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Many slides adapted from: 
Siegwart, Nourbakhsh and Scaramuzza, Autonomous Mobile Robots 

Renata Melamud, An Introduction to Robot Kinematics, CMU 
Rick Parent, Computer Animation, Ohio State 

Steve Rotenberg, Computer Animation, UCSD 
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Bookkeeping 
u  Homework

u  Resolution, Kinematics & IK, Course Progress
u  Due Thursday night

u  Quiz 3: Manipulation, Grasping, Kinematics 
u  Due tomorrow night (not Thursday)

u  Assignment 3:
u  Build hardware!

u  Today: 
u  Transformations, affines
u  Chasles’ theorem
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Assignment 3 
u  Build LED circuit

u  Breadboard-based building
u  Parts in lab / class Thursday

u  Build motor
u  Very simple conceptually

u  Some of this will be in-class workshop
u  12th November
u  Due on 13th
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u  Forward:
u  Inputs: joint angles 
u  Outputs: coordinates of end-effector

u  Inverse:
u  Inputs: desired coordinates of end-effector
u  Outputs: joint angles

u  Inverse kinematics are tricky
u  Multiple solutions
u  No solutions
u  Dead spots

Forward & Inverse 
Joint space (robot 

space – previously R)
θ1, θ2, …, θn

Cartesian space (global 
space – previously I)

(x,y,z}, r/p/y
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u  Transform between robot and world coordinates
u  Why?

u  Transformation of parts (points) of the robot

Actual Goal 

R: {0, 0, 0} 
I: {4, 2, 3} 

x 
y 

z 

R: {0, 0, -2} 
I: {4, 2, 5} 
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u  Affine transformation
u  Preserves collinearity (i.e., all points lying on a line initially 

still lie on a line after transformation) 
u  Preserves ratios of distances (e.g., the midpoint of a line 

segment remains the midpoint after transformation)

u  Rigid transform
u  Reflections, translations, rotations
u  Preserves internal relationship of points

u  Distances between every pair of points
u  (Remember, this is not the robot moving!)

Actual Goal 
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u  Affine transformations:

u  Given a point x (x,y), transformed x’ can be written:

u  Translation
u  Rotation
u  Scaling
u  Shear

Affine Transformations 

x’ =[         ] ax + by + c
dx + ey + f

x’ =[   ] x+c
y+f

x’ =[           ] xcosθ – ysinθ
xsinθ + ycosθ
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u  These can all be done with matrix multiplication

u  But, this is not a linear transform
u  Represent points in space using vectors
u  Transform using 2x2 (or 3x3) matrices

But:
u  Multiplying a zero vector by a matrix gives you?

u  Another zero vector
u  Can’t move the origin!

Homogenous Coordinates 
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u  So we need homogenous coordinates

u  Add identity column/row

u  Translation becomes

Homogenous Coordinates 

1  0  0  x
0  1  0  y
0  0  1  z
0  0  0  1

1  0  0  Δx
0  1  0  Δy
0  0  1  Δz
0  0  0    1
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DH Parameters 

ai-1 : link length – distance Zi-1 and Zi along Xi�
αi-1 : link twist – angle Zi-1 and Zi around Xi
di   : link offset – distance Xi-1 to Xi along Zi�
θ2  : joint angle – angle Xi-1 and Xi around Zi
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Translation 

ξI = 

xI
yI
zI
θ

ξR = 

xR
yR
zR
θ

Origin of R in I: 

0
3
0
1

In 3D: 

1  0  0  0
0  1  0  3
0  0  1  0
0  0  0  1

Generally: 

1  0  0  x
0  1  0  y
0  0  1  z
0  0  0  1
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Rotation 

