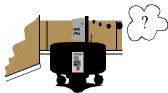

Localization where am I? (again?)

Bookkeeping

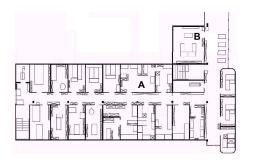
- ◆ Assignment 3
 - ◆ Comments?
- ♦ Next Reading: none
 - ◆ Unless you are behind; catch up
- ◆ Today
 - ◆ Knowledge Representation
 - Maps
 - Belief states
- Upcoming
 - ◆ Grades


The last band of color indicates the snake's tolerance for being held before biting.

Localization Review (1)

3

- ◆ What is localization?
 - Figuring out location wrt. a model of the world
- ◆ What are the two purely proprioceptive approaches?
 - Odometry: belief about motion only
 - Wheel encoders, mostly
 - ♦ Dead reckoning: belief about motion + heading sensors

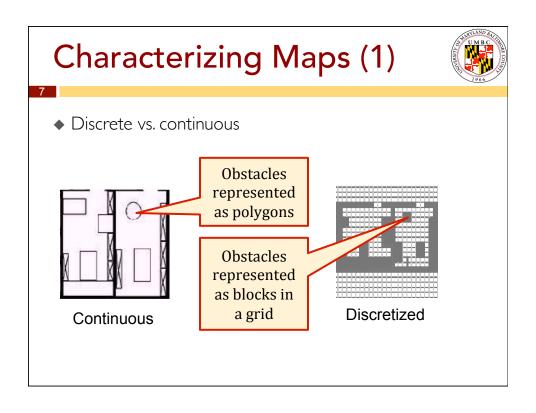


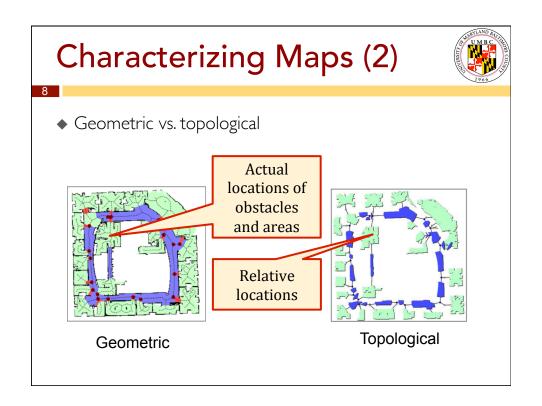
Localization Review (2)

- What is sensor aliasing?
 - ♦ Different locations giving the same sensor readings
- ◆ What is behavior-based navigation?
 - Navigating without localizing

Belief Representations

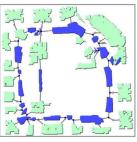
5


- ◆ (Model of) the map or environment
 - Discrete vs. continuous
 - Probabilistic vs. labeled
 - Geometric vs. topographical vs. semantic
- ◆ Beliefs about the robot's state or location
 - Discrete vs. continuous
 - Probabilistic vs. bounded vs. point
 - Single vs. multiple hypotheses
- Paths
 - Consecutive vs. kidnapped

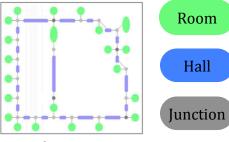

Design decisions: based on storage efficiency, reasoning speed, sensor capability, intended task, ...

Map Representations

- ◆ How precise does it have to be?
 - ◆ To accomplish what?
- ♦ What types of features are represented?
 - Depends on robot's sensors
 - ◆ If the robot can't see it, no point storing it
 - ♦ How much processing power do we have?
- What characteristics does it have?

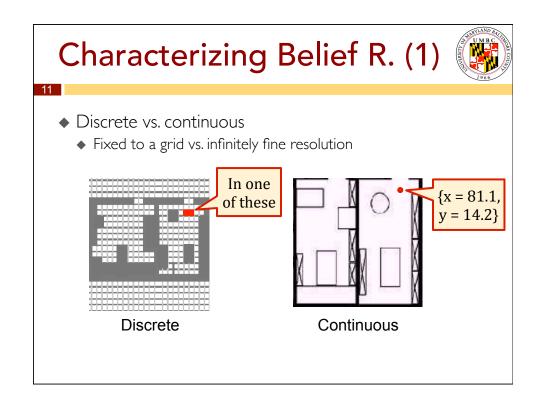


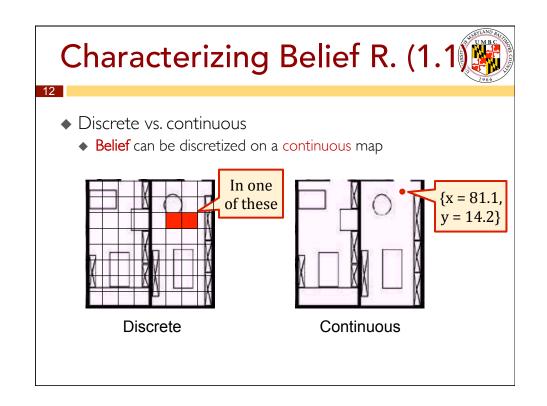
Characterizing Maps (3)



