Sensing 3;
Probability Review

Many slides adapted from:

Siegwart, Nourbakhsh and Scaramuzza, Autonomous Mobile Robots
Thrun, Burgard and Fox, Probabilistic Robotics

Michael S. Lewicki, Probability Theory 2007, Carnegie Mellon
Russell and Norvig, Atrtificial Intelligence: A Modern Approach



Bookkeeping

¢ Quiz grades finalized, with regrades
¢ [E-field detection; omni wheels (up/down top/bottom left/right)

¢ Grades
¢ Check your current grade (But don't panic)

¢ Assignment |
¢ Blackboard is open, assignment Is up

¢ Projects
¢ rirst deliverable on Tuesday

¢ Readings posted after class
¢ Probability review; will be light reading unless you need it
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Uncertainty in Robotics

¢ Fundamentally, models are imperfect.
¢ Sensors aren’t perfect = \Lsensordata
¢ Actuation isn't either \ O%ﬁ < ’
¢ But you have to do something []D > [Sem

¢ Probability as uncertainty o MOE acions A

¢ Probability theory can be applied to these problems

¢ Key idea: explicit representation of uncertainty using
the calculus of probability theory

Perception = state estimation
Action = utility optimization



Error and Uncertainty

# Sensing Is always related to uncertainty.

¢ What are the sources of uncertainties?

¢ Blown-out camerg; iffy rangefinder; skidding wheel;
background noise; poor speech model; what else!

¢ How can uncertainties be represented / quantified
¢ Deterministic vs. random error

¢ How do they propagate!
¢ Uncertainty of a function of uncertain values?

¢ How do uncertainties combine if different sensor reading
are fused!



Example: State Estimation

¢ |s the door open!
¢ Camera + edge detection says the door is not at right angles
¢ Odometry says I'm 2.0 meters away from door frame
¢ Depth sensor says I'm 2.0 meters away from door

Edge detection pretty
good indoors?

* Odometry very noisy;
could be off by 20cm.

» This specific depth
sensor is very good




Distributions

¢ How can a reading be wrong!

A Probability Density f(x)

Area =1

i Y
0 Mean 1



Vision
| 8 |

¢ What are we looking at?







Using Probability

¢ Making rational decisions under uncertainty
¢ Probability
¢ the precise representation of knowledge and uncertainty
¢ Probability theory

¢ How to optimally update your knowledge based on new information

¢ Decision theory: probability theory + utility theory
¢ How to use this information to achieve maximum expected utility

¢ Consider a bus schedule.What's the utility function?

¢ A schedule says the bus comes at 8:05.
Situation A: You have a class at 8:30.
Situation B: You have a class at 8:30, and it's cold and raining.
Situation C: You have a final exam at 8:30.



Discrete Random Variables &

¢ X denotes a random variable.

\1\79 = g/

¢ X can take countable number of values in {x,, x,, ..., x,}

.., n

¢ P(X=x,) or P(x,) or Pr(x,) is the probabllity that the
random variable X takes on value x..

¢ P(-) s called its probability mass function.

oLy

P(RoomType) =(0.7,0.2,0.08,0.02)
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Continuous Random Variables

& X takes on values In the continuum.

¢ p(X=x), or p(x),is a probability density function.

Pr(xE(a,b)) = f p(x)dx
¢ Ego ¢

o) |

TN ‘




Axioms of Probability

¢ Pr(A) denotes probabllity that proposition A is true.

¢ Axioms (Kolmogorov):

O<P(A)=<1

P(True)=1 P(False)=0

P(Av B)=P(A)+P(B)-P(AAB)
¢ Corollaries:

n
¢ A single random variable must sum to one: EP(D =d.)=1
i=1

¢ The joint probability of a set of variables must also sum to |

¢ If A and B are mutually exclusive: P(A v B) = P(A) + P(B)



Conditionality

o P(B|A)
¢ Probabllity of event B given Event A
- aka -

¢ Event A has already happened,

Now what is the chance of event B!

