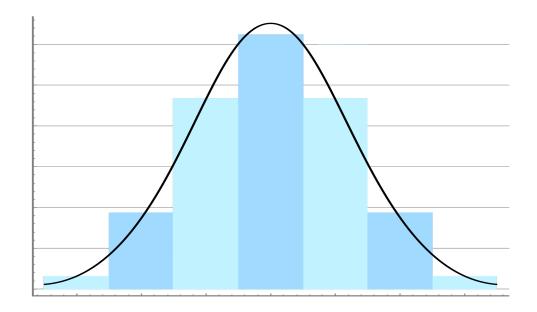
Sensing 3: Probability Review



Many slides adapted from:

Siegwart, Nourbakhsh and Scaramuzza, Autonomous Mobile Robots Thrun, Burgard and Fox, Probabilistic Robotics Michael S. Lewicki, Probability Theory 2007, Carnegie Mellon Russell and Norvig, Artificial Intelligence: A Modern Approach

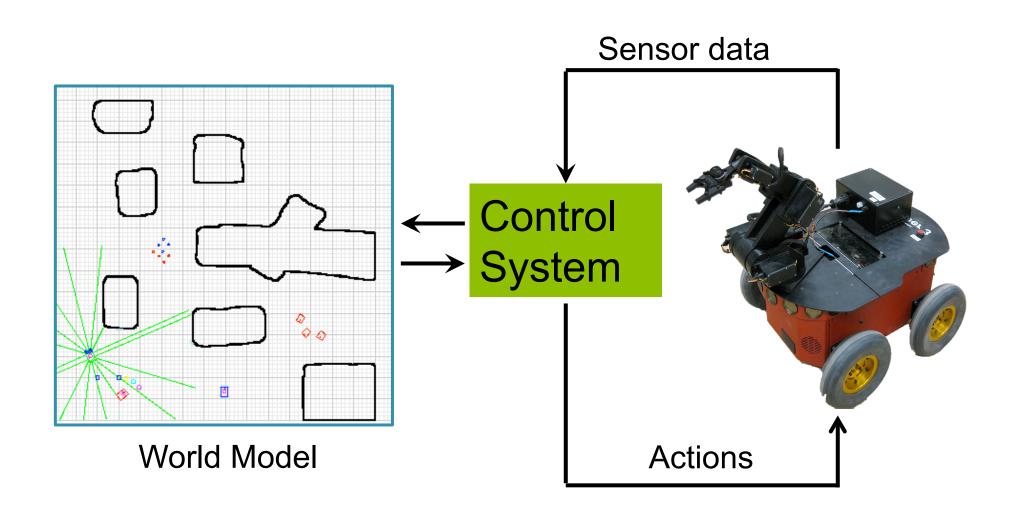
Bookkeeping

Quiz grades finalized, with regrades

- E-field detection; omni wheels (up/down top/bottom left/right)
- Grades
 - Check your current grade (But don't panic)
- Assignment I
 - Blackboard is open, assignment is up
- Projects
 - First deliverable on Tuesday
- Readings posted after class
 - Probability review; will be light reading unless you need it

High Level View

3

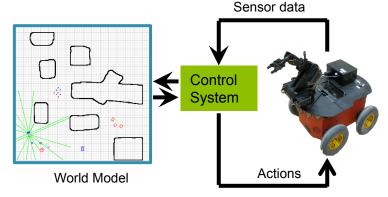


Uncertainty in Robotics

- Fundamentally, models are imperfect.
 - Sensors aren't perfect
 - Actuation isn't either
 - But you have to do something
- Probability as uncertainty
 - Probability theory can be applied to these problems
- Key idea: explicit representation of uncertainty using the calculus of probability theory

Perception = state estimation

Action = utility optimization



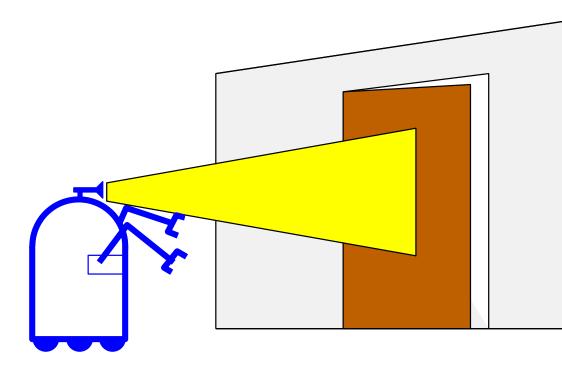
Error and Uncertainty

• Sensing is *always* related to uncertainty.

