100000 1.800000\n", "max 7.900000 4.400000 6.900000 2.500000" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.describe()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Sorting" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
SepalLengthSepalWidthPetalLengthPetalWidthName
1495.93.05.11.8Iris-virginica
1486.23.45.42.3Iris-virginica
1476.53.05.22.0Iris-virginica
1466.32.55.01.9Iris-virginica
1456.73.05.22.3Iris-virginica
1446.73.35.72.5Iris-virginica
1436.83.25.92.3Iris-virginica
1425.82.75.11.9Iris-virginica
1416.93.15.12.3Iris-virginica
1406.73.15.62.4Iris-virginica
1396.93.15.42.1Iris-virginica
1386.03.04.81.8Iris-virginica
1376.43.15.51.8Iris-virginica
1366.33.45.62.4Iris-virginica
1357.73.06.12.3Iris-virginica
1346.12.65.61.4Iris-virginica
1336.32.85.11.5Iris-virginica
1326.42.85.62.2Iris-virginica
1317.93.86.42.0Iris-virginica
1307.42.86.11.9Iris-virginica
1297.23.05.81.6Iris-virginica
1286.42.85.62.1Iris-virginica
1276.13.04.91.8Iris-virginica
1266.22.84.81.8Iris-virginica
1257.23.26.01.8Iris-virginica
1246.73.35.72.1Iris-virginica
1236.32.74.91.8Iris-virginica
1227.72.86.72.0Iris-virginica
1215.62.84.92.0Iris-virginica
1206.93.25.72.3Iris-virginica
..................
294.73.21.60.2Iris-setosa
285.23.41.40.2Iris-setosa
275.23.51.50.2Iris-setosa
265.03.41.60.4Iris-setosa
255.03.01.60.2Iris-setosa
244.83.41.90.2Iris-setosa
235.13.31.70.5Iris-setosa
224.63.61.00.2Iris-setosa
215.13.71.50.4Iris-setosa
205.43.41.70.2Iris-setosa
195.13.81.50.3Iris-setosa
185.73.81.70.3Iris-setosa
175.13.51.40.3Iris-setosa
165.43.91.30.4Iris-setosa
155.74.41.50.4Iris-setosa
145.84.01.20.2Iris-setosa
134.33.01.10.1Iris-setosa
124.83.01.40.1Iris-setosa
114.83.41.60.2Iris-setosa
105.43.71.50.2Iris-setosa
94.93.11.50.1Iris-setosa
84.42.91.40.2Iris-setosa
75.03.41.50.2Iris-setosa
64.63.41.40.3Iris-setosa
55.43.91.70.4Iris-setosa
45.03.61.40.2Iris-setosa
34.63.11.50.2Iris-setosa
24.73.21.30.2Iris-setosa
14.93.01.40.2Iris-setosa
05.13.51.40.2Iris-setosa
\n", "

150 rows × 5 columns

\n", "
" ], "text/plain": [ " SepalLength SepalWidth PetalLength PetalWidth Name\n", "149 5.9 3.0 5.1 1.8 Iris-virginica\n", "148 6.2 3.4 5.4 2.3 Iris-virginica\n", "147 6.5 3.0 5.2 2.0 Iris-virginica\n", "146 6.3 2.5 5.0 1.9 Iris-virginica\n", "145 6.7 3.0 5.2 2.3 Iris-virginica\n", "144 6.7 3.3 5.7 2.5 Iris-virginica\n", "143 6.8 3.2 5.9 2.3 Iris-virginica\n", "142 5.8 2.7 5.1 1.9 Iris-virginica\n", "141 6.9 3.1 5.1 2.3 Iris-virginica\n", "140 6.7 3.1 5.6 2.4 Iris-virginica\n", "139 6.9 3.1 5.4 2.1 Iris-virginica\n", "138 6.0 3.0 4.8 1.8 Iris-virginica\n", "137 6.4 3.1 5.5 1.8 Iris-virginica\n", "136 6.3 3.4 5.6 2.4 Iris-virginica\n", "135 7.7 3.0 6.1 2.3 Iris-virginica\n", "134 6.1 2.6 5.6 1.4 Iris-virginica\n", "133 6.3 2.8 5.1 1.5 Iris-virginica\n", "132 6.4 2.8 5.6 2.2 Iris-virginica\n", "131 7.9 3.8 6.4 2.0 Iris-virginica\n", "130 7.4 2.8 6.1 1.9 Iris-virginica\n", "129 7.2 3.0 5.8 1.6 Iris-virginica\n", "128 6.4 2.8 5.6 2.1 Iris-virginica\n", "127 6.1 3.0 4.9 1.8 Iris-virginica\n", "126 6.2 2.8 4.8 1.8 Iris-virginica\n", "125 7.2 3.2 6.0 1.8 Iris-virginica\n", "124 6.7 3.3 5.7 2.1 Iris-virginica\n", "123 6.3 2.7 4.9 1.8 Iris-virginica\n", "122 7.7 2.8 6.7 2.0 Iris-virginica\n", "121 5.6 2.8 4.9 2.0 Iris-virginica\n", "120 6.9 3.2 5.7 2.3 Iris-virginica\n", ".. ... ... ... ... ...\n", "29 4.7 3.2 1.6 0.2 Iris-setosa\n", "28 5.2 3.4 1.4 0.2 Iris-setosa\n", "27 5.2 3.5 1.5 0.2 Iris-setosa\n", "26 5.0 3.4 1.6 0.4 Iris-setosa\n", "25 5.0 3.0 1.6 0.2 Iris-setosa\n", "24 4.8 3.4 1.9 0.2 Iris-setosa\n", "23 5.1 3.3 1.7 0.5 Iris-setosa\n", "22 4.6 3.6 1.0 0.2 Iris-setosa\n", "21 5.1 3.7 1.5 0.4 Iris-setosa\n", "20 5.4 3.4 1.7 0.2 Iris-setosa\n", "19 5.1 3.8 1.5 0.3 Iris-setosa\n", "18 5.7 3.8 1.7 0.3 Iris-setosa\n", "17 5.1 3.5 1.4 0.3 Iris-setosa\n", "16 5.4 3.9 1.3 0.4 Iris-setosa\n", "15 5.7 4.4 1.5 0.4 Iris-setosa\n", "14 5.8 4.0 1.2 0.2 Iris-setosa\n", "13 4.3 3.0 1.1 0.1 Iris-setosa\n", "12 4.8 3.0 1.4 0.1 Iris-setosa\n", "11 4.8 3.4 1.6 0.2 Iris-setosa\n", "10 5.4 3.7 1.5 0.2 Iris-setosa\n", "9 4.9 3.1 1.5 0.1 Iris-setosa\n", "8 4.4 2.9 1.4 0.2 Iris-setosa\n", "7 5.0 3.4 1.5 0.2 Iris-setosa\n", "6 4.6 3.4 1.4 0.3 Iris-setosa\n", "5 5.4 3.9 1.7 0.4 Iris-setosa\n", "4 5.0 3.6 1.4 0.2 Iris-setosa\n", "3 4.6 3.1 1.5 0.2 Iris-setosa\n", "2 4.7 3.2 1.3 0.2 Iris-setosa\n", "1 4.9 3.0 1.4 0.2 Iris-setosa\n", "0 5.1 3.5 1.4 0.2 Iris-setosa\n", "\n", "[150 rows x 5 columns]" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.sort_index(ascending=False)" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
SepalLengthSepalWidthPetalLengthPetalWidthName
05.13.51.40.2Iris-setosa
14.93.01.40.2Iris-setosa
24.73.21.30.2Iris-setosa
34.63.11.50.2Iris-setosa
45.03.61.40.2Iris-setosa
55.43.91.70.4Iris-setosa
64.63.41.40.3Iris-setosa
75.03.41.50.2Iris-setosa
84.42.91.40.2Iris-setosa
94.93.11.50.1Iris-setosa
105.43.71.50.2Iris-setosa
114.83.41.60.2Iris-setosa
124.83.01.40.1Iris-setosa
134.33.01.10.1Iris-setosa
145.84.01.20.2Iris-setosa
155.74.41.50.4Iris-setosa
165.43.91.30.4Iris-setosa
175.13.51.40.3Iris-setosa
185.73.81.70.3Iris-setosa
195.13.81.50.3Iris-setosa
205.43.41.70.2Iris-setosa
215.13.71.50.4Iris-setosa
224.63.61.00.2Iris-setosa
235.13.31.70.5Iris-setosa
244.83.41.90.2Iris-setosa
255.03.01.60.2Iris-setosa
265.03.41.60.4Iris-setosa
275.23.51.50.2Iris-setosa
285.23.41.40.2Iris-setosa
294.73.21.60.2Iris-setosa
..................
1206.93.25.72.3Iris-virginica
1215.62.84.92.0Iris-virginica
1227.72.86.72.0Iris-virginica
1236.32.74.91.8Iris-virginica
1246.73.35.72.1Iris-virginica
1257.23.26.01.8Iris-virginica
1266.22.84.81.8Iris-virginica
1276.13.04.91.8Iris-virginica
1286.42.85.62.1Iris-virginica
1297.23.05.81.6Iris-virginica
1307.42.86.11.9Iris-virginica
1317.93.86.42.0Iris-virginica
1326.42.85.62.2Iris-virginica
1336.32.85.11.5Iris-virginica
1346.12.65.61.4Iris-virginica
1357.73.06.12.3Iris-virginica
1366.33.45.62.4Iris-virginica
1376.43.15.51.8Iris-virginica
1386.03.04.81.8Iris-virginica
1396.93.15.42.1Iris-virginica
1406.73.15.62.4Iris-virginica
1416.93.15.12.3Iris-virginica
1425.82.75.11.9Iris-virginica
1436.83.25.92.3Iris-virginica
1446.73.35.72.5Iris-virginica
1456.73.05.22.3Iris-virginica
1466.32.55.01.9Iris-virginica
1476.53.05.22.0Iris-virginica
1486.23.45.42.3Iris-virginica
1495.93.05.11.8Iris-virginica
\n", "