9

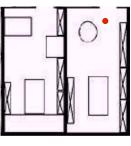
- ◆ Semantically labeled
 - ◆ Example: semantically labeled topological map

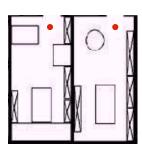



Semantic

Location (Belief) Representation

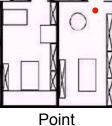
- ◆ What characteristics does it have?
- Discrete vs. continuous
 - Fixed to a grid, or anywhere?
- ◆ Single vs. multiple hypotheses
 - At any given time, how many possible locations are being considered?
- ◆ Probabilistic vs. bounded vs. point
 - ◆ The first two are multiple-hypothesis

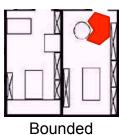


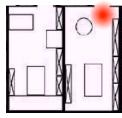

Characterizing Belief R. (2)

◆ Single hypothesis vs. multiple hypothesis

Single

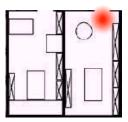

Multiple

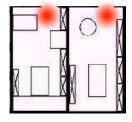

Characterizing Belief R. (3)

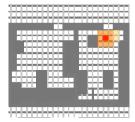

14

◆ Probabilistic vs. bounded vs. point

Polygon


Probabilistic


- ◆ You are here
- Somewhere in here (undifferentiated)
- Spread of likelihood

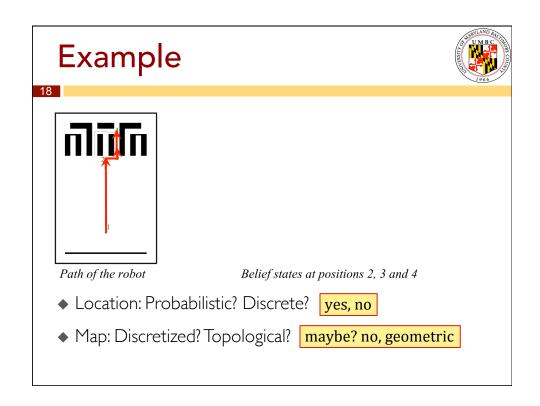

Probability & Combinations

◆ Single or multiple, discrete or continuous

Single Hypothesis

Multiple Hypothesis

Discrete


◆ Point: these are orthogonal choices

Belief Representation

- ◆ a) Continuous map with single hypothesis
- ♦ b) Continuous map with multiple hypothesis
- ♦ d) Discretized map with probability distribution
- d) Discretized topological map with probability distribution

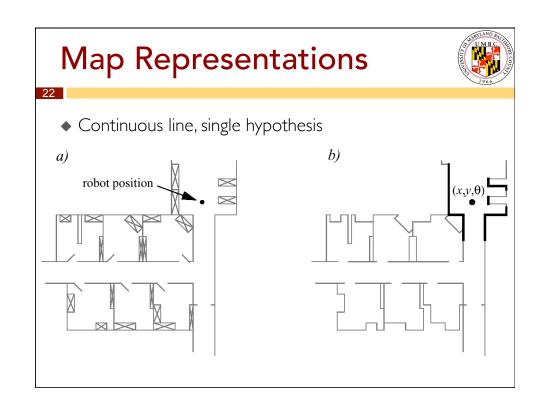
Belief Repr position x • a) Continuous map probability P with single hypothesis ♦ b) Continuous map with multiple hypothesis probability P ♦ d) Discretized map with probability distribution ◆ d) Discretized probability P topological map with probability distribution

