Localization where am I? – errors and odometry

Bookkeeping

- 2
- ♦ Homework 2
- ♦ Quiz 3
- ◆ Assignment 3
- Upcoming:
 - Projects
 - Projects
 - Odometry
 - Projects
- ◆ Reading: SNS 5.1-5.4 (we will cover 5.2 in class)

Homeworks and Quizzes

3

- ◆ Homework
 - ♦ Thank you!
 - Scheduling
 - Group work
 - ◆ Lectures
 - Unfortunately, no consensus
 - Suggestions are welcome!
- Quiz

Assignment 3

- ◆ Build LED circuit
 - Breadboard-based building
 - ◆ Find partners OR AA batteries
- ◆ Build motor
 - Very simple conceptually
- Writeup
 - Circuit diagram, explanations of current, efficiency of motors, ...
 - ◆ 1-1.5 pages not counting diagrams
- ◆ In-class workshop
 - ◆ 12th November

Assignment 3

- Provided:
 - AA Battery
 - Battery case
 - Breadboard
 - ♦ LED
 - ◆ Current:
 - ◆ 20 mA (milliamps)
 - ◆ Forward Voltages:
 - Red/Orange1.9–2.0 V
 - ◆ Green: 2.9–3.1 V
 - ◆ Blue/White/Pink/Violet: 3.0–3.2 V
 - Resistor
 - ♦ 100 ohm
 - Magnet
 - Copper wire

- Not provided
 - Paper clips
 - Bobby pins
 - Safety pins
 - Cardboard tubes
 - Instructions
- Things we have in lab
 - Wire stripping
 - Scissors
 - Jumper cables
 - Soldering station

Localization and Map Building

7

- ♦ Noise and aliasing
- Odometric position estimation
 - ◆ And an example: differential drive
- ◆ To localize or not to localize
- Belief representation
- Map representation
- Probabilistic map-based localization
- ◆ Other examples of localization system
- Autonomous map building

Localization: Where am I?

- ◆ Belief representation
- Odometry, dead reckoning
- Localization based on external sensors, beacons or landmarks
- Probabilistic Map-Based Localization

Challenges of Localization

q

- ◆ Knowing absolute position (e.g. GPS) is not sufficient
- ◆ Localization in human-scale as relates to environment
- ◆ Planning in Cognition needs >1 position as input
- ◆ Perception and motion plays an important role
 - Sensor noise
 - Sensor aliasing
 - ◆ Effector noise
 - Odometric position estimation

Sensor Noise

- ◆ Sensor noise mainly influenced by environment
 - e.g. surfaces, illumination, background noise
- ◆ Or by the measuring principle of the sensor
 - "...condenses the essentials of a method or an instrument"
 - e.g. interference between ultrasonic sensors
- ◆ Sensor noise *drastically* reduces useful sensor readings
 - Solution(s):
 - ◆ Use multiple readings
 - ♦ Employ temporal and/or multi-sensor fusion

Sensor Aliasing

11

- ◆ Robots: non-uniqueness of sensors readings is the norm
 - ♦ What does that mean?
- ◆ With multiple sensors have:
 - Many-to-one mapping from environmental states to robot's perceptual inputs
 - Example:
- ◆ So: information from sensors usually insufficient to identify the robot's position from a single reading
 - Robot's localization is usually based on a series of readings
 - ◆ Sufficient information is recovered by the robot over time

Effector (Actuator) Noise

- Odometry, dead reckoning
 - ◆ Position update is based on proprioceptive sensors
 - Odometry: wheel sensors only
 - Dead reckoning: also heading sensors
- How?
 - Sense movement with wheel encoders and/or heading sensors
 - Integrate that into model to get the position
 - Pros: Straightforward, easy
 - ◆ Cons: Errors are integrated → unbound
- Extra sensors onlyreduce accumulated errors
 - ◆ Same problem

Odometry: Error sources

13

deterministic (systematic)

non-deterministic

(non-systematic)

- ◆ Deterministic errors can be eliminated with calibration
- ◆ Random errors: described by error models
 - Will always leading to uncertain position estimate
- ◆ Major Error Sources:
 - Limited resolution during integration (time increments, measurement resolution ...)
 - Misalignment of the wheels (deterministic)
 - Unequal wheel diameter (deterministic)
 - Variation in the contact point of the wheel
 - ◆ Unequal floor contact (slipping, not planar ...)

Classification of Errors

14

- ◆ Range error: integrated path length (distance) of movement
 - Sum of the wheel movements
- ◆ Turn error: similar to range error, but for turns
 - ◆ Difference of the wheel motions
- ◆ Drift error: difference in the error of the wheels → error in angular orientation

Over long periods of time, turn and drift errors far outweigh range errors!

Classification of Errors

- Over long periods of time, turn and drift errors outweigh range errors!
 - Consider moving forward on a straight line along the x axis. The error in the y-position introduced by a move of d meters will have a component of $d\sin\Delta\theta$, which can be quite large as the angular error $\Delta\theta$ grows.

Belief Representation

27

- a) Continuous map with single hypothesis
- b) Continuous map with multiple hypothesis
- d) Discretized map with probability distribution
- d) Discretized topological map with probability distribution

Belief Repri

- a) Continuous map with single hypothesis
- b) Continuous map with multiple hypothesis
- d) Discretized map with probability distribution
- d) Discretized topological map with probability distribution

Characteristics

29

Belief Representation can be...

- Continuous
 - Precision bound by sensor data
 - Typically single hypothesis pose estimate
 - Lost when diverging (for single hypothesis)
 - Compact representation and typically reasonable in processing power.
- Discrete
 - Precision bound by resolution of discretisation
 - Typically multiple hypothesis pose estimate
 - Never lost (when diverges converges to another cell)
 - Important memory and processing power needed. (not the case for topological maps)