150 rows × 5 columns

\n", "
" ], "text/plain": [ " SepalLength SepalWidth PetalLength PetalWidth Name\n", "0 5.1 3.5 1.4 0.2 Iris-setosa\n", "1 4.9 3.0 1.4 0.2 Iris-setosa\n", "2 4.7 3.2 1.3 0.2 Iris-setosa\n", "3 4.6 3.1 1.5 0.2 Iris-setosa\n", "4 5.0 3.6 1.4 0.2 Iris-setosa\n", "5 5.4 3.9 1.7 0.4 Iris-setosa\n", "6 4.6 3.4 1.4 0.3 Iris-setosa\n", "7 5.0 3.4 1.5 0.2 Iris-setosa\n", "8 4.4 2.9 1.4 0.2 Iris-setosa\n", "9 4.9 3.1 1.5 0.1 Iris-setosa\n", "10 5.4 3.7 1.5 0.2 Iris-setosa\n", "11 4.8 3.4 1.6 0.2 Iris-setosa\n", "12 4.8 3.0 1.4 0.1 Iris-setosa\n", "13 4.3 3.0 1.1 0.1 Iris-setosa\n", "14 5.8 4.0 1.2 0.2 Iris-setosa\n", "15 5.7 4.4 1.5 0.4 Iris-setosa\n", "16 5.4 3.9 1.3 0.4 Iris-setosa\n", "17 5.1 3.5 1.4 0.3 Iris-setosa\n", "18 5.7 3.8 1.7 0.3 Iris-setosa\n", "19 5.1 3.8 1.5 0.3 Iris-setosa\n", "20 5.4 3.4 1.7 0.2 Iris-setosa\n", "21 5.1 3.7 1.5 0.4 Iris-setosa\n", "22 4.6 3.6 1.0 0.2 Iris-setosa\n", "23 5.1 3.3 1.7 0.5 Iris-setosa\n", "24 4.8 3.4 1.9 0.2 Iris-setosa\n", "25 5.0 3.0 1.6 0.2 Iris-setosa\n", "26 5.0 3.4 1.6 0.4 Iris-setosa\n", "27 5.2 3.5 1.5 0.2 Iris-setosa\n", "28 5.2 3.4 1.4 0.2 Iris-setosa\n", "29 4.7 3.2 1.6 0.2 Iris-setosa\n", ".. ... ... ... ... ...\n", "120 6.9 3.2 5.7 2.3 Iris-virginica\n", "121 5.6 2.8 4.9 2.0 Iris-virginica\n", "122 7.7 2.8 6.7 2.0 Iris-virginica\n", "123 6.3 2.7 4.9 1.8 Iris-virginica\n", "124 6.7 3.3 5.7 2.1 Iris-virginica\n", "125 7.2 3.2 6.0 1.8 Iris-virginica\n", "126 6.2 2.8 4.8 1.8 Iris-virginica\n", "127 6.1 3.0 4.9 1.8 Iris-virginica\n", "128 6.4 2.8 5.6 2.1 Iris-virginica\n", "129 7.2 3.0 5.8 1.6 Iris-virginica\n", "130 7.4 2.8 6.1 1.9 Iris-virginica\n", "131 7.9 3.8 6.4 2.0 Iris-virginica\n", "132 6.4 2.8 5.6 2.2 Iris-virginica\n", "133 6.3 2.8 5.1 1.5 Iris-virginica\n", "134 6.1 2.6 5.6 1.4 Iris-virginica\n", "135 7.7 3.0 6.1 2.3 Iris-virginica\n", "136 6.3 3.4 5.6 2.4 Iris-virginica\n", "137 6.4 3.1 5.5 1.8 Iris-virginica\n", "138 6.0 3.0 4.8 1.8 Iris-virginica\n", "139 6.9 3.1 5.4 2.1 Iris-virginica\n", "140 6.7 3.1 5.6 2.4 Iris-virginica\n", "141 6.9 3.1 5.1 2.3 Iris-virginica\n", "142 5.8 2.7 5.1 1.9 Iris-virginica\n", "143 6.8 3.2 5.9 2.3 Iris-virginica\n", "144 6.7 3.3 5.7 2.5 Iris-virginica\n", "145 6.7 3.0 5.2 2.3 Iris-virginica\n", "146 6.3 2.5 5.0 1.9 Iris-virginica\n", "147 6.5 3.0 5.2 2.0 Iris-virginica\n", "148 6.2 3.4 5.4 2.3 Iris-virginica\n", "149 5.9 3.0 5.1 1.8 Iris-virginica\n", "\n", "[150 rows x 5 columns]" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [], "source": [ "df.sort_index(ascending=False, inplace=True)" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
SepalLengthSepalWidthPetalLengthPetalWidthName
1495.93.05.11.8Iris-virginica
1486.23.45.42.3Iris-virginica
1476.53.05.22.0Iris-virginica
1466.32.55.01.9Iris-virginica
1456.73.05.22.3Iris-virginica
1446.73.35.72.5Iris-virginica
1436.83.25.92.3Iris-virginica
1425.82.75.11.9Iris-virginica
1416.93.15.12.3Iris-virginica
1406.73.15.62.4Iris-virginica
1396.93.15.42.1Iris-virginica
1386.03.04.81.8Iris-virginica
1376.43.15.51.8Iris-virginica
1366.33.45.62.4Iris-virginica
1357.73.06.12.3Iris-virginica
1346.12.65.61.4Iris-virginica
1336.32.85.11.5Iris-virginica
1326.42.85.62.2Iris-virginica
1317.93.86.42.0Iris-virginica
1307.42.86.11.9Iris-virginica
1297.23.05.81.6Iris-virginica
1286.42.85.62.1Iris-virginica
1276.13.04.91.8Iris-virginica
1266.22.84.81.8Iris-virginica
1257.23.26.01.8Iris-virginica
1246.73.35.72.1Iris-virginica
1236.32.74.91.8Iris-virginica
1227.72.86.72.0Iris-virginica
1215.62.84.92.0Iris-virginica
1206.93.25.72.3Iris-virginica
..................
294.73.21.60.2Iris-setosa
285.23.41.40.2Iris-setosa
275.23.51.50.2Iris-setosa
265.03.41.60.4Iris-setosa
255.03.01.60.2Iris-setosa
244.83.41.90.2Iris-setosa
235.13.31.70.5Iris-setosa
224.63.61.00.2Iris-setosa
215.13.71.50.4Iris-setosa
205.43.41.70.2Iris-setosa
195.13.81.50.3Iris-setosa
185.73.81.70.3Iris-setosa
175.13.51.40.3Iris-setosa
165.43.91.30.4Iris-setosa
155.74.41.50.4Iris-setosa
145.84.01.20.2Iris-setosa
134.33.01.10.1Iris-setosa
124.83.01.40.1Iris-setosa
114.83.41.60.2Iris-setosa
105.43.71.50.2Iris-setosa
94.93.11.50.1Iris-setosa
84.42.91.40.2Iris-setosa
75.03.41.50.2Iris-setosa
64.63.41.40.3Iris-setosa
55.43.91.70.4Iris-setosa
45.03.61.40.2Iris-setosa
34.63.11.50.2Iris-setosa
24.73.21.30.2Iris-setosa
14.93.01.40.2Iris-setosa
05.13.51.40.2Iris-setosa
\n", "

