Sensing 4: Vision

Many slides adapted from slides © R. Siegwart, Steve Seitz

Bookkeeping

2

Assignment I

Blackboard is open, assignment is up

Projects

- First deliverable on Tuesday Thursday (Wednesday night)
- Example posted
- Pay special attention to goals and milestones
- ◆ Reading: SNS intro to 4.3; 4.4; 4.5-4.5.2; 4.5.5
 - pg.: 195 208-212 212-215 227-234

Today

• Cameras, stereo vision, time of flight, structured light

Computer Vision

Applications of Computer Vis

Factory inspection

Surveillance

Reading license plates, checks, ZIP codes

Cameras

Autonomous driving,

robot navigation

Driver assistance (collision warning, lane departure warning, rear object detection)

Applications of Computer Vis

5

Assistive technologies

Entertainment (Sony EyeToy)

Movie special effects

Digital cameras (face detection for setting focus, Visual search exposure) http://www.kooaba.com/

Origins of Computer Vision

6

(a) Original picture.

(b) Differentiated picture.

L. G. Roberts, *Machine Perception of Three Dimensional Solids,* Ph.D. thesis, MIT Department of Electrical Engineering, 1963.

Disciplines Using Vision

The Camera

8

Parameters

- Light allowed in (aperture)
- Shutter speed
- Resolution
- Gain/Saturation
- Focus and focal depth
- Failure modes
 - Blue-to-red sensitivity
 - Cross-sensitivity
 - Dynamic range

How do we see the world?

object film

- Designing a camera
- ◆ Idea I: put a piece of film in front of an object
- Do we get a reasonable image?

Pinhole camera

object barrier film

- Add a barrier to block off most of the rays
- This reduces blurring
- The opening is known as the aperture

Pinhole Camera Model

Pinhole model:

- ◆ Captures pencil of rays all rays through a single point
- The point is called Center of Projection
- The image is formed on the Image Plane

Home-made pinhole camera

Why so blurry?

http://www.debevec.org/Pinhole/

Shrinking the aperture

- Why not make the aperture as small as possible?
 - Less light gets through (must increase the exposure)
 Differentiate affects
 - Diffraction effects...

Shrinking the aperture

Solution: adding a lens

- A lens focuses light onto the film
 - Rays passing through the center are not deviated

Solution: adding a lens

- A lens focuses light onto the film
 - Rays passing through the center are not deviated
 - All parallel rays converge to one point on a plane located at the focal length f

Range (Distance) Sensors

- Range sensors how far is robot from something?
 - Key element for localization and environment modeling
- Stereo
 - Humans; Bumblebee/Bb2
- Time-of-Flight
 - Laser
 - Sonar
 - Kinect 2
- Structured Light
 - Kinect

- Active

Distance Using Vision

Stereo Vision

- Two sensors (cameras)
- Known relative position and orientation

- Structure from motion:
 - Use a single moving camera
 - 3D structure and camera motion can be estimated

Stereo Vision

- Reconstruct a 3D scene
 Two images, two points of view
 - Action of the second se

- *b* = baseline: distance between optical centers of cameras
- f = focal length
- v-v' = disparity between views

Stereo Vision Accuracy

- Simplified: assume cameras are
 - Identical
 - Aligned on a horizontal axis

- b = baseline: distance between optical centers of cameras f = focal length
- v-v' = disparity between views
- Distance is *inversely* proportional to disparity
 - Closer objects can be measured more accurately
- ullet Disparity is proportional to b
 - For a given disparity error, the accuracy of the depth estimate increases with increasing baseline b
 - However, as b is increased, some objects may appear in one camera, but not in the other
- Increasing image resolution improves accuracy

Calibration and Alignment

- Two identical cameras do not exist in nature
- Aligning cameras perfectly on a horizontal axis is hard

- Need to estimate relative pose between cameras
 - Rotation and translation and since cameras are not identical, also
 - focal length, image center, radial distortion
- Epipolar rectification: compare two feature-rich images

Correspondence

22

Two cameras see slightly different scenes

- What points in one correspond to points in the other?
- Compare all points in image to all points in other image
- This image search can be computationally expensive, imperfect

Output: Disparity Map

23

- Find the correspondent points of all image pixels of the original images
- For each pair of conjugate points compute the disparity d = v-v'
- Output: disparity map

Left image

Right image

Disparity map

Disparity maps are usually visualized as grey-scale images. Objects that are closer to the camera appear lighter, those who are further appear darker.

Summary

- 1. Stereo camera calibration \rightarrow compute camera relative pose
 - Epipolar rectification \rightarrow align images
- 2. Search correspondences
- 3. Output: compute stereo triangulation or disparity map
- 4. Consider baseline and image resolution to compute accuracy!

Structured Light

25

What if you know what the light should look like?

Structured Light

- Eliminate correspondence problem by projecting known light on the scene
- Light perceived by camera
- Range to an illuminated point can then be determined from geometry

Microsoft Kinect

Range: Time-of-Flight

- Time-of-flight uses propagation speed of waves
 - Sound or electromagnetic
- Distance traveled by a wave is:

 $d = c \boldsymbol{\cdot} t$

30

d = distance traveled (round-trip) c = speed of wave propagation t = time of flight

Time-of-Flight

Time-of-Flight: Accuracy

• Sources of inaccuracy:

- Uncertainties about exact time of arrival of the reflected signal
- Inaccuracies in the time of flight measure (laser range sensors)
- Opening angle of transmitted beam (ultrasonic range sensors)
- Interaction with the target (surface, specular reflections)
- Variation of propagation speed
 - Propagation speed of sound: 0.3 m/ms
 - Propagation speed of of electromagnetic signals: 0.3 m/ns
 - One million times faster.
 - Laser range sensors expensive and delicate.
- Speed of mobile robot and target

Scanning Range Sensing

- Confidence in the range (phase estimate) is inversely proportional to the square of the received signal amplitude.
- Dark or distant objects \rightarrow worse estimates than closer brighter objects

Figure 4.11

34

(a) Schematic drawing of laser range sensor with rotating mirror; (b) Scanning range sensor from EPS Technologies Inc.; (c) Industrial 180 degree laser range sensor from Sick Inc., Germany

Example of Scanning

35

• Length of the lines through measurement points indicate uncertainty

Modern Time-of-Flight

