Kinematics
Manipulator Kinematics

Many slides adapted from:

Siegwart, Nourbakhsh and Scaramuzza, Autonomous Mobile Robots
Renata Melamud, An Introduction to Robot Kinematics, CMU

Rick Parent, Computer Animation, Ohio State

Steve Rotenberg, Computer Animation, UCSD



Bookkeeping

¢ Homework
¢ Resolution, Kinematics & IK, Course Progress
¢ Due Thursday night

¢ Quiz 3: Manipulation, Grasping, Kinematics
¢ Due tomorrow night (not Thursday)

¢ Assignment 3:
¢ Build hardwarel!

¢ loday:
¢ Iransformations, affines
¢ Chasles theorem



Assignment 3

¢ Builld LED circurt
¢ Breadboard-based building
¢ Parts in lab / class Thursday

¢ Build motor
¢ Very simple conceptually

¢ Some of this will be in-class workshop
# 12" November
¢ Dueon |3th



Forward & Inverse

Joint space (robot
¢ Forward: space — previously R)
¢ Inputs: joint angles 04, 0, ..., O
¢ Outputs: coordinates of end-effector 1YYYYY
¢ Inverse: /5\

¢ |nputs: desired coordinates of end-effector
¢ Outputs: joint angles
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¢ Inverse kinematics are tricky
¢ Multiple solutions
¢ No solutions HUU

¢ Dead spots (X.yz},1/ply
Cartesian space (global
space — previously 1)




Actual Goal

¢ Transform between robot and world coordinates
¢ Why!

¢ Transformation of parts (points) of the robot

R: {0, 0, 0}
I {4, 2, 3)

/|Y\ R: {0, 0, -2)

I {4, 2, 5)



Actual Goal

¢ Affine transformation

¢ Preserves collinearity (i.e., all points lying on a line inttially
still lie on a line after transformation)

¢ Preserves ratios of distances (e.g., the midpoint of a line
segment remains the midpoint after transformation)

¢ Rigid transform
¢ Reflections, translations, rotations

¢ Preserves internal relationship of points ﬁ
¢ Distances between every pair of points i 2

¢ (Remember; this is not the robot moving!)



Affine Transformations

¢ Affine transformations:

¢ Given a point x (xy), transformed x' can be written:

,_[ax+by+c] x_
P Tldx+ey+f , _[x+c
| _[y+f

¢ Translation x? . .

¢ Rotation x’

¢ Scaling

¢ Shear 5 ) S _[xcos@ — ysinf
~Lxsin6 + ycos6



Homogenous Coordinates
(& ]

¢ [hese can all be done with matrix multiplication

| |[ax+by | |a b T
y | | de4+ey | | d e Y
¢ But, this is not a linear transform
¢ Represent points in space using vectors
¢ Transform using 2x2 (or 3x3) matrices

But:

¢ Multiplying a zero vector by a matrix gives you?
¢ Another zero vector

¢ Can't move the origin!



Homogenous Coordinates
(8]

¢ S0 we need homogenous coordinates

¢ Add identity column/row

1 00 x
010y
001z
0001

¢ Translation becomes [ 1 0 0 Ax

010 Ay

001 Az

000 1
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a. ; : link length — distance Z. , and Z. along X.
. : link twist — angle Z. ; and Z. around X.
1-1 1-1 1 1

d. :link offset — distance X. , to X. along Z.
0, :joint angle — angle X. ; and X, around Z.



Translation
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Rotation
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Generally:
cosO —sin® 0 0 Introduction to Homogeneous
sin® cosO® 0 0 Transformations & Robot Kinematics
0 0 10 Jennifer Kay 2005
0 0 01




Example: Rotation in Plane

T A o
r = aycostl; + ascos(ty + 65)

y = aqs8infy + as sin(fy + 65)
a; = the length of ith link



Transformation i to i-1 (2)

a., : distance Z. , and Z. along X. | screw
a.:angle Z., and Z; around X, [ displacement:

[ Xi| = Transy;(a;i+1) Rotx; (@i it1)

d. :distance X. , to X. along Zi} screw

1
0, :angle X. ; and X. around Z. [ displacement:

|Z;] = Transz,(d;) Rotz,(6;)
¢ Coordinate transformation:

i—1 - p . PYEN , . ,
2 :T, — [Z,][JX,] = Trans Z; ( d.z'_) Rot Z; ( 9,‘_) Trans_\-,. ( (I-.,',,z'+1) RC’E_\'I—( a'-i,z'+l)_-



Transformat

ionitoi-1(3)

-1 0 0 0 ) -COS 9.2' — sin 9.2' 0
» 01 0 0 , sinfl; cosf; 0
Transz,(d;) = 00 1 d Rotz.(6;) = 0 0 )
000 1] 0 0 0
Roty; (i it1) =
-1 0 0 a‘,-’.l-+1- -1 0 0
) N\ 0 1 0 0 0 cos ¥ i+1 — sin O 41
Tramay; (8;i+1) = 001 0 0 sine;;yq  COSQyipq
000 1] 0 0 0
Transformation in DH:
[cosf; — sin#; cos (iy1  SIn#;sinq;;yq @41 COS g,
i—1 sinf; cost;cosq; i —cost;sinoy iy @4 S,
o 0 SIN v 41 COS (¥ j+1 d;
0 0 0 1 ]