150 rows × 5 columns

\n", "
" ], "text/plain": [ " SepalLength SepalWidth PetalLength PetalWidth Name\n", "149 5.9 3.0 5.1 1.8 Iris-virginica\n", "148 6.2 3.4 5.4 2.3 Iris-virginica\n", "147 6.5 3.0 5.2 2.0 Iris-virginica\n", "146 6.3 2.5 5.0 1.9 Iris-virginica\n", "145 6.7 3.0 5.2 2.3 Iris-virginica\n", "144 6.7 3.3 5.7 2.5 Iris-virginica\n", "143 6.8 3.2 5.9 2.3 Iris-virginica\n", "142 5.8 2.7 5.1 1.9 Iris-virginica\n", "141 6.9 3.1 5.1 2.3 Iris-virginica\n", "140 6.7 3.1 5.6 2.4 Iris-virginica\n", "139 6.9 3.1 5.4 2.1 Iris-virginica\n", "138 6.0 3.0 4.8 1.8 Iris-virginica\n", "137 6.4 3.1 5.5 1.8 Iris-virginica\n", "136 6.3 3.4 5.6 2.4 Iris-virginica\n", "135 7.7 3.0 6.1 2.3 Iris-virginica\n", "134 6.1 2.6 5.6 1.4 Iris-virginica\n", "133 6.3 2.8 5.1 1.5 Iris-virginica\n", "132 6.4 2.8 5.6 2.2 Iris-virginica\n", "131 7.9 3.8 6.4 2.0 Iris-virginica\n", "130 7.4 2.8 6.1 1.9 Iris-virginica\n", "129 7.2 3.0 5.8 1.6 Iris-virginica\n", "128 6.4 2.8 5.6 2.1 Iris-virginica\n", "127 6.1 3.0 4.9 1.8 Iris-virginica\n", "126 6.2 2.8 4.8 1.8 Iris-virginica\n", "125 7.2 3.2 6.0 1.8 Iris-virginica\n", "124 6.7 3.3 5.7 2.1 Iris-virginica\n", "123 6.3 2.7 4.9 1.8 Iris-virginica\n", "122 7.7 2.8 6.7 2.0 Iris-virginica\n", "121 5.6 2.8 4.9 2.0 Iris-virginica\n", "120 6.9 3.2 5.7 2.3 Iris-virginica\n", ".. ... ... ... ... ...\n", "29 4.7 3.2 1.6 0.2 Iris-setosa\n", "28 5.2 3.4 1.4 0.2 Iris-setosa\n", "27 5.2 3.5 1.5 0.2 Iris-setosa\n", "26 5.0 3.4 1.6 0.4 Iris-setosa\n", "25 5.0 3.0 1.6 0.2 Iris-setosa\n", "24 4.8 3.4 1.9 0.2 Iris-setosa\n", "23 5.1 3.3 1.7 0.5 Iris-setosa\n", "22 4.6 3.6 1.0 0.2 Iris-setosa\n", "21 5.1 3.7 1.5 0.4 Iris-setosa\n", "20 5.4 3.4 1.7 0.2 Iris-setosa\n", "19 5.1 3.8 1.5 0.3 Iris-setosa\n", "18 5.7 3.8 1.7 0.3 Iris-setosa\n", "17 5.1 3.5 1.4 0.3 Iris-setosa\n", "16 5.4 3.9 1.3 0.4 Iris-setosa\n", "15 5.7 4.4 1.5 0.4 Iris-setosa\n", "14 5.8 4.0 1.2 0.2 Iris-setosa\n", "13 4.3 3.0 1.1 0.1 Iris-setosa\n", "12 4.8 3.0 1.4 0.1 Iris-setosa\n", "11 4.8 3.4 1.6 0.2 Iris-setosa\n", "10 5.4 3.7 1.5 0.2 Iris-setosa\n", "9 4.9 3.1 1.5 0.1 Iris-setosa\n", "8 4.4 2.9 1.4 0.2 Iris-setosa\n", "7 5.0 3.4 1.5 0.2 Iris-setosa\n", "6 4.6 3.4 1.4 0.3 Iris-setosa\n", "5 5.4 3.9 1.7 0.4 Iris-setosa\n", "4 5.0 3.6 1.4 0.2 Iris-setosa\n", "3 4.6 3.1 1.5 0.2 Iris-setosa\n", "2 4.7 3.2 1.3 0.2 Iris-setosa\n", "1 4.9 3.0 1.4 0.2 Iris-setosa\n", "0 5.1 3.5 1.4 0.2 Iris-setosa\n", "\n", "[150 rows x 5 columns]" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
SepalLengthSepalWidthPetalLengthPetalWidthName
605.02.03.51.0Iris-versicolor
1196.02.25.01.5Iris-virginica
686.22.24.51.5Iris-versicolor
626.02.24.01.0Iris-versicolor
876.32.34.41.3Iris-versicolor
414.52.31.30.3Iris-setosa
535.52.34.01.3Iris-versicolor
935.02.33.31.0Iris-versicolor
815.52.43.71.0Iris-versicolor
805.52.43.81.1Iris-versicolor
574.92.43.31.0Iris-versicolor
1135.72.55.02.0Iris-virginica
695.62.53.91.1Iris-versicolor
726.32.54.91.5Iris-versicolor
1086.72.55.81.8Iris-virginica
1064.92.54.51.7Iris-virginica
985.12.53.01.1Iris-versicolor
895.52.54.01.3Iris-versicolor
1466.32.55.01.9Iris-virginica
1346.12.65.61.4Iris-virginica
1187.72.66.92.3Iris-virginica
925.82.64.01.2Iris-versicolor
905.52.64.41.2Iris-versicolor
795.72.63.51.0Iris-versicolor
945.62.74.21.3Iris-versicolor
1116.42.75.31.9Iris-virginica
825.82.73.91.2Iris-versicolor
1015.82.75.11.9Iris-virginica
675.82.74.11.0Iris-versicolor
836.02.75.11.6Iris-versicolor
..................
75.03.41.50.2Iris-setosa
856.03.44.51.6Iris-versicolor
315.43.41.50.4Iris-setosa
1366.33.45.62.4Iris-virginica
285.23.41.40.2Iris-setosa
395.13.41.50.2Iris-setosa
275.23.51.50.2Iris-setosa
435.03.51.60.6Iris-setosa
405.03.51.30.3Iris-setosa
175.13.51.40.3Iris-setosa
05.13.51.40.2Iris-setosa
365.53.51.30.2Iris-setosa
1097.23.66.12.5Iris-virginica
224.63.61.00.2Iris-setosa
45.03.61.40.2Iris-setosa
215.13.71.50.4Iris-setosa
105.43.71.50.2Iris-setosa
485.33.71.50.2Iris-setosa
185.73.81.70.3Iris-setosa
1177.73.86.72.2Iris-virginica
1317.93.86.42.0Iris-virginica
465.13.81.60.2Iris-setosa
445.13.81.90.4Iris-setosa
195.13.81.50.3Iris-setosa
55.43.91.70.4Iris-setosa
165.43.91.30.4Iris-setosa
145.84.01.20.2Iris-setosa
325.24.11.50.1Iris-setosa
335.54.21.40.2Iris-setosa
155.74.41.50.4Iris-setosa
\n", "

