Cognition and Control

Bookkeeping

- Quiz 4
 - ♦ Is up
- ♦ HW 4 timing
- ◆ HW 5 team participation
 - ◆ NEXT week
- ◆ Today: a very fast overview of some really hard topics

Autonomy Intelligently, self-sufficiently, and safely perform tasks Without human control / intervention Learn about environment and tasks Adapt to changing situations Make and execute decisions How?

Intelligent Action Needs...

5

- ◆ Knowledge Representation
- ◆ Search
- Planning
- ◆ Learning
- ◆ Inference

Knowledge Representation

- ◆ What does a robot need to know?
- What would it be useful for a robot to know?

- ◆ Background Knowledge
- ◆ Task-Specific Knowledge
- ◆ Explicit vs. Implicit Knowledge
- ◆ Representation Choices
 - ◆ Probabilistic?
 - ♦ Human-understandable?

KR: Approaches

7

- ◆ Hand-coded knowledge
 - E.g., maps, object recognition, task descriptions, ...
- ◆ Machine learning
 - ◆ Beforehand
 - On-the-Fly
- ◆ Representation choices driven by...

- Requirements
- Our limited abilities

Planning

- ◆ What does a robot need to plan?
- Motion
 - ◆ Mobility: where am I going?
 - ◆ Manipulation: how do I move myself?

- ◆ Tasks
 - ◆ Low-level: pick up this piece
 - ◆ High-level: win this chess game
- ♦ Steps to Goals
- ◆ Step Ordering

Planning: Approaches

q

- ◆ Explicit plan space
 - Rule-based
 - ◆ Probabilistic
 - ◆ Ordered (scripted)
- ◆ Implicit plan space
 - ◆ Learned task performance
 - ◆ Learning from demonstration
 - ◆ Reinforcement learning
 - ◆ Procedural planning
- Non-planned (rigid) behavior

Learning Why do learning? Hard to program tasks More effective performance

- ◆ Flexibility and autonomy
- What can be learned?
 - Previously unknown environment, objects, etc.
 - Previously unknown tasks
 - Background knowledge
- Machine Learning Approaches

Learning: Approaches

11

- ◆ Machine Learning
 - ◆ Approaches: Learning from demonstration, reinforcement learning, real-time search, statistical model-building, feature extraction, ensemble learning, active learning, lifelong learning, reading-based learning, learning to read, . . . ✓
- ◆ Fundamental concept: data-driven learning

Inference

- ◆ What is inference?
- ♦ When?
 - During planning
 - During execution
- ♦ Why?
 - ◆ Data integration
 - Higher-level ideas
 - ◆ Find applications of rules
- ◆ Deduction, Induction, Abduction

Search

- KnowledgeRepresentation
 - Which bit of knowledge?
- Planning
 - ♦ What rules to apply?
 - Of many steps / paths / subgoals, which is best? In what order?
 - ♦ What is the goal?

- ◆ Inference
 - ♦ What rules to apply?
 - ♦ What form to apply?
 - ◆ Truth maintenance
- ◆ Learning
 - ◆ Usually NP-complete
 - Algorithms and learning methods