-0 O O




Inverse Kinematics

1. Set goal configuration of end effector
2. calculate interior joint angles

¢ Compute the vector of joint DOFs that will cause the end
effector to reach some desired goal state

¢ In other words, it Iis the inverse previous problem

¢ Analytic approach

¢ Directly calculate joint angles in configuration that satisfies goal

¢ Numeric approach

¢ At each time slice, determine joint movements that take you in
direction of goal position (and orientation)



Inverse Kinematics




Inverse Kinematics

¢ Underconstrained
¢ Fewer constraints than Dofs

¢ Many solutions

¢ Overconstrained
¢ [oo many constraints
¢ No solution

¢ Reachable workspace
¢ Volume the end effector can reach

¢ Dextrous workspace
¢ Volume end effector can reach in any orientation



Analytic

Given arm configuration (LI, L2, ...)

Given desired goal position (and orientation) of end

effector: [x,y.z, 1,92, P3]
Analytically compute goal configuration (81,02)

Interpolate pose vector from initial to goal
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Analytic Inverse Kinematics ¢

Multiple solutions
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Law of Cosines




Analytic Inverse Kinematics

L2 cos(f,) =

0, = cos‘l( X ]

VX2 +Y?

7 L +X*+Y L’

e e

2 2 2 2
cos(180—6,) = L1 +L22L£X +7?)
12

L2+ X>+Y*-L’

6, = cos™ (= )+ 0
1 2L X +7? '

LP+L -(x?+7?)
2L L,

0, =180—cos™'( )
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Iterative Inverse Kinematics &<,

When linkage Is too complex for analytic methods

At each time step, determine changes to joint
angles that take the end effector toward goal
position and orientation

Need to recompute at each time step



Inverse Jacobian Method

End Effector

a, X d,

Compute instantaneous effect of each joint

Linear approximation to curvilinear motion

Find linear combination to take end effector
towards goal position



Inverse Jacobian Method

Instantaneous linear
change in end effector for
it joint




Inverse Jacobian Method

What is the change in
orientation of end effector
iInduced by joint i that has _
axis of rotation a Angular velocity

and position J,? ai = wi




Inverse Jacobian Method

Solution only valid for an
instantaneous step

Angular affect is really
curved, not straight line

Once a step is taken, need
to recompute solution



Inverse Jacobian: Math

Set up equations
y;: state variable
X; : system parameter
f.: relate system parameters to state variable

Vi = 10X X5,%5,0,,X5,X)
Yo = fo(,0,,05,X,,X5,X)
Y3 = F3(%05%5,%5,0,,X5,X¢)
Yo = Ja(X),X5,05,X,,X5,X)
Vs = fs(,0,,05,X,,X5,X)

y6 = f6(x1’x25x3 9x4 9x5 ax6)



Inverse Jacobian: Math

Vi = Ji(x%5,%5,0,,X5,X)
Yo = fo(Xp:X5,%5,0,,X5,X¢)
Y3 = J5(X,X0,X5,X,,X5,X¢)
Yo = Ja(X05X5,X5,%,,X5,X¢)
Vs = f5(X1:X5,X5,0,,X5,X¢)

y6 = f6('x19x2’x3 7x4 9x5 ’x6)




Inverse Jacobian: Math

Vi = (X, %5, X5, X, X5, X)

Use chain rule to differentiate equations to relate
changes in system parameters to changes in state

variables

dy, = 9. dx, +ﬁa’x2 +ﬁa’x3 +ia’x4 +ia’x5 +%a’x6

L o, o, X, oK. o,




Inverse Jacobian: Math

A, = Of"dx1+ 9. dx, + 9. dx, + 9. dx, + 9. dxs + 9. dx,
o, ox, o, ox, X o
Matrix Form

Y = F(X)




Inverse Jacobian: Math

ay =2 ax

EN

Change in position (and

orientation) of end effector Change in joint angles

Linear approximation that relates change
in joint angle to change in end effector
position (and orientation)



Inverse Jacobian: Math

ay =2 ax
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Jacobians

¢ Let's say we have a simple 2D robot arm with two 1-
DOF rotational joints:

e=[ex ey]




Jacobians

¢ The Jacobian matrix J(e,®) shows how each
component of e varies wrt. each joint angle

de.  de_ ]
J(e q))= a¢l a¢2
’ aey aey
ag g,




Jacobians

¢ Consider what would happen if we increased ¢ | by
a small amount. What would happen to e ¢




Jacobians

¢ What if we increased @, by a small amount?

oe
J9,




Jacobian for a 2D Robot Arndy

J(e,(I))=




Other Numeric IK

Jacobian transpose
Alternate Jacobian — use goal position
HAL — human arm linkage

Damped Least Squares

CCD