150 rows × 5 columns

\n", "
" ], "text/plain": [ " SepalLength SepalWidth PetalLength PetalWidth Name\n", "60 5.0 2.0 3.5 1.0 Iris-versicolor\n", "119 6.0 2.2 5.0 1.5 Iris-virginica\n", "68 6.2 2.2 4.5 1.5 Iris-versicolor\n", "62 6.0 2.2 4.0 1.0 Iris-versicolor\n", "87 6.3 2.3 4.4 1.3 Iris-versicolor\n", "41 4.5 2.3 1.3 0.3 Iris-setosa\n", "53 5.5 2.3 4.0 1.3 Iris-versicolor\n", "93 5.0 2.3 3.3 1.0 Iris-versicolor\n", "81 5.5 2.4 3.7 1.0 Iris-versicolor\n", "80 5.5 2.4 3.8 1.1 Iris-versicolor\n", "57 4.9 2.4 3.3 1.0 Iris-versicolor\n", "113 5.7 2.5 5.0 2.0 Iris-virginica\n", "69 5.6 2.5 3.9 1.1 Iris-versicolor\n", "72 6.3 2.5 4.9 1.5 Iris-versicolor\n", "108 6.7 2.5 5.8 1.8 Iris-virginica\n", "106 4.9 2.5 4.5 1.7 Iris-virginica\n", "98 5.1 2.5 3.0 1.1 Iris-versicolor\n", "89 5.5 2.5 4.0 1.3 Iris-versicolor\n", "146 6.3 2.5 5.0 1.9 Iris-virginica\n", "134 6.1 2.6 5.6 1.4 Iris-virginica\n", "118 7.7 2.6 6.9 2.3 Iris-virginica\n", "92 5.8 2.6 4.0 1.2 Iris-versicolor\n", "90 5.5 2.6 4.4 1.2 Iris-versicolor\n", "79 5.7 2.6 3.5 1.0 Iris-versicolor\n", "94 5.6 2.7 4.2 1.3 Iris-versicolor\n", "111 6.4 2.7 5.3 1.9 Iris-virginica\n", "82 5.8 2.7 3.9 1.2 Iris-versicolor\n", "101 5.8 2.7 5.1 1.9 Iris-virginica\n", "67 5.8 2.7 4.1 1.0 Iris-versicolor\n", "83 6.0 2.7 5.1 1.6 Iris-versicolor\n", ".. ... ... ... ... ...\n", "7 5.0 3.4 1.5 0.2 Iris-setosa\n", "85 6.0 3.4 4.5 1.6 Iris-versicolor\n", "31 5.4 3.4 1.5 0.4 Iris-setosa\n", "136 6.3 3.4 5.6 2.4 Iris-virginica\n", "28 5.2 3.4 1.4 0.2 Iris-setosa\n", "39 5.1 3.4 1.5 0.2 Iris-setosa\n", "27 5.2 3.5 1.5 0.2 Iris-setosa\n", "43 5.0 3.5 1.6 0.6 Iris-setosa\n", "40 5.0 3.5 1.3 0.3 Iris-setosa\n", "17 5.1 3.5 1.4 0.3 Iris-setosa\n", "0 5.1 3.5 1.4 0.2 Iris-setosa\n", "36 5.5 3.5 1.3 0.2 Iris-setosa\n", "109 7.2 3.6 6.1 2.5 Iris-virginica\n", "22 4.6 3.6 1.0 0.2 Iris-setosa\n", "4 5.0 3.6 1.4 0.2 Iris-setosa\n", "21 5.1 3.7 1.5 0.4 Iris-setosa\n", "10 5.4 3.7 1.5 0.2 Iris-setosa\n", "48 5.3 3.7 1.5 0.2 Iris-setosa\n", "18 5.7 3.8 1.7 0.3 Iris-setosa\n", "117 7.7 3.8 6.7 2.2 Iris-virginica\n", "131 7.9 3.8 6.4 2.0 Iris-virginica\n", "46 5.1 3.8 1.6 0.2 Iris-setosa\n", "44 5.1 3.8 1.9 0.4 Iris-setosa\n", "19 5.1 3.8 1.5 0.3 Iris-setosa\n", "5 5.4 3.9 1.7 0.4 Iris-setosa\n", "16 5.4 3.9 1.3 0.4 Iris-setosa\n", "14 5.8 4.0 1.2 0.2 Iris-setosa\n", "32 5.2 4.1 1.5 0.1 Iris-setosa\n", "33 5.5 4.2 1.4 0.2 Iris-setosa\n", "15 5.7 4.4 1.5 0.4 Iris-setosa\n", "\n", "[150 rows x 5 columns]" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.sort_values(by = 'SepalWidth')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Selection (this can get complicated). We'll start with the loc() method that pays attention to indexes.\n", "\n", "```\n", "Access a group of rows and columns by label(s) or a boolean array.\n", "\n", ".loc[] is primarily label based, but may also be used with a boolean array.\n", "\n", "Allowed inputs are:\n", "\n", "A single label, e.g. 5 or 'a', (note that 5 is interpreted as a label of the index, and never as an integer position along the index).\n", "\n", "A list or array of labels, e.g. ['a', 'b', 'c'].\n", "\n", "A slice object with labels, e.g. 'a':'f'.\n", "\n", "Warning Note that contrary to usual python slices, both the start and the stop are included\n", "A boolean array of the same length as the axis being sliced, e.g. [True, False, True].\n", "\n", "A callable function with one argument (the calling Series or DataFrame) and that returns valid output for indexing (one of the above)\n", "```\n" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "scrolled": true }, "outputs": [], "source": [ "df.sort_index(inplace=True)" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
SepalLengthSepalWidthPetalLengthPetalWidthName
05.13.51.40.2Iris-setosa
14.93.01.40.2Iris-setosa
24.73.21.30.2Iris-setosa
34.63.11.50.2Iris-setosa
45.03.61.40.2Iris-setosa
55.43.91.70.4Iris-setosa
64.63.41.40.3Iris-setosa
75.03.41.50.2Iris-setosa
84.42.91.40.2Iris-setosa
94.93.11.50.1Iris-setosa
105.43.71.50.2Iris-setosa
114.83.41.60.2Iris-setosa
124.83.01.40.1Iris-setosa
134.33.01.10.1Iris-setosa
145.84.01.20.2Iris-setosa
155.74.41.50.4Iris-setosa
165.43.91.30.4Iris-setosa
175.13.51.40.3Iris-setosa
185.73.81.70.3Iris-setosa
195.13.81.50.3Iris-setosa
205.43.41.70.2Iris-setosa
215.13.71.50.4Iris-setosa
224.63.61.00.2Iris-setosa
235.13.31.70.5Iris-setosa
244.83.41.90.2Iris-setosa
255.03.01.60.2Iris-setosa
265.03.41.60.4Iris-setosa
275.23.51.50.2Iris-setosa
285.23.41.40.2Iris-setosa
294.73.21.60.2Iris-setosa
..................
1206.93.25.72.3Iris-virginica
1215.62.84.92.0Iris-virginica
1227.72.86.72.0Iris-virginica
1236.32.74.91.8Iris-virginica
1246.73.35.72.1Iris-virginica
1257.23.26.01.8Iris-virginica
1266.22.84.81.8Iris-virginica
1276.13.04.91.8Iris-virginica
1286.42.85.62.1Iris-virginica
1297.23.05.81.6Iris-virginica
1307.42.86.11.9Iris-virginica
1317.93.86.42.0Iris-virginica
1326.42.85.62.2Iris-virginica
1336.32.85.11.5Iris-virginica
1346.12.65.61.4Iris-virginica
1357.73.06.12.3Iris-virginica
1366.33.45.62.4Iris-virginica
1376.43.15.51.8Iris-virginica
1386.03.04.81.8Iris-virginica
1396.93.15.42.1Iris-virginica
1406.73.15.62.4Iris-virginica
1416.93.15.12.3Iris-virginica
1425.82.75.11.9Iris-virginica
1436.83.25.92.3Iris-virginica
1446.73.35.72.5Iris-virginica
1456.73.05.22.3Iris-virginica
1466.32.55.01.9Iris-virginica
1476.53.05.22.0Iris-virginica
1486.23.45.42.3Iris-virginica
1495.93.05.11.8Iris-virginica
\n", "

