
Kinematics
Manipulator Kinematics

x1

y1

P

θ

x1

y1

P

θ

Many slides adapted from:
Siegwart, Nourbakhsh and Scaramuzza, Autonomous Mobile Robots

Renata Melamud, An Introduction to Robot Kinematics, CMU
Rick Parent, Computer Animation, Ohio State

Steve Rotenberg, Computer Animation, UCSD

2

Bookkeeping
u  Homework

u  Resolution, Kinematics & IK, Course Progress
u  Due Thursday night

u  Quiz 3: Manipulation, Grasping, Kinematics
u  Due tomorrow night (not Thursday)

u  Assignment 3:
u  Build hardware!

u  Today:
u  Transformations, affines
u  Chasles’ theorem

3

Assignment 3
u  Build LED circuit

u  Breadboard-based building
u  Parts in lab / class Thursday

u  Build motor
u  Very simple conceptually

u  Some of this will be in-class workshop
u  12th November
u  Due on 13th

4

u  Forward:
u  Inputs: joint angles
u  Outputs: coordinates of end-effector

u  Inverse:
u  Inputs: desired coordinates of end-effector
u  Outputs: joint angles

u  Inverse kinematics are tricky
u  Multiple solutions
u  No solutions
u  Dead spots

Forward & Inverse
Joint space (robot

space – previously R)
θ1, θ2, …, θn

Cartesian space (global
space – previously I)

(x,y,z}, r/p/y

5

u  Transform between robot and world coordinates
u  Why?

u  Transformation of parts (points) of the robot

Actual Goal

R: {0, 0, 0}
I: {4, 2, 3}

x
y

z

R: {0, 0, -2}
I: {4, 2, 5}

6

u  Affine transformation
u  Preserves collinearity (i.e., all points lying on a line initially

still lie on a line after transformation)
u  Preserves ratios of distances (e.g., the midpoint of a line

segment remains the midpoint after transformation)

u  Rigid transform
u  Reflections, translations, rotations
u  Preserves internal relationship of points

u  Distances between every pair of points
u  (Remember, this is not the robot moving!)

Actual Goal

7

u  Affine transformations:

u  Given a point x (x,y), transformed x’ can be written:

u  Translation
u  Rotation
u  Scaling
u  Shear

Affine Transformations

x’ =[] ax + by + c
dx + ey + f

x’ =[] x+c
y+f

x’ =[] xcosθ – ysinθ
xsinθ + ycosθ

8

u  These can all be done with matrix multiplication

u  But, this is not a linear transform
u  Represent points in space using vectors
u  Transform using 2x2 (or 3x3) matrices

But:
u  Multiplying a zero vector by a matrix gives you?

u  Another zero vector
u  Can’t move the origin!

Homogenous Coordinates

9

u  So we need homogenous coordinates

u  Add identity column/row

u  Translation becomes

Homogenous Coordinates

1 0 0 x
0 1 0 y
0 0 1 z
0 0 0 1

1 0 0 Δx
0 1 0 Δy
0 0 1 Δz
0 0 0 1

10

DH Parameters

ai-1 : link length – distance Zi-1 and Zi along Xi�
αi-1 : link twist – angle Zi-1 and Zi around Xi
di : link offset – distance Xi-1 to Xi along Zi�
θ2 : joint angle – angle Xi-1 and Xi around Zi

11

Translation

ξI =

xI
yI
zI
θ

ξR =

xR
yR
zR
θ

Origin of R in I:

0
3
0
1

In 3D:

1 0 0 0
0 1 0 3
0 0 1 0
0 0 0 1

Generally:

1 0 0 x
0 1 0 y
0 0 1 z
0 0 0 1

12

Rotation

ξI =

x
y
z
θI

ξR =

x
y
z
θR

Generally:
Introduction	to	Homogeneous	

Transformations	&	Robot	Kinematics		
Jennifer	Kay	2005		

13

Example: Rotation in Plane

14

ai-1 : distance Zi-1 and Zi along Xi�
αi-1 : angle Zi-1 and Zi around Xi

di : distance Xi-1 to Xi along Zi�
θ2 : angle Xi-1 and Xi around Zi

u  Coordinate transformation:

Transformation i to i-1 (2)
screw
displacement:

screw
displacement:

15

Transformation i to i-1 (3)

Transformation in DH:

16

Inverse Kinematics

u  Compute the vector of joint DOFs that will cause the end
effector to reach some desired goal state

u  In other words, it is the inverse previous problem

u  Analytic approach
u  Directly calculate joint angles in configuration that satisfies goal

u  Numeric approach
u  At each time slice, determine joint movements that take you in

direction of goal position (and orientation)

1.  Set goal configuration of end effector
2.  calculate interior joint angles

17

Goal

End Effector

θ1

θ2
θ3 L1

L2 L3

Inverse Kinematics

18

Inverse Kinematics
u  Underconstrained

u  Fewer constraints than DoFs
u  Many solutions

u  Overconstrained
u  Too many constraints
u  No solution

u  Reachable workspace
u  Volume the end effector can reach

u  Dextrous workspace
u  Volume end effector can reach in any orientation

19

Given arm configuration (L1, L2, …)

Given desired goal position (and orientation) of end
effector: [x,y,z, ψ1,ψ2, ψ3]

Analytically compute goal configuration (θ1,θ2)