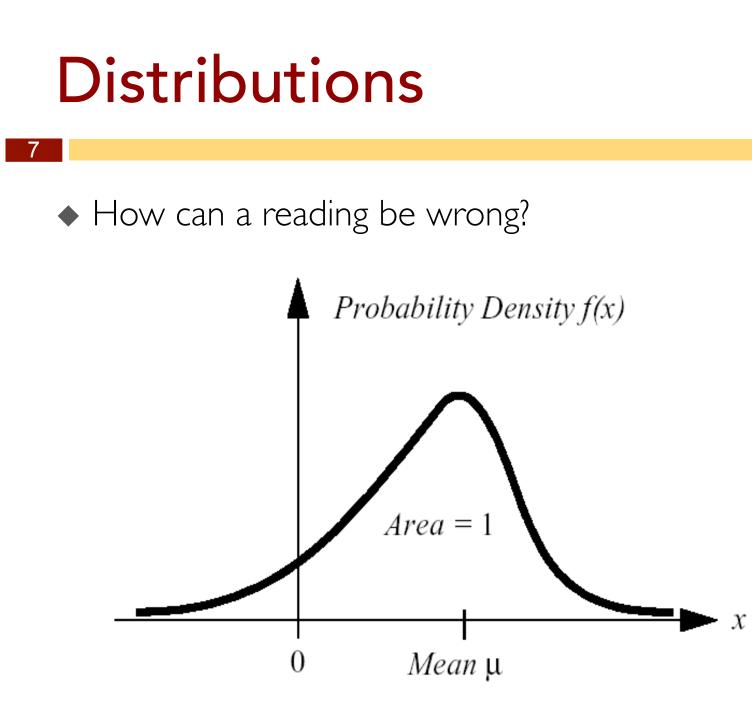
- What are the sources of uncertainties?
 - Blown-out camera; iffy rangefinder; skidding wheel; background noise; poor speech model; what else?
- How can uncertainties be represented / quantified
 - Deterministic vs. random error
- How do they propagate?
 - Uncertainty of a function of uncertain values?
 - How do uncertainties combine if different sensor reading are *fused*?

Example: State Estimation

- Is the door open?
 - Camera + edge detection says the door is not at right angles
 - Odometry says I'm 2.0 meters away from door frame
 - Depth sensor says I'm 2.0 meters away from door



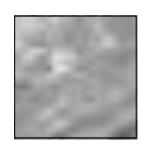
- Odometry very noisy; could be off by 20cm.
- This specific depth sensor is very good

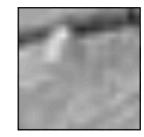


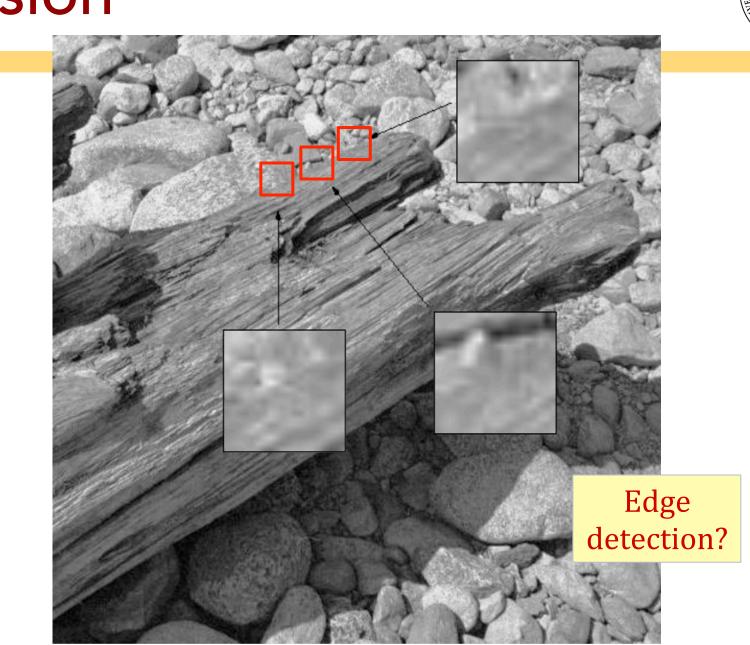
Vision

8

• What are we looking at?