150 rows × 5 columns

\n", "
" ], "text/plain": [ " SepalLength SepalWidth PetalLength PetalWidth Name\n", "0 5.1 3.5 1.4 0.2 Iris-setosa\n", "1 4.9 3.0 1.4 0.2 Iris-setosa\n", "2 4.7 3.2 1.3 0.2 Iris-setosa\n", "3 4.6 3.1 1.5 0.2 Iris-setosa\n", "4 5.0 3.6 1.4 0.2 Iris-setosa\n", "5 5.4 3.9 1.7 0.4 Iris-setosa\n", "6 4.6 3.4 1.4 0.3 Iris-setosa\n", "7 5.0 3.4 1.5 0.2 Iris-setosa\n", "8 4.4 2.9 1.4 0.2 Iris-setosa\n", "9 4.9 3.1 1.5 0.1 Iris-setosa\n", "10 5.4 3.7 1.5 0.2 Iris-setosa\n", "11 4.8 3.4 1.6 0.2 Iris-setosa\n", "12 4.8 3.0 1.4 0.1 Iris-setosa\n", "13 4.3 3.0 1.1 0.1 Iris-setosa\n", "14 5.8 4.0 1.2 0.2 Iris-setosa\n", "15 5.7 4.4 1.5 0.4 Iris-setosa\n", "16 5.4 3.9 1.3 0.4 Iris-setosa\n", "17 5.1 3.5 1.4 0.3 Iris-setosa\n", "18 5.7 3.8 1.7 0.3 Iris-setosa\n", "19 5.1 3.8 1.5 0.3 Iris-setosa\n", "20 5.4 3.4 1.7 0.2 Iris-setosa\n", "21 5.1 3.7 1.5 0.4 Iris-setosa\n", "22 4.6 3.6 1.0 0.2 Iris-setosa\n", "23 5.1 3.3 1.7 0.5 Iris-setosa\n", "24 4.8 3.4 1.9 0.2 Iris-setosa\n", "25 5.0 3.0 1.6 0.2 Iris-setosa\n", "26 5.0 3.4 1.6 0.4 Iris-setosa\n", "27 5.2 3.5 1.5 0.2 Iris-setosa\n", "28 5.2 3.4 1.4 0.2 Iris-setosa\n", "29 4.7 3.2 1.6 0.2 Iris-setosa\n", ".. ... ... ... ... ...\n", "120 6.9 3.2 5.7 2.3 Iris-virginica\n", "121 5.6 2.8 4.9 2.0 Iris-virginica\n", "122 7.7 2.8 6.7 2.0 Iris-virginica\n", "123 6.3 2.7 4.9 1.8 Iris-virginica\n", "124 6.7 3.3 5.7 2.1 Iris-virginica\n", "125 7.2 3.2 6.0 1.8 Iris-virginica\n", "126 6.2 2.8 4.8 1.8 Iris-virginica\n", "127 6.1 3.0 4.9 1.8 Iris-virginica\n", "128 6.4 2.8 5.6 2.1 Iris-virginica\n", "129 7.2 3.0 5.8 1.6 Iris-virginica\n", "130 7.4 2.8 6.1 1.9 Iris-virginica\n", "131 7.9 3.8 6.4 2.0 Iris-virginica\n", "132 6.4 2.8 5.6 2.2 Iris-virginica\n", "133 6.3 2.8 5.1 1.5 Iris-virginica\n", "134 6.1 2.6 5.6 1.4 Iris-virginica\n", "135 7.7 3.0 6.1 2.3 Iris-virginica\n", "136 6.3 3.4 5.6 2.4 Iris-virginica\n", "137 6.4 3.1 5.5 1.8 Iris-virginica\n", "138 6.0 3.0 4.8 1.8 Iris-virginica\n", "139 6.9 3.1 5.4 2.1 Iris-virginica\n", "140 6.7 3.1 5.6 2.4 Iris-virginica\n", "141 6.9 3.1 5.1 2.3 Iris-virginica\n", "142 5.8 2.7 5.1 1.9 Iris-virginica\n", "143 6.8 3.2 5.9 2.3 Iris-virginica\n", "144 6.7 3.3 5.7 2.5 Iris-virginica\n", "145 6.7 3.0 5.2 2.3 Iris-virginica\n", "146 6.3 2.5 5.0 1.9 Iris-virginica\n", "147 6.5 3.0 5.2 2.0 Iris-virginica\n", "148 6.2 3.4 5.4 2.3 Iris-virginica\n", "149 5.9 3.0 5.1 1.8 Iris-virginica\n", "\n", "[150 rows x 5 columns]" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df" ] }, { "cell_type": "code", "execution_count": 69, "metadata": { "scrolled": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
SepalLengthSepalWidthPetalLengthPetalWidthName
105.43.71.50.2Iris-setosa
114.83.41.60.2Iris-setosa
124.83.01.40.1Iris-setosa
134.33.01.10.1Iris-setosa
145.84.01.20.2Iris-setosa
155.74.41.50.4Iris-setosa
165.43.91.30.4Iris-setosa
175.13.51.40.3Iris-setosa
185.73.81.70.3Iris-setosa
195.13.81.50.3Iris-setosa
\n", "
" ], "text/plain": [ " SepalLength SepalWidth PetalLength PetalWidth Name\n", "10 5.4 3.7 1.5 0.2 Iris-setosa\n", "11 4.8 3.4 1.6 0.2 Iris-setosa\n", "12 4.8 3.0 1.4 0.1 Iris-setosa\n", "13 4.3 3.0 1.1 0.1 Iris-setosa\n", "14 5.8 4.0 1.2 0.2 Iris-setosa\n", "15 5.7 4.4 1.5 0.4 Iris-setosa\n", "16 5.4 3.9 1.3 0.4 Iris-setosa\n", "17 5.1 3.5 1.4 0.3 Iris-setosa\n", "18 5.7 3.8 1.7 0.3 Iris-setosa\n", "19 5.1 3.8 1.5 0.3 Iris-setosa" ] }, "execution_count": 69, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df[10:20]" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "SepalLength 4.8\n", "SepalWidth 3\n", "PetalLength 1.4\n", "PetalWidth 0.1\n", "Name Iris-setosa\n", "Name: 12, dtype: object" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.loc[12]" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
SepalWidthSepalLength
403.55.0
412.34.5
423.24.4
433.55.0
443.85.1
453.04.8
463.85.1
473.24.6
483.75.3
493.35.0
503.27.0
\n", "
" ], "text/plain": [ " SepalWidth SepalLength\n", "40 3.5 5.0\n", "41 2.3 4.5\n", "42 3.2 4.4\n", "43 3.5 5.0\n", "44 3.8 5.1\n", "45 3.0 4.8\n", "46 3.8 5.1\n", "47 3.2 4.6\n", "48 3.7 5.3\n", "49 3.3 5.0\n", "50 3.2 7.0" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.loc[40:50, ['SepalWidth', 'SepalLength']]" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "3.7" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.loc[10,'SepalWidth']" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we'll move to the iloc() method, which pays attention to locations. Let's resort the data frame so that the location (position in the data frame) and index do not line up perfectly. That will help us see what's going on.\n", "\n", "```\n", "Purely integer-location based indexing for selection by position.\n", "\n", ".iloc[] is primarily integer position based (from 0 to length-1 of the axis), but may also be used with a boolean array.\n", "\n", "Allowed inputs are:\n", "\n", "An integer, e.g. 5.\n", "A list or array of integers, e.g. [4, 3, 0].\n", "A slice object with ints, e.g. 1:7.\n", "A boolean array.\n", "A callable function with one argument (the calling Series or DataFrame) and that returns valid output for indexing (one of the above). This is useful in method chains, when you don’t have a reference to the calling object, but would like to base your selection on some value.\n", "```" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [], "source": [ "df.sort_index(ascending=False, inplace=True)" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
SepalLengthSepalWidthPetalLengthPetalWidthName
1495.93.05.11.8Iris-virginica
1486.23.45.42.3Iris-virginica
1476.53.05.22.0Iris-virginica
1466.32.55.01.9Iris-virginica
1456.73.05.22.3Iris-virginica
1446.73.35.72.5Iris-virginica
1436.83.25.92.3Iris-virginica
1425.82.75.11.9Iris-virginica
1416.93.15.12.3Iris-virginica
1406.73.15.62.4Iris-virginica
1396.93.15.42.1Iris-virginica
1386.03.04.81.8Iris-virginica
1376.43.15.51.8Iris-virginica
1366.33.45.62.4Iris-virginica
1357.73.06.12.3Iris-virginica
1346.12.65.61.4Iris-virginica
1336.32.85.11.5Iris-virginica
1326.42.85.62.2Iris-virginica
1317.93.86.42.0Iris-virginica
1307.42.86.11.9Iris-virginica
1297.23.05.81.6Iris-virginica
1286.42.85.62.1Iris-virginica
1276.13.04.91.8Iris-virginica
1266.22.84.81.8Iris-virginica
1257.23.26.01.8Iris-virginica
1246.73.35.72.1Iris-virginica
1236.32.74.91.8Iris-virginica
1227.72.86.72.0Iris-virginica
1215.62.84.92.0Iris-virginica
1206.93.25.72.3Iris-virginica
..................
294.73.21.60.2Iris-setosa
285.23.41.40.2Iris-setosa
275.23.51.50.2Iris-setosa
265.03.41.60.4Iris-setosa
255.03.01.60.2Iris-setosa
244.83.41.90.2Iris-setosa
235.13.31.70.5Iris-setosa
224.63.61.00.2Iris-setosa
215.13.71.50.4Iris-setosa
205.43.41.70.2Iris-setosa
195.13.81.50.3Iris-setosa
185.73.81.70.3Iris-setosa
175.13.51.40.3Iris-setosa
165.43.91.30.4Iris-setosa
155.74.41.50.4Iris-setosa
145.84.01.20.2Iris-setosa
134.33.01.10.1Iris-setosa
124.83.01.40.1Iris-setosa
114.83.41.60.2Iris-setosa
105.43.71.50.2Iris-setosa
94.93.11.50.1Iris-setosa
84.42.91.40.2Iris-setosa
75.03.41.50.2Iris-setosa
64.63.41.40.3Iris-setosa
55.43.91.70.4Iris-setosa
45.03.61.40.2Iris-setosa
34.63.11.50.2Iris-setosa
24.73.21.30.2Iris-setosa
14.93.01.40.2Iris-setosa
05.13.51.40.2Iris-setosa
\n", "