Interpolate pose vector from initial to goal

Analytic

20

Analytic Inverse Kinematics

(X,Y)
L1

L2

θ1

θ2

Goal

21

(X,Y)
Goal

Multiple solutions

Analytic Inverse Kinematics

22

(X,Y) L1
L2

θ1
θT

180- θ2

Analytic Inverse Kinematics

23

(X,Y) L1
L2

θ1
θT

180- θ2

X

Y

€

x 2 + y 2

Analytic Inverse Kinematics

24

A

B

C

α

AB
CBA

2
)cos(

222 −+
=α

Law of Cosines

25

(X,Y) L1
L2

θ1 θT

180- θ2

X
Y

€

x 2 + y 2

22
)cos(

YX
X

T
+

=θ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
= −

22

1cos
YX

X
Tθ

22
1

2
2

222
1

1
2

)cos(
YXL
LYXL

T
+

−++
=−θθ

T
YXL
LYXL

θθ +
+

−++
= −)

2
(cos

22
1

2
2

222
11

1

()
21

222
2

2
1

2 2
)180cos(

LL
YXLL +−+

=−θ

())
2

(cos180
21

222
2

2
11

2 LL
YXLL +−+

−= −θ

Analytic Inverse Kinematics

26

Analytic Inverse Kinematics

27

When linkage is too complex for analytic methods

At each time step, determine changes to joint
angles that take the end effector toward goal
position and orientation

Need to recompute at each time step

Iterative Inverse Kinematics

28

End Effector

θ2

a2 d2

a2 x d2

Compute instantaneous effect of each joint

Linear approximation to curvilinear motion

Find linear combination to take end effector
towards goal position

Inverse Jacobian Method

29

Instantaneous linear
change in end effector for

ith joint

Inverse Jacobian Method

30
What is the change in

orientation of end effector
induced by joint i that has

axis of rotation a i
and position Ji? iia ω=!

Angular velocity

Inverse Jacobian Method

31

Solution only valid for an
instantaneous step

Angular affect is really
curved, not straight line

Once a step is taken, need
to recompute solution

Inverse Jacobian Method

32

€

y1 = f1(x1,x2,x3,x4,x5,x6)
y2 = f2(x1,x2,x3,x4,x5,x6)
y3 = f3(x1,x2,x3,x4,x5,x6)
y4 = f4 (x1,x2,x3,x4,x5,x6)
y5 = f5(x1,x2,x3,x4,x5,x6)
y6 = f6(x1,x2,x3,x4,x5,x6)

Set up equations
yi: state variable
xi : system parameter
fi : relate system parameters to state variable

Inverse Jacobian: Math

33

€

y1 = f1(x1,x2,x3,x4,x5,x6)
y2 = f2(x1,x2,x3,x4,x5,x6)
y3 = f3(x1,x2,x3,x4,x5,x6)
y4 = f4 (x1,x2,x3,x4,x5,x6)
y5 = f5(x1,x2,x3,x4,x5,x6)
y6 = f6(x1,x2,x3,x4,x5,x6)

Matrix Form

€

Y = F(X)

Inverse Jacobian: Math

34

Use chain rule to differentiate equations to relate
changes in system parameters to changes in state

variables

),,,,,(6543211 xxxxxxfyi =

6
6

5
5

4
4

3
3

2
2

1
1

dx
x
fdx

x
fdx

x
fdx

x
fdx

x
fdx

x
fdy iiiiii

i ∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

+++++=

Inverse Jacobian: Math

35

€

Y = F(X) dX
X
FdY
∂
∂

=

6
6

5
5

4
4

3
3

2
2

1
1

dx
x
fdx

x
fdx

x
fdx

x
fdx

x
fdx

x
fy iiiiii

i ∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂ +++++=

Matrix Form

Inverse Jacobian: Math

36

dX
X
FdY
∂
∂

=

Change in position (and
orientation) of end effector Change in joint angles

Linear approximation that relates change
in joint angle to change in end effector
position (and orientation)

Inverse Jacobian: Math

37

dX
X
FdY
∂
∂

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

n

z

y

x

z

n

yyy

n

xxx

z

y

x

z

y

x

a

a

a

p

ppp

ppp

v
v
v

θ

θ

θ

∂θ
∂
∂θ

∂
∂θ
∂
∂θ
∂

∂θ

∂

∂θ

∂

∂θ

∂
∂θ
∂

∂θ
∂

∂θ
∂

ω

ω

ω
!
…

!
!

………

………

………

………

…

…

2

1

1

1

1

1

21

21

Inverse Jacobian: Math

38

Jacobians
u  Let’s say we have a simple 2D robot arm with two 1-

DOF rotational joints:

Φ1

Φ2

• e=[ex ey]

39

Jacobians
u  The Jacobian matrix J(e,Φ) shows how each

component of e varies wrt. each joint angle

()

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∂

∂

∂

∂
∂

∂

∂

∂

=

21

21,

φφ

φφ
yy

xx

ee

ee

J Φe

40

Jacobians
u  Consider what would happen if we increased φ1 by

a small amount. What would happen to e ?

φ1

• ∂e
∂ϕ1

=
∂ex
∂ϕ1

∂ey
∂ϕ1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

41

Jacobians
u  What if we increased φ2 by a small amount?

φ2

•
⎥
⎦

⎤
⎢
⎣

⎡

∂

∂

∂

∂
=

∂

∂

222 φφφ
yx eee

42

Jacobian for a 2D Robot Arm

φ2

•

φ1

()

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∂

∂

∂

∂
∂

∂

∂

∂

=

21

21,

φφ

φφ
yy

xx

ee

ee

J Φe

43

Jacobian transpose

Alternate Jacobian – use goal position

HAL – human arm linkage

CCD

Damped Least Squares

Other Numeric IK