Vision

9

Using Probability

- Making rational decisions under uncertainty
 - Probability
 - the precise representation of knowledge and uncertainty
 - Probability theory
 - How to optimally update your knowledge based on new information
 - Decision theory: probability theory + utility theory
 - How to use this information to achieve maximum expected utility
- Consider a bus schedule. What's the utility function?
 - A schedule says the bus comes at 8:05.
 Situation A: You have a class at 8:30.
 Situation B: You have a class at 8:30, and it's cold and raining.
 Situation C: You have a final exam at 8:30.

Discrete Random Variables

- $\bullet X$ denotes a random variable.
- X can take countable number of values in $\{x_1, x_2, ..., x_n\}$
- $P(X=x_i)$ or $P(x_i)$ or $Pr(x_i)$ is the probability that the random variable X takes on value x_i .
- $P(\cdot)$ is called its probability mass function.

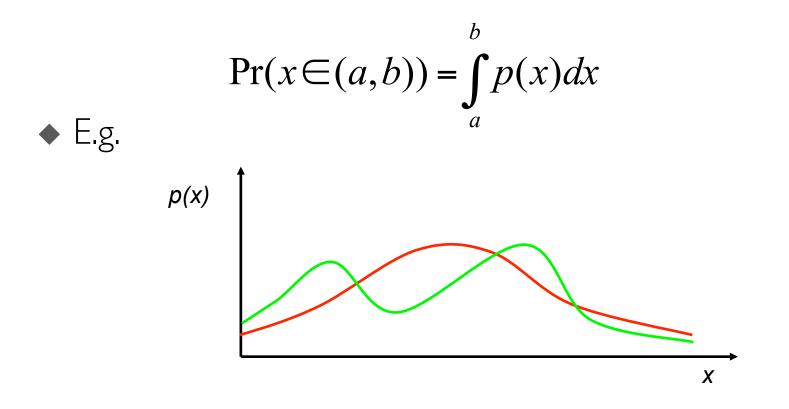
◆ E.g.

$$P(RoomType) = \langle 0.7, 0.2, 0.08, 0.02 \rangle$$

Continuous Random Variables

12

- \bullet X takes on values in the continuum.
- p(X=x), or p(x), is a probability density function.



Axioms of Probability

- \bullet Pr(A) denotes probability that proposition A is true.
- Axioms (Kolmogorov):

 $0 \le P(A) \le 1$

P(True) = 1 P(False) = 0

 $P(A \lor B) = P(A) + P(B) - P(A \land B)$

- Corollaries:
 - A single random variable must sum to one: $\sum P(D = d_i) = 1$

- The joint probability of a set of variables must also sum to 1
- If A and B are mutually exclusive: $P(A \lor B) = P(A) + P(B)$

Conditionality

14

- $\bullet P(B|A)$
 - Probability of event B given Event A

- aka -

- Event A has already happened,
 Now what is the chance of event B?
- $P(B \mid A)$ is the "Conditional Probability" of B given A

Rules of Probability

15

Conditional probability

$$P(A \mid B) = \frac{P(A \land B)}{P(B)}, \qquad P(B) > 0$$

Corollary: Bayes Law

P(B|A) P(A) = P(A and B) = P(A|B) P(B)

$$\Rightarrow P(B|A) = \frac{P(A|B) P(B)}{P(A)} = \frac{\text{likelihood} \bullet \text{prior}}{\text{evidence}}$$

Probability of an event based on conditions that may relate to that event

Bayes Bayes Bayes!

16

 Probability of an event based on conditions that may relate to that event

$$P(x, y) = P(x | y)P(y) = P(y | x)P(x)$$

$$\Rightarrow$$

$$P(x | y) = \frac{P(y | x) P(x)}{P(y)} = \frac{\text{likelihood } \cdot \text{prior}}{\text{evidence}}$$

Independence

 Two variables X,Y are independent when the probability of X is not related to the probability Y:

$$P(x|y) = P(x)$$

and
$$P(x \text{ and } y) = P(x) \cdot P(y)$$

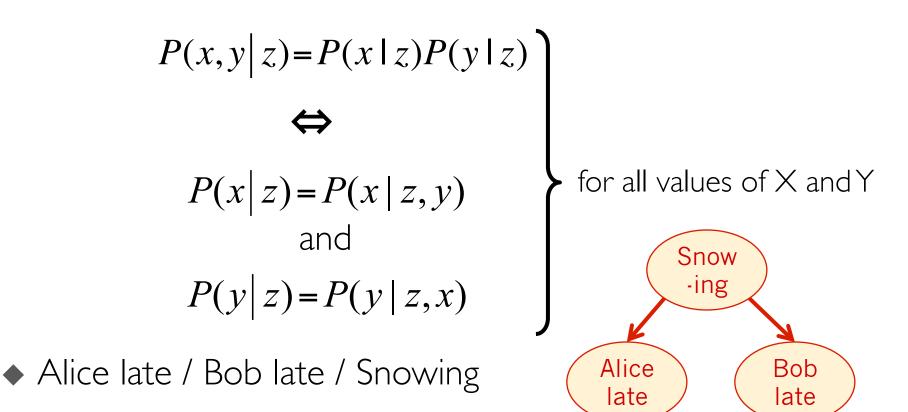
for all values of X and Y
Alice
late
Bob
late

Is Alice late to work? Is Bob late to work?