150 rows × 5 columns

\n", "
" ], "text/plain": [ " SepalLength SepalWidth PetalLength PetalWidth Name\n", "149 5.9 3.0 5.1 1.8 Iris-virginica\n", "148 6.2 3.4 5.4 2.3 Iris-virginica\n", "147 6.5 3.0 5.2 2.0 Iris-virginica\n", "146 6.3 2.5 5.0 1.9 Iris-virginica\n", "145 6.7 3.0 5.2 2.3 Iris-virginica\n", "144 6.7 3.3 5.7 2.5 Iris-virginica\n", "143 6.8 3.2 5.9 2.3 Iris-virginica\n", "142 5.8 2.7 5.1 1.9 Iris-virginica\n", "141 6.9 3.1 5.1 2.3 Iris-virginica\n", "140 6.7 3.1 5.6 2.4 Iris-virginica\n", "139 6.9 3.1 5.4 2.1 Iris-virginica\n", "138 6.0 3.0 4.8 1.8 Iris-virginica\n", "137 6.4 3.1 5.5 1.8 Iris-virginica\n", "136 6.3 3.4 5.6 2.4 Iris-virginica\n", "135 7.7 3.0 6.1 2.3 Iris-virginica\n", "134 6.1 2.6 5.6 1.4 Iris-virginica\n", "133 6.3 2.8 5.1 1.5 Iris-virginica\n", "132 6.4 2.8 5.6 2.2 Iris-virginica\n", "131 7.9 3.8 6.4 2.0 Iris-virginica\n", "130 7.4 2.8 6.1 1.9 Iris-virginica\n", "129 7.2 3.0 5.8 1.6 Iris-virginica\n", "128 6.4 2.8 5.6 2.1 Iris-virginica\n", "127 6.1 3.0 4.9 1.8 Iris-virginica\n", "126 6.2 2.8 4.8 1.8 Iris-virginica\n", "125 7.2 3.2 6.0 1.8 Iris-virginica\n", "124 6.7 3.3 5.7 2.1 Iris-virginica\n", "123 6.3 2.7 4.9 1.8 Iris-virginica\n", "122 7.7 2.8 6.7 2.0 Iris-virginica\n", "121 5.6 2.8 4.9 2.0 Iris-virginica\n", "120 6.9 3.2 5.7 2.3 Iris-virginica\n", ".. ... ... ... ... ...\n", "29 4.7 3.2 1.6 0.2 Iris-setosa\n", "28 5.2 3.4 1.4 0.2 Iris-setosa\n", "27 5.2 3.5 1.5 0.2 Iris-setosa\n", "26 5.0 3.4 1.6 0.4 Iris-setosa\n", "25 5.0 3.0 1.6 0.2 Iris-setosa\n", "24 4.8 3.4 1.9 0.2 Iris-setosa\n", "23 5.1 3.3 1.7 0.5 Iris-setosa\n", "22 4.6 3.6 1.0 0.2 Iris-setosa\n", "21 5.1 3.7 1.5 0.4 Iris-setosa\n", "20 5.4 3.4 1.7 0.2 Iris-setosa\n", "19 5.1 3.8 1.5 0.3 Iris-setosa\n", "18 5.7 3.8 1.7 0.3 Iris-setosa\n", "17 5.1 3.5 1.4 0.3 Iris-setosa\n", "16 5.4 3.9 1.3 0.4 Iris-setosa\n", "15 5.7 4.4 1.5 0.4 Iris-setosa\n", "14 5.8 4.0 1.2 0.2 Iris-setosa\n", "13 4.3 3.0 1.1 0.1 Iris-setosa\n", "12 4.8 3.0 1.4 0.1 Iris-setosa\n", "11 4.8 3.4 1.6 0.2 Iris-setosa\n", "10 5.4 3.7 1.5 0.2 Iris-setosa\n", "9 4.9 3.1 1.5 0.1 Iris-setosa\n", "8 4.4 2.9 1.4 0.2 Iris-setosa\n", "7 5.0 3.4 1.5 0.2 Iris-setosa\n", "6 4.6 3.4 1.4 0.3 Iris-setosa\n", "5 5.4 3.9 1.7 0.4 Iris-setosa\n", "4 5.0 3.6 1.4 0.2 Iris-setosa\n", "3 4.6 3.1 1.5 0.2 Iris-setosa\n", "2 4.7 3.2 1.3 0.2 Iris-setosa\n", "1 4.9 3.0 1.4 0.2 Iris-setosa\n", "0 5.1 3.5 1.4 0.2 Iris-setosa\n", "\n", "[150 rows x 5 columns]" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df" ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
SepalLengthSepalWidthPetalLengthPetalWidthName
1495.93.05.11.8Iris-virginica
1486.23.45.42.3Iris-virginica
1476.53.05.22.0Iris-virginica
1466.32.55.01.9Iris-virginica
1456.73.05.22.3Iris-virginica
\n", "
" ], "text/plain": [ " SepalLength SepalWidth PetalLength PetalWidth Name\n", "149 5.9 3.0 5.1 1.8 Iris-virginica\n", "148 6.2 3.4 5.4 2.3 Iris-virginica\n", "147 6.5 3.0 5.2 2.0 Iris-virginica\n", "146 6.3 2.5 5.0 1.9 Iris-virginica\n", "145 6.7 3.0 5.2 2.3 Iris-virginica" ] }, "execution_count": 30, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.head(5)" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "SepalLength 6.3\n", "SepalWidth 2.5\n", "PetalLength 5\n", "PetalWidth 1.9\n", "Name Iris-virginica\n", "Name: 146, dtype: object" ] }, "execution_count": 31, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.iloc[3]" ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
PetalLengthPetalWidthName
1485.42.3Iris-virginica
1475.22.0Iris-virginica
\n", "
" ], "text/plain": [ " PetalLength PetalWidth Name\n", "148 5.4 2.3 Iris-virginica\n", "147 5.2 2.0 Iris-virginica" ] }, "execution_count": 32, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.iloc[1:3, 2:5]" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Index(['SepalLength', 'SepalWidth', 'PetalLength', 'PetalWidth', 'Name'], dtype='object')" ] }, "execution_count": 33, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.columns" ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
SepalLengthSepalWidthPetalLengthPetalWidthName
1486.23.45.42.3Iris-virginica
1476.53.05.22.0Iris-virginica
\n", "
" ], "text/plain": [ " SepalLength SepalWidth PetalLength PetalWidth Name\n", "148 6.2 3.4 5.4 2.3 Iris-virginica\n", "147 6.5 3.0 5.2 2.0 Iris-virginica" ] }, "execution_count": 34, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.iloc[1:3,:]" ] }, { "cell_type": "code", "execution_count": 36, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
PetalLengthPetalWidthName
1495.11.8Iris-virginica
1485.42.3Iris-virginica
1475.22.0Iris-virginica
1465.01.9Iris-virginica
1455.22.3Iris-virginica
1445.72.5Iris-virginica
1435.92.3Iris-virginica
1425.11.9Iris-virginica
1415.12.3Iris-virginica
1405.62.4Iris-virginica
1395.42.1Iris-virginica
1384.81.8Iris-virginica
1375.51.8Iris-virginica
1365.62.4Iris-virginica
1356.12.3Iris-virginica
1345.61.4Iris-virginica
1335.11.5Iris-virginica
1325.62.2Iris-virginica
1316.42.0Iris-virginica
1306.11.9Iris-virginica
1295.81.6Iris-virginica
1285.62.1Iris-virginica
1274.91.8Iris-virginica
1264.81.8Iris-virginica
1256.01.8Iris-virginica
1245.72.1Iris-virginica
1234.91.8Iris-virginica
1226.72.0Iris-virginica
1214.92.0Iris-virginica
1205.72.3Iris-virginica
............
291.60.2Iris-setosa
281.40.2Iris-setosa
271.50.2Iris-setosa
261.60.4Iris-setosa
251.60.2Iris-setosa
241.90.2Iris-setosa
231.70.5Iris-setosa
221.00.2Iris-setosa
211.50.4Iris-setosa
201.70.2Iris-setosa
191.50.3Iris-setosa
181.70.3Iris-setosa
171.40.3Iris-setosa
161.30.4Iris-setosa
151.50.4Iris-setosa
141.20.2Iris-setosa
131.10.1Iris-setosa
121.40.1Iris-setosa
111.60.2Iris-setosa
101.50.2Iris-setosa
91.50.1Iris-setosa
81.40.2Iris-setosa
71.50.2Iris-setosa
61.40.3Iris-setosa
51.70.4Iris-setosa
41.40.2Iris-setosa
31.50.2Iris-setosa
21.30.2Iris-setosa
11.40.2Iris-setosa
01.40.2Iris-setosa
\n", "