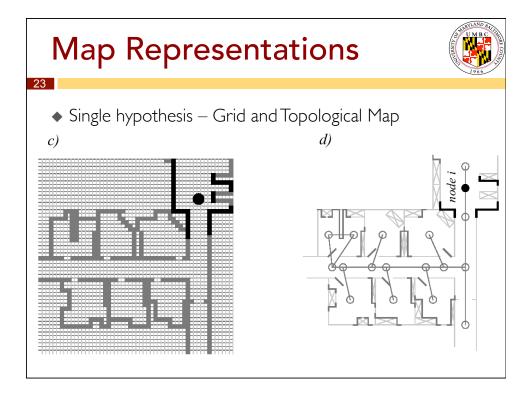
The Environment

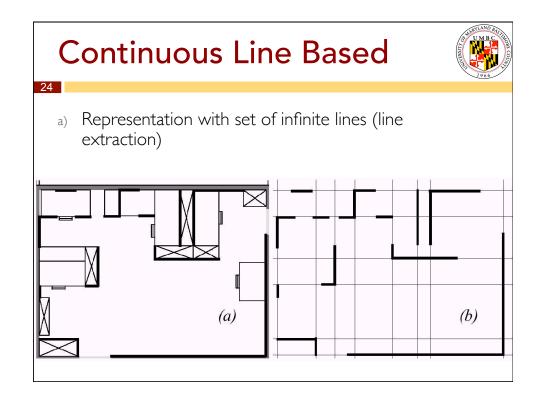
19

- ◆ Can contain:
 - ◆ Static or dynamic obstacles
 - Features (e.g., doors, floor tiles)
- ◆ Can be semantically labeled
- ◆ Environment Representation
 - ♦ Continuous Metric $\rightarrow \{x,y,\theta\}$
 - ◆ Discrete Metric
 → metric grid (eg, sq. D76)
 - ◆ Discrete Topological
 → topological grid

The Environment: Features

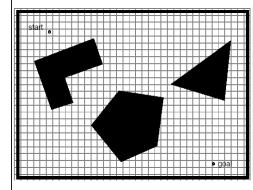

to get

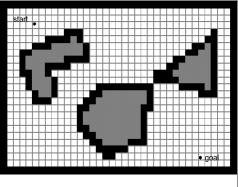

- ◆ Raw sensor data (ex.: laser range, grayscale images)
 - ◆ Lots of data, low distinctiveness (per reading)
 - ◆ Uses all acquired information
- ◆ Low level features (ex.: line extraction)
 - Some data, average distinctiveness
 - Filters out some useful information, still ambiguities
- ◆ High level features (ex.: doors, a car, the Eiffel tower)
 - ◆ Little data, high distinctiveness
 - ◆ Filters out the useful information, few/no ambiguities, insufficient environmental information



About Map Representations

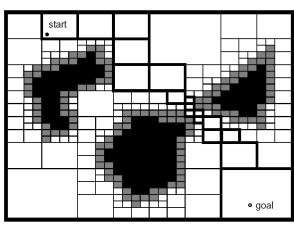
- 1. Map precision vs. application
 - ◆ How precise does it need to be?
- 2. Features precision vs. map precision
 - ◆ 20cm. map precision ≠ 20cm. obstacle avoidance
- 3. Precision vs. computational complexity
 - More capability = more computational complexity
- ◆ Continuous Representation
- Decomposition (Discretization)




Map Decomposition (1)

27

- ◆ Fixed cell decomposition
 - Narrow passages disappear



Map Decomposition (2)

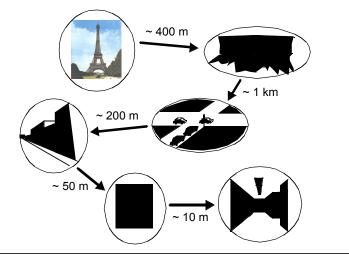
28

◆ Adaptive cell decomposition

Map Decomposition (3)

29

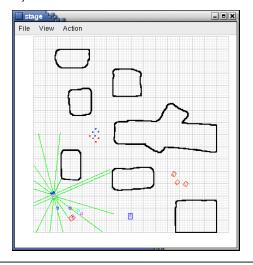
◆ Fixed cell decomposition — Example with very small cells


Courtesy of S. Thrun

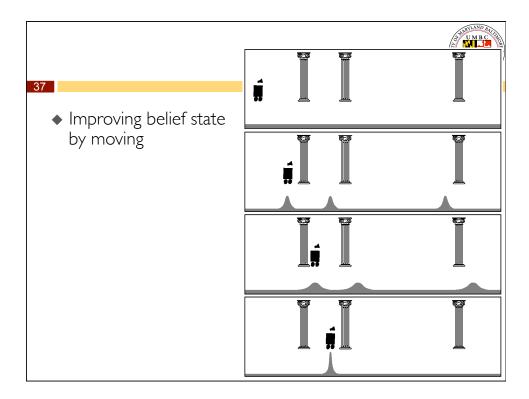
Map Decomposition (4)

32

◆ Topological Decomposition



Map Decomposition (5)


33

♦ Occupancy Grid

Probabilistic Map-Based Localization

- ◆ Consider a mobile robot moving in a known environment
- ◆ As it starts to move from a precisely known location, it might keep track of its location using odometry.
- ◆ However, after a certain movement the robot will get very uncertain about its position.
- → update using an observation of its environment.
- observation lead also to an estimate of the robots position which can than be fused with the odometric estimation to get the best possible update of the robots actual position.