¢ P(B | A) is the “"Conditional Probabllity” of B given A



Rules of Probability

¢ Conditional probability

P(AnB)
P(B)

P(A|B) = P(B)>0

¢ Corollary: Bayes Law

P(B|4) P(A) = P(4 and B) = P(4|B) P(B)

P(A|B) P(B) _likelihood e prior
P(A) evidence

= P(B|A) =

Probability of an event based on
conditions that may relate to that event



Bayes Bayes Bayes!

¢ Probability of an event based on conditions that may
relate to that event

P(x,y)=P(x1y)P(y)=P(ylx)P(x)

=

P(ylx) P(x) likelihood - prior

P(x|y)=
( ‘y) P(y) evidence




Independence
| 17

¢ [wo variables XY are independent when the
probability of X is not related to the probability Y:

P(x|y) = P(x)

and

P(x and y) = P(x) - P(y) )

\ for all values of X andY

Alice Bob
late late

¢ Is Alice late to work! |s Bob late to work?




Conditional Dependence

¢ Iwo variables X,Y are conditionally dependent when
P(X) and P(Y) each depend on a third factor; P(£):

2)=P(x12)P(y1z)"
=

P(x‘ Z)=P(x | Z,y) > for all values of X andY
and

P(y|z)=P(y|z,x)

¢ Alice late / Bob late / Snowing

P(x,y




Bayes + Background Knowledge

¢ Probability of an event based on conditions that may
relate to that event

¢ Example: Does Alice have cancer?
¢ Alice is 65

® If cancer is related to age, we can use that knowledge to
Improve accuracy of our assessment using Bayes

P(y|x,z) P(x|z)

P =05




Conditioning

¢ Jotal probability:
P(x) =fP(x, z)dz
P(x) =fP(x | 2)P(z2)dz

P(x ‘ ») =fP(x ' y,z)P(z) dz



State Estimation

¢ Suppose a robot obtains measurement z
¢ Z = vision + edge detection

¢ What is P(open|z)?/




Casual (Observed) Priors

¢ P(open|z) is diagnostic.

¢ P(zlopen) is causal.

¢ Often causal Regwledge is easier to obtain.

¢ Bayes rule allows us tsuse causal knowledge:

count frequencies!

P(z|open)P(open)
P(z)

P(open|z) =



Example
¢ P(zlopen) = 0.6 P(z|-open) = 0.3
¢ P(open) = P(-open) = 0.5

P(z|open)P(open)
P(z|open)p(open)+ P(z | —open) p(—open)
0.6-0.5 2

P(open | z) = =—=0.67
(Open | 2) = 0530305 3

P(open|z) =

Measurement z increases
probability that the door is open.



Combining Evidence

¢ Suppose our robot obtains another observation z,,
¢ How can we integrate this new information!?

¢ More generally, how can we estimate
P(x|z,...z,)!



Recursive Bayesian Updating

P(zn|x,z1,...,20-1) P(x | 21,...,2n-1
P(x|zi,...,zn) = (20| %, 21,0020 -1) PAX 21,0020 -1)
P(anZl,...,Zn—l)
Markov assumption: z, is independent of z,,...,z,_; if we know x

P(zn|x) P(x|z1,...,20-1)
P(Zn|Zl,...,Zn—1)

=1 P(zn|x) P(x|z1,...,2n-1)

P(B|A) = | [ P(zi]%) P(x)
probability of i=1.0n
Bgven A

P(X|Zl,...,Zn) =




Second Measurement

¢ P(z,lopen) = 0.5 P(z,|-open) = 0.6
¢ P(open|z,)=2/3

P(z, |open) P(open| z,)

P(open|z,,z)) =
P(z, |open) P(open|z,)+ P(z, | ~open) P(—open | z,)

12

= > = 0.625
8

3
1 31
IR} + e
2 53
Measurement z decreases
probability that the door is open.