150 rows × 3 columns

\n", "
" ], "text/plain": [ " PetalLength PetalWidth Name\n", "149 5.1 1.8 Iris-virginica\n", "148 5.4 2.3 Iris-virginica\n", "147 5.2 2.0 Iris-virginica\n", "146 5.0 1.9 Iris-virginica\n", "145 5.2 2.3 Iris-virginica\n", "144 5.7 2.5 Iris-virginica\n", "143 5.9 2.3 Iris-virginica\n", "142 5.1 1.9 Iris-virginica\n", "141 5.1 2.3 Iris-virginica\n", "140 5.6 2.4 Iris-virginica\n", "139 5.4 2.1 Iris-virginica\n", "138 4.8 1.8 Iris-virginica\n", "137 5.5 1.8 Iris-virginica\n", "136 5.6 2.4 Iris-virginica\n", "135 6.1 2.3 Iris-virginica\n", "134 5.6 1.4 Iris-virginica\n", "133 5.1 1.5 Iris-virginica\n", "132 5.6 2.2 Iris-virginica\n", "131 6.4 2.0 Iris-virginica\n", "130 6.1 1.9 Iris-virginica\n", "129 5.8 1.6 Iris-virginica\n", "128 5.6 2.1 Iris-virginica\n", "127 4.9 1.8 Iris-virginica\n", "126 4.8 1.8 Iris-virginica\n", "125 6.0 1.8 Iris-virginica\n", "124 5.7 2.1 Iris-virginica\n", "123 4.9 1.8 Iris-virginica\n", "122 6.7 2.0 Iris-virginica\n", "121 4.9 2.0 Iris-virginica\n", "120 5.7 2.3 Iris-virginica\n", ".. ... ... ...\n", "29 1.6 0.2 Iris-setosa\n", "28 1.4 0.2 Iris-setosa\n", "27 1.5 0.2 Iris-setosa\n", "26 1.6 0.4 Iris-setosa\n", "25 1.6 0.2 Iris-setosa\n", "24 1.9 0.2 Iris-setosa\n", "23 1.7 0.5 Iris-setosa\n", "22 1.0 0.2 Iris-setosa\n", "21 1.5 0.4 Iris-setosa\n", "20 1.7 0.2 Iris-setosa\n", "19 1.5 0.3 Iris-setosa\n", "18 1.7 0.3 Iris-setosa\n", "17 1.4 0.3 Iris-setosa\n", "16 1.3 0.4 Iris-setosa\n", "15 1.5 0.4 Iris-setosa\n", "14 1.2 0.2 Iris-setosa\n", "13 1.1 0.1 Iris-setosa\n", "12 1.4 0.1 Iris-setosa\n", "11 1.6 0.2 Iris-setosa\n", "10 1.5 0.2 Iris-setosa\n", "9 1.5 0.1 Iris-setosa\n", "8 1.4 0.2 Iris-setosa\n", "7 1.5 0.2 Iris-setosa\n", "6 1.4 0.3 Iris-setosa\n", "5 1.7 0.4 Iris-setosa\n", "4 1.4 0.2 Iris-setosa\n", "3 1.5 0.2 Iris-setosa\n", "2 1.3 0.2 Iris-setosa\n", "1 1.4 0.2 Iris-setosa\n", "0 1.4 0.2 Iris-setosa\n", "\n", "[150 rows x 3 columns]" ] }, "execution_count": 36, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.iloc[:,2:5]" ] }, { "cell_type": "code", "execution_count": 37, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "'Iris-setosa'" ] }, "execution_count": 37, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.iloc[149,4]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Boolean indexing! This (I think) is very cool." ] }, { "cell_type": "code", "execution_count": 73, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0 False\n", "1 False\n", "2 False\n", "3 False\n", "4 False\n", "5 False\n", "6 False\n", "7 False\n", "8 False\n", "9 False\n", "10 False\n", "11 False\n", "12 False\n", "13 False\n", "14 False\n", "15 False\n", "16 False\n", "17 False\n", "18 False\n", "19 False\n", "20 False\n", "21 False\n", "22 False\n", "23 False\n", "24 False\n", "25 False\n", "26 False\n", "27 False\n", "28 False\n", "29 False\n", " ... \n", "120 False\n", "121 False\n", "122 False\n", "123 True\n", "124 False\n", "125 True\n", "126 True\n", "127 True\n", "128 False\n", "129 False\n", "130 False\n", "131 False\n", "132 False\n", "133 False\n", "134 False\n", "135 False\n", "136 False\n", "137 True\n", "138 True\n", "139 False\n", "140 False\n", "141 False\n", "142 False\n", "143 False\n", "144 False\n", "145 False\n", "146 False\n", "147 False\n", "148 False\n", "149 True\n", "Name: PetalWidth, Length: 150, dtype: bool" ] }, "execution_count": 73, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.PetalWidth == 1.8" ] }, { "cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
SepalLengthSepalWidthPetalLengthPetalWidthName
1495.93.05.11.8Iris-virginica
1386.03.04.81.8Iris-virginica
1376.43.15.51.8Iris-virginica
1276.13.04.91.8Iris-virginica
1266.22.84.81.8Iris-virginica
1257.23.26.01.8Iris-virginica
1236.32.74.91.8Iris-virginica
1166.53.05.51.8Iris-virginica
1086.72.55.81.8Iris-virginica
1077.32.96.31.8Iris-virginica
1036.32.95.61.8Iris-virginica
705.93.24.81.8Iris-versicolor
\n", "
" ], "text/plain": [ " SepalLength SepalWidth PetalLength PetalWidth Name\n", "149 5.9 3.0 5.1 1.8 Iris-virginica\n", "138 6.0 3.0 4.8 1.8 Iris-virginica\n", "137 6.4 3.1 5.5 1.8 Iris-virginica\n", "127 6.1 3.0 4.9 1.8 Iris-virginica\n", "126 6.2 2.8 4.8 1.8 Iris-virginica\n", "125 7.2 3.2 6.0 1.8 Iris-virginica\n", "123 6.3 2.7 4.9 1.8 Iris-virginica\n", "116 6.5 3.0 5.5 1.8 Iris-virginica\n", "108 6.7 2.5 5.8 1.8 Iris-virginica\n", "107 7.3 2.9 6.3 1.8 Iris-virginica\n", "103 6.3 2.9 5.6 1.8 Iris-virginica\n", "70 5.9 3.2 4.8 1.8 Iris-versicolor" ] }, "execution_count": 38, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df[df.PetalWidth == 1.8]" ] }, { "cell_type": "code", "execution_count": 39, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
SepalLengthSepalWidthPetalLengthPetalWidthName
1495.93.05.11.8Iris-virginica
1486.23.45.42.3Iris-virginica
1476.53.05.22.0Iris-virginica
1466.32.55.01.9Iris-virginica
1456.73.05.22.3Iris-virginica
1446.73.35.72.5Iris-virginica
1436.83.25.92.3Iris-virginica
1425.82.75.11.9Iris-virginica
1416.93.15.12.3Iris-virginica
1406.73.15.62.4Iris-virginica
1396.93.15.42.1Iris-virginica
1386.03.04.81.8Iris-virginica
1376.43.15.51.8Iris-virginica
1366.33.45.62.4Iris-virginica
1357.73.06.12.3Iris-virginica
1346.12.65.61.4Iris-virginica
1336.32.85.11.5Iris-virginica
1326.42.85.62.2Iris-virginica
1317.93.86.42.0Iris-virginica
1307.42.86.11.9Iris-virginica
1297.23.05.81.6Iris-virginica
1286.42.85.62.1Iris-virginica
1276.13.04.91.8Iris-virginica
1266.22.84.81.8Iris-virginica
1257.23.26.01.8Iris-virginica
1246.73.35.72.1Iris-virginica
1236.32.74.91.8Iris-virginica
1227.72.86.72.0Iris-virginica
1215.62.84.92.0Iris-virginica
1206.93.25.72.3Iris-virginica
..................
795.72.63.51.0Iris-versicolor
786.02.94.51.5Iris-versicolor
776.73.05.01.7Iris-versicolor
766.82.84.81.4Iris-versicolor
756.63.04.41.4Iris-versicolor
746.42.94.31.3Iris-versicolor
736.12.84.71.2Iris-versicolor
726.32.54.91.5Iris-versicolor
716.12.84.01.3Iris-versicolor
705.93.24.81.8Iris-versicolor
695.62.53.91.1Iris-versicolor
686.22.24.51.5Iris-versicolor
675.82.74.11.0Iris-versicolor
665.63.04.51.5Iris-versicolor
656.73.14.41.4Iris-versicolor
645.62.93.61.3Iris-versicolor
636.12.94.71.4Iris-versicolor
626.02.24.01.0Iris-versicolor
615.93.04.21.5Iris-versicolor
605.02.03.51.0Iris-versicolor
595.22.73.91.4Iris-versicolor
586.62.94.61.3Iris-versicolor
574.92.43.31.0Iris-versicolor
566.33.34.71.6Iris-versicolor
555.72.84.51.3Iris-versicolor
546.52.84.61.5Iris-versicolor
535.52.34.01.3Iris-versicolor
526.93.14.91.5Iris-versicolor
516.43.24.51.5Iris-versicolor
507.03.24.71.4Iris-versicolor
\n", "

