Probability & Localization where am I (most likely)?

Representation Review

- ◆ Characterizing maps
 - ◆ Discrete vs. continuous
 - ◆ Geometric vs. topological
 - ◆ Semantically labeled vs. unlabeled
- Characterizing beliefs (location)
 - ◆ Discrete vs. continuous
 - Single vs. multiple hypothesis
 - ◆ Point, bounding box, probability function

Current Challenges

- ◆ Real world is dynamic
- ◆ Perception is still a major challenge
 - ◆ Error prone
 - ◆ Extraction of useful information difficult
- ◆ Traversal of open space
- ◆ How to build up topology (boundaries of nodes)
- ◆ Sensor fusion
- **♦** ...

Markov ⇔ Kalman Filter Localization

- ◆ Markov localization
 - Localization starting from any unknown position
 - Recovers from ambiguous situation.
 - Update the probability of all positions within the whole state space at any time
 - Requires a discrete representation of the space (grid)
 - Memory and calculation power very important
 - ◆ Cell size matters!

- ◆ Kalman filter localization
 - ◆ Tracks robot
 - ◆ Inherently precise, efficient.
 - If uncertainty becomes too large, Kalman filter will fail and the position is definitively lost
 - e.g. collision with an object

Markov Localization (1)

12

- Markov localization: explicit, discrete representation for probability of each position in the state space
- ◆ Usually represents environment as:
 - Grid or
 - ◆ Topological graph
 - ...with finite number of possible states (positions).
- During each update, the probability for each state (element) of the entire space is updated

Markov Localization (2)

13

- ◆ P(A): Probability that A is true.
 - Example:

 $p(r_t = 1)$: probability that the robot r is at position 1 at time t

- ◆ Compute the probability of each robot position given
 - ◆ Actions and
 - Sensor readings
- ◆ P(A|B): Conditional probability of A, given that we know B.
 - Example:

 $p(r_{t} = l \mid i_{t})$: probability robot is at position l given sensor input i_{t}

Markov Localization (3)

14

◆ Product rule:

$$p(A \wedge B) = p(A|B)p(B)$$

$$p(A \wedge B) = p(B|A)p(A)$$

◆ Bayes rule:

$$p(A|B) = \frac{p(B|A)p(A)}{p(B)}$$

Markov Localization (4)

- Bayes rule: $p(A|B) = \frac{p(B|A)p(A)}{p(B)}$
 - ◆ Map from belief state and sensor input to a refined belief state:

$$p(l|i) = \frac{p(i|l)p(l)}{p(i)}$$

- p(l): belief state before perceptual update process
- ◆ p(i | I): probability to get measurement i when at position I
 - ◆ Consult map
 - ♦ Identify probability of a sensor reading for each possible position
- p(i): normalization factor so that sum over all I for L equals 1.

Markov Localization (5)

- Bayes rule: $p(A|B) = \frac{p(B|A)p(A)}{p(B)}$
 - ◆ Map from a belief state and a action to new belief state:

$$p(l_t|o_t) = \int p(l_t|l_{t-1}, o_t) p(l_{t-1}) dl_{t-1}$$

- Summing over all possible ways in which the robot may have reached I.
- Markov assumption: Update only depends on previous state and its most recent actions and perception.

How to Get a Map

1. By Hand

2. Automatically: Map Building

The robot learns its environment

Motivation:

- by hand: hard and costly
- dynamically changing environment
- different look due to different perception

- 3. Basic Requirements of a Map:
 - > a way to incorporate newly sensed information into the existing world
 - information and procedures for estimating the robot's position
 - information to do path planning and other navigation task (e.g. obstacle avoidance)
- · Quality of a map
 - > topological correctness
 - metrical correctness
 - Predictability
- · Most environments are a mixture of predictable and unpredictable features → hybrid approach

model-based vs. behaviour-based

Challenges

1. Map Maintaining: Keeping track of changes in the environment

disappearing

- e.g. measure of belief of each environment feature

2. Representation and Reduction of Uncertainty

position of robot -> position of wall

position of wall -> position of robot

- · probability densities for feature positions
- · additional exploration strategies

Dynamic Environments

- ◆ Dynamical changes require continuous mapping
- ◆ If extraction of high-level features would be possible, the mapping in dynamic environments would become significantly more straightforward.
 - e.g. difference between human and wall
 - Environment modeling is a key factor for robustness

