Sensing 1 Intro to Sensors

Many slides adapted from slides © R. Siegwart, ETH Zürich – Autonomous Systems Laboratory

Bookkeeping

2

Today

- Quiz
- Assignment 1 posted from class schedyle
- Group meetings well underway
- Sensors and characterization
- Next time
 - Representing uncertainty
 - Remaining sensors
 - Cameras pt. I

◆ Read SNS 4.2.1 – 4.2.3 (p. 142-159)

Quiz

3

♦ All collected at once

- Allowing 15 minutes (for calibration)
 - When I say stop, please do.
- Will be returned Thursday
 - ◆ 24-hour cool-off period for questions

Classification of Sensors

Proprioceptive sensors

- Measure values internally to the system (robot),
- Examples: motor speed, wheel load, heading, battery status
- Exteroceptive sensors
 - Retrieve information from the robot's environment
 - Examples: distances to objects, intensity of ambient light

Classification of Sensors

Passive sensors

5

- energy coming for the environment
- Active sensors
 - emit their proper energy and measure the reaction
 - better performance, but some influence on envrionment

Classification of Sensors

Incremental sensors

- Reports an incremental change (up/down, warmer/cooler)
- Does not know starting state when powered up
- Requires calibration
- Absolute sensors
 - unambiguously reports its state
 - Within a known scale or range
 - When powered up, reports state
 - No need for any reference information

General Classification (1)

7

General classification	Sensor	PC or	A or P
(typical use)	Sensor System	EC	
Tactile sensors	Contact switches, bumpers	EC	P
(detection of physical contact or	Optical barriers	EC	A
closeness; security switches)	Noncontact proximity sensors	EC	A
Wheel/motor sensors (wheel/motor speed and position)	Brush encoders Potentiometers Synchros, resolvers Optical encoders Magnetic encoders Inductive encoders Capacitive encoders	PC PC PC PC PC PC PC	P P A A A A A
Heading sensors	Compass	EC	P
(orientation of the robot in relation to	Gyroscopes	PC	P
a fixed reference frame)	Inclinometers	EC	A/P

A, active; P, passive; P/A, passive/active; PC, proprioceptive; EC, exteroceptive.

Adapted from © R. Siegwart, ETH Zürich – ASL

General Classification (2)

General classification (typical use)	Sensor Sensor System	PC or EC	A or P
Ground-based beacons (localization in a fixed reference frame)	GPS Active optical or RF beacons Active ultrasonic beacons Reflective beacons	EC EC EC EC	A A A A
Active ranging (reflectivity, time-of-flight, and geo- metric triangulation)	Reflectivity sensors Ultrasonic sensor Laser rangefinder Optical triangulation (1D) Structured light (2D)	EC EC EC EC EC	A A A A
Motion/speed sensors (speed relative to fixed or moving objects)	Doppler radar Doppler sound	EC EC	A A
Vision-based sensors (visual ranging, whole-image analy- sis, segmentation, object recognition)	CCD/CMOS camera(s) Visual ranging packages Object tracking packages	EC	Р

Adapted from © R. Siegwart, ETH Zürich – ASL

Range and Resolution

9

Range

- Upper limit, lower limit
- For a rotation sensor, range is .?

Resolution

- Minimum measurable difference between two values
- Usually: lower limit of dynamic range = resolution
- For digital sensors it is usually the A/D resolution.
 - ◆ e.g. 5V / 255 (8 bit)

Adapted from © R. Siegwart, ETH Zürich – ASL

Linearity and Bandwidth

. . .

- Linearity
 - variation of output signal as function of the input signal
 - linearity is less important when signal is after treated with a computer
- Bandwidth or Frequency
 - the speed with which a sensor can provide a stream of readings
 - usually there is an upper limit depending on the sensor and the sampling rate
 - Lower limit is also possible, e.g. acceleration sensor

Sensitivity

Characteristics that are especially relevant for real world environments

- Sensitivity
 - How much change in world affects change in sensor readings
 - Ratio of output change to input change
 - High sensitivity often correlated to high cross-sensitivity

Cross-sensitivity

- Sensitivity to environmental parameters unrelated to target parameters
- In a real world environment, a sensor has very often high sensitivity to confounding environmental changes
 - Example: Illumination