100 rows × 5 columns

\n", "
" ], "text/plain": [ " SepalLength SepalWidth PetalLength PetalWidth Name\n", "149 5.9 3.0 5.1 1.8 Iris-virginica\n", "148 6.2 3.4 5.4 2.3 Iris-virginica\n", "147 6.5 3.0 5.2 2.0 Iris-virginica\n", "146 6.3 2.5 5.0 1.9 Iris-virginica\n", "145 6.7 3.0 5.2 2.3 Iris-virginica\n", "144 6.7 3.3 5.7 2.5 Iris-virginica\n", "143 6.8 3.2 5.9 2.3 Iris-virginica\n", "142 5.8 2.7 5.1 1.9 Iris-virginica\n", "141 6.9 3.1 5.1 2.3 Iris-virginica\n", "140 6.7 3.1 5.6 2.4 Iris-virginica\n", "139 6.9 3.1 5.4 2.1 Iris-virginica\n", "138 6.0 3.0 4.8 1.8 Iris-virginica\n", "137 6.4 3.1 5.5 1.8 Iris-virginica\n", "136 6.3 3.4 5.6 2.4 Iris-virginica\n", "135 7.7 3.0 6.1 2.3 Iris-virginica\n", "134 6.1 2.6 5.6 1.4 Iris-virginica\n", "133 6.3 2.8 5.1 1.5 Iris-virginica\n", "132 6.4 2.8 5.6 2.2 Iris-virginica\n", "131 7.9 3.8 6.4 2.0 Iris-virginica\n", "130 7.4 2.8 6.1 1.9 Iris-virginica\n", "129 7.2 3.0 5.8 1.6 Iris-virginica\n", "128 6.4 2.8 5.6 2.1 Iris-virginica\n", "127 6.1 3.0 4.9 1.8 Iris-virginica\n", "126 6.2 2.8 4.8 1.8 Iris-virginica\n", "125 7.2 3.2 6.0 1.8 Iris-virginica\n", "124 6.7 3.3 5.7 2.1 Iris-virginica\n", "123 6.3 2.7 4.9 1.8 Iris-virginica\n", "122 7.7 2.8 6.7 2.0 Iris-virginica\n", "121 5.6 2.8 4.9 2.0 Iris-virginica\n", "120 6.9 3.2 5.7 2.3 Iris-virginica\n", ".. ... ... ... ... ...\n", "79 5.7 2.6 3.5 1.0 Iris-versicolor\n", "78 6.0 2.9 4.5 1.5 Iris-versicolor\n", "77 6.7 3.0 5.0 1.7 Iris-versicolor\n", "76 6.8 2.8 4.8 1.4 Iris-versicolor\n", "75 6.6 3.0 4.4 1.4 Iris-versicolor\n", "74 6.4 2.9 4.3 1.3 Iris-versicolor\n", "73 6.1 2.8 4.7 1.2 Iris-versicolor\n", "72 6.3 2.5 4.9 1.5 Iris-versicolor\n", "71 6.1 2.8 4.0 1.3 Iris-versicolor\n", "70 5.9 3.2 4.8 1.8 Iris-versicolor\n", "69 5.6 2.5 3.9 1.1 Iris-versicolor\n", "68 6.2 2.2 4.5 1.5 Iris-versicolor\n", "67 5.8 2.7 4.1 1.0 Iris-versicolor\n", "66 5.6 3.0 4.5 1.5 Iris-versicolor\n", "65 6.7 3.1 4.4 1.4 Iris-versicolor\n", "64 5.6 2.9 3.6 1.3 Iris-versicolor\n", "63 6.1 2.9 4.7 1.4 Iris-versicolor\n", "62 6.0 2.2 4.0 1.0 Iris-versicolor\n", "61 5.9 3.0 4.2 1.5 Iris-versicolor\n", "60 5.0 2.0 3.5 1.0 Iris-versicolor\n", "59 5.2 2.7 3.9 1.4 Iris-versicolor\n", "58 6.6 2.9 4.6 1.3 Iris-versicolor\n", "57 4.9 2.4 3.3 1.0 Iris-versicolor\n", "56 6.3 3.3 4.7 1.6 Iris-versicolor\n", "55 5.7 2.8 4.5 1.3 Iris-versicolor\n", "54 6.5 2.8 4.6 1.5 Iris-versicolor\n", "53 5.5 2.3 4.0 1.3 Iris-versicolor\n", "52 6.9 3.1 4.9 1.5 Iris-versicolor\n", "51 6.4 3.2 4.5 1.5 Iris-versicolor\n", "50 7.0 3.2 4.7 1.4 Iris-versicolor\n", "\n", "[100 rows x 5 columns]" ] }, "execution_count": 39, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df[df['Name'].isin(['Iris-virginica', 'Iris-versicolor'])]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Setting values using the index" ] }, { "cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "SepalLength 5.4\n", "SepalWidth 3.7\n", "PetalLength 1.5\n", "PetalWidth 0.2\n", "Name Iris-setosa\n", "Name: 10, dtype: object" ] }, "execution_count": 40, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.loc[10]" ] }, { "cell_type": "code", "execution_count": 41, "metadata": {}, "outputs": [], "source": [ "df.loc[10,'SepalLength'] = 123.456" ] }, { "cell_type": "code", "execution_count": 42, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "SepalLength 123.456\n", "SepalWidth 3.7\n", "PetalLength 1.5\n", "PetalWidth 0.2\n", "Name Iris-setosa\n", "Name: 10, dtype: object" ] }, "execution_count": 42, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.loc[10]" ] }, { "cell_type": "code", "execution_count": 43, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "SepalLength 123.456\n", "SepalWidth 3.7\n", "PetalLength 1.5\n", "PetalWidth 0.2\n", "Name Iris-setosa\n", "Name: 10, dtype: object" ] }, "execution_count": 43, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.iloc[139]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Why did I do iloc above?" ] }, { "cell_type": "code", "execution_count": 44, "metadata": {}, "outputs": [], "source": [ "df.iloc[139, 0] = 654.321" ] }, { "cell_type": "code", "execution_count": 81, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "SepalLength 654.321\n", "SepalWidth 3.1\n", "PetalLength 5.4\n", "PetalWidth 2.1\n", "Name Iris-virginica\n", "Name: 139, dtype: object" ] }, "execution_count": 81, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.iloc[139]" ] }, { "cell_type": "code", "execution_count": 82, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
SepalLengthSepalWidthPetalLengthPetalWidthName
05.1003.51.40.2Iris-setosa
14.9003.01.40.2Iris-setosa
24.7003.21.30.2Iris-setosa
34.6003.11.50.2Iris-setosa
45.0003.61.40.2Iris-setosa
55.4003.91.70.4Iris-setosa
64.6003.41.40.3Iris-setosa
75.0003.41.50.2Iris-setosa
84.4002.91.40.2Iris-setosa
94.9003.11.50.1Iris-setosa
10123.4563.71.50.2Iris-setosa
114.8003.41.60.2Iris-setosa
124.8003.01.40.1Iris-setosa
134.3003.01.10.1Iris-setosa
145.8004.01.20.2Iris-setosa
155.7004.41.50.4Iris-setosa
165.4003.91.30.4Iris-setosa
175.1003.51.40.3Iris-setosa
185.7003.81.70.3Iris-setosa
195.1003.81.50.3Iris-setosa
205.4003.41.70.2Iris-setosa
215.1003.71.50.4Iris-setosa
224.6003.61.00.2Iris-setosa
235.1003.31.70.5Iris-setosa
244.8003.41.90.2Iris-setosa
255.0003.01.60.2Iris-setosa
265.0003.41.60.4Iris-setosa
275.2003.51.50.2Iris-setosa
285.2003.41.40.2Iris-setosa
294.7003.21.60.2Iris-setosa
..................
1206.9003.25.72.3Iris-virginica
1215.6002.84.92.0Iris-virginica
1227.7002.86.72.0Iris-virginica
1236.3002.74.91.8Iris-virginica
1246.7003.35.72.1Iris-virginica
1257.2003.26.01.8Iris-virginica
1266.2002.84.81.8Iris-virginica
1276.1003.04.91.8Iris-virginica
1286.4002.85.62.1Iris-virginica
1297.2003.05.81.6Iris-virginica
1307.4002.86.11.9Iris-virginica
1317.9003.86.42.0Iris-virginica
1326.4002.85.62.2Iris-virginica
1336.3002.85.11.5Iris-virginica
1346.1002.65.61.4Iris-virginica
1357.7003.06.12.3Iris-virginica
1366.3003.45.62.4Iris-virginica
1376.4003.15.51.8Iris-virginica
1386.0003.04.81.8Iris-virginica
139654.3213.15.42.1Iris-virginica
1406.7003.15.62.4Iris-virginica
1416.9003.15.12.3Iris-virginica
1425.8002.75.11.9Iris-virginica
1436.8003.25.92.3Iris-virginica
1446.7003.35.72.5Iris-virginica
1456.7003.05.22.3Iris-virginica
1466.3002.55.01.9Iris-virginica
1476.5003.05.22.0Iris-virginica
1486.2003.45.42.3Iris-virginica
1495.9003.05.11.8Iris-virginica
\n", "

150 rows × 5 columns

\n", "
" ], "text/plain": [ " SepalLength SepalWidth PetalLength PetalWidth Name\n", "0 5.100 3.5 1.4 0.2 Iris-setosa\n", "1 4.900 3.0 1.4 0.2 Iris-setosa\n", "2 4.700 3.2 1.3 0.2 Iris-setosa\n", "3 4.600 3.1 1.5 0.2 Iris-setosa\n", "4 5.000 3.6 1.4 0.2 Iris-setosa\n", "5 5.400 3.9 1.7 0.4 Iris-setosa\n", "6 4.600 3.4 1.4 0.3 Iris-setosa\n", "7 5.000 3.4 1.5 0.2 Iris-setosa\n", "8 4.400 2.9 1.4 0.2 Iris-setosa\n", "9 4.900 3.1 1.5 0.1 Iris-setosa\n", "10 123.456 3.7 1.5 0.2 Iris-setosa\n", "11 4.800 3.4 1.6 0.2 Iris-setosa\n", "12 4.800 3.0 1.4 0.1 Iris-setosa\n", "13 4.300 3.0 1.1 0.1 Iris-setosa\n", "14 5.800 4.0 1.2 0.2 Iris-setosa\n", "15 5.700 4.4 1.5 0.4 Iris-setosa\n", "16 5.400 3.9 1.3 0.4 Iris-setosa\n", "17 5.100 3.5 1.4 0.3 Iris-setosa\n", "18 5.700 3.8 1.7 0.3 Iris-setosa\n", "19 5.100 3.8 1.5 0.3 Iris-setosa\n", "20 5.400 3.4 1.7 0.2 Iris-setosa\n", "21 5.100 3.7 1.5 0.4 Iris-setosa\n", "22 4.600 3.6 1.0 0.2 Iris-setosa\n", "23 5.100 3.3 1.7 0.5 Iris-setosa\n", "24 4.800 3.4 1.9 0.2 Iris-setosa\n", "25 5.000 3.0 1.6 0.2 Iris-setosa\n", "26 5.000 3.4 1.6 0.4 Iris-setosa\n", "27 5.200 3.5 1.5 0.2 Iris-setosa\n", "28 5.200 3.4 1.4 0.2 Iris-setosa\n", "29 4.700 3.2 1.6 0.2 Iris-setosa\n", ".. ... ... ... ... ...\n", "120 6.900 3.2 5.7 2.3 Iris-virginica\n", "121 5.600 2.8 4.9 2.0 Iris-virginica\n", "122 7.700 2.8 6.7 2.0 Iris-virginica\n", "123 6.300 2.7 4.9 1.8 Iris-virginica\n", "124 6.700 3.3 5.7 2.1 Iris-virginica\n", "125 7.200 3.2 6.0 1.8 Iris-virginica\n", "126 6.200 2.8 4.8 1.8 Iris-virginica\n", "127 6.100 3.0 4.9 1.8 Iris-virginica\n", "128 6.400 2.8 5.6 2.1 Iris-virginica\n", "129 7.200 3.0 5.8 1.6 Iris-virginica\n", "130 7.400 2.8 6.1 1.9 Iris-virginica\n", "131 7.900 3.8 6.4 2.0 Iris-virginica\n", "132 6.400 2.8 5.6 2.2 Iris-virginica\n", "133 6.300 2.8 5.1 1.5 Iris-virginica\n", "134 6.100 2.6 5.6 1.4 Iris-virginica\n", "135 7.700 3.0 6.1 2.3 Iris-virginica\n", "136 6.300 3.4 5.6 2.4 Iris-virginica\n", "137 6.400 3.1 5.5 1.8 Iris-virginica\n", "138 6.000 3.0 4.8 1.8 Iris-virginica\n", "139 654.321 3.1 5.4 2.1 Iris-virginica\n", "140 6.700 3.1 5.6 2.4 Iris-virginica\n", "141 6.900 3.1 5.1 2.3 Iris-virginica\n", "142 5.800 2.7 5.1 1.9 Iris-virginica\n", "143 6.800 3.2 5.9 2.3 Iris-virginica\n", "144 6.700 3.3 5.7 2.5 Iris-virginica\n", "145 6.700 3.0 5.2 2.3 Iris-virginica\n", "146 6.300 2.5 5.0 1.9 Iris-virginica\n", "147 6.500 3.0 5.2 2.0 Iris-virginica\n", "148 6.200 3.4 5.4 2.3 Iris-virginica\n", "149 5.900 3.0 5.1 1.8 Iris-virginica\n", "\n", "[150 rows x 5 columns]" ] }, "execution_count": 82, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python [conda env:anaconda3]", "language": "python", "name": "conda-env-anaconda3-py" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.6" } }, "nbformat": 4, "nbformat_minor": 1 }