Conditional Dependence

8

 Two variables X,Y are conditionally dependent when P(X) and P(Y) each depend on a third factor, P(Z):



Bayes + Background Knowledge

- Probability of an event based on conditions that may relate to that event
- Example: Does Alice have cancer?
 - ♦ Alice is 65
 - If cancer is related to age, we can use that knowledge to improve accuracy of our assessment using Bayes

$$P(x \mid y, z) = \frac{P(y \mid x, z) P(x \mid z)}{P(y \mid z)}$$

Conditioning

Total probability:

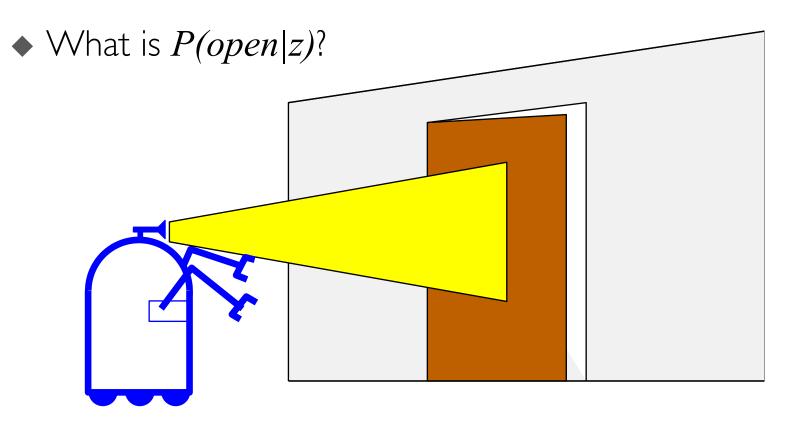
20

$$P(x) = \int P(x, z) dz$$
$$P(x) = \int P(x \mid z) P(z) dz$$
$$P(x \mid y) = \int P(x \mid y, z) P(z) dz$$

State Estimation

• Suppose a robot obtains measurement z

• Z = vision + edge detection



Casual (Observed) Priors

- ♦ P(open|z) is diagnostic.
- P(z|open) is causal.
- Often **causal** knowledge is easier to obtain.
- Bayes rule allows us to use causal knowledge:

$$P(open \mid z) = \frac{P(z \mid open)P(open)}{P(z)}$$

Example

23

Measurement *z* increases probability that the door is open.

Combining Evidence

- Suppose our robot obtains another observation z_2 .
- How can we integrate this new information?
- More generally, how can we estimate $P(x | z_1...z_n)$?

Recursive Bayesian Updating

$$P(x \mid z_1,...,z_n) = \frac{P(z_n \mid x, z_1,..., z_{n-1}) P(x \mid z_1,...,z_{n-1})}{P(z_n \mid z_1,...,z_{n-1})}$$

Markov assumption: z_n is independent of z_1, \dots, z_{n-1} if we know x

$$P(x \mid z_1, ..., z_n) = \frac{P(z_n \mid x) P(x \mid z_1, ..., z_{n-1})}{P(z_n \mid z_1, ..., z_{n-1})}$$

= $\eta P(z_n \mid x) P(x \mid z_1, ..., z_{n-1})$
= $\eta_{1...n} \prod_{i=1...n} P(z_i \mid x) P(x)$

25

P(I

B given A

Second Measurement

• $P(z_2|open) = 0.5$ $P(z_2|\neg open) = 0.6$

•
$$P(open|z_l)=2/3$$

26

$$P(open | z_2, z_1) = \frac{P(z_2 | open) P(open | z_1)}{P(z_2 | open) P(open | z_1) + P(z_2 | \neg open) P(\neg open | z_1)}$$
$$= \frac{\frac{1}{2} \cdot \frac{2}{3}}{\frac{1}{2} \cdot \frac{2}{3} + \frac{3}{5} \cdot \frac{1}{3}} = \frac{5}{8} = 0.625$$

Measurement *z* decreases probability that the door is open.