ξI = 

x
y
z
θI

ξR = 

x
y
z
θR

Generally: 
Introduction	to	Homogeneous	

Transformations	&	Robot	Kinematics		
Jennifer	Kay	2005		
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Example: Rotation in Plane 
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ai-1 : distance Zi-1 and Zi along Xi�
αi-1 : angle Zi-1 and Zi around Xi

di   : distance Xi-1 to Xi along Zi�
θ2  : angle Xi-1 and Xi around Zi

u  Coordinate transformation:

Transformation i to i-1 (2) 
screw 
displacement: 

screw 
displacement: 
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Transformation i to i-1 (3) 

Transformation in DH: 
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Inverse Kinematics 

u  Compute the vector of joint DOFs that will cause the end 
effector to reach some desired goal state

u  In other words, it is the inverse previous problem

u  Analytic approach
u  Directly calculate joint angles in configuration that satisfies goal

u  Numeric approach
u  At each time slice, determine joint movements that take you in 

direction of  goal position (and orientation)

1.  Set goal configuration of end effector
2.  calculate interior joint angles
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Goal 

End Effector 

θ1 

θ2 
θ3 L1 

L2 L3 

Inverse Kinematics 
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Inverse Kinematics 
u  Underconstrained

u  Fewer constraints than DoFs
u  Many solutions

u  Overconstrained 
u  Too many constraints
u  No solution

u  Reachable workspace
u  Volume the end effector can reach

u  Dextrous workspace 
u  Volume end effector can reach in any orientation
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Given arm configuration (L1, L2, …)

Given desired goal position (and orientation) of end 
effector: [x,y,z, ψ1,ψ2, ψ3]

Analytically compute goal configuration (θ1,θ2)

Interpolate pose vector from initial to goal

Analytic 
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Analytic Inverse Kinematics 

(X,Y) 
L1 

L2 

θ1 

θ2 

Goal 
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(X,Y) 
Goal 

Multiple solutions 

Analytic Inverse Kinematics 
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(X,Y) L1 
L2 

θ1 
θT 

180- θ2 

Analytic Inverse Kinematics 
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(X,Y) L1 
L2 

θ1 
θT 

180- θ2 

X 

Y 

€ 

x 2 + y 2

Analytic Inverse Kinematics 
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A 

B 

C 

α

AB
CBA
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Law of Cosines 
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26 

Analytic Inverse Kinematics 
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When linkage is too complex for analytic methods

At each time step, determine changes to joint 
angles that take the end effector toward goal 
position and orientation

Need to recompute at each time step

Iterative Inverse Kinematics 



28 

End Effector 

θ2 

a2 d2 

a2 x d2 

Compute instantaneous effect of each joint

Linear approximation to curvilinear motion

Find linear combination to take end effector 
towards goal position

Inverse Jacobian Method 
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Instantaneous linear 
change in end effector for 

ith joint 

Inverse Jacobian Method 
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What is the change in 

orientation of end effector 
induced by joint i that has 

axis of rotation a i 
and position Ji? iia ω=!

Angular velocity 

Inverse Jacobian Method 
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Solution only valid for an   
instantaneous step 

Angular affect is really  
curved, not straight line 

Once a step is taken, need 
to recompute solution 

Inverse Jacobian Method 
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€ 

y1 = f1(x1,x2,x3,x4,x5,x6)
y2 = f2(x1,x2,x3,x4,x5,x6)
y3 = f3(x1,x2,x3,x4,x5,x6)
y4 = f4 (x1,x2,x3,x4,x5,x6)
y5 = f5(x1,x2,x3,x4,x5,x6)
y6 = f6(x1,x2,x3,x4,x5,x6)

Set up equations 
yi: state variable 
xi : system parameter 
fi : relate system parameters to state variable 

Inverse Jacobian: Math 
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€ 

y1 = f1(x1,x2,x3,x4,x5,x6)
y2 = f2(x1,x2,x3,x4,x5,x6)
y3 = f3(x1,x2,x3,x4,x5,x6)
y4 = f4 (x1,x2,x3,x4,x5,x6)
y5 = f5(x1,x2,x3,x4,x5,x6)
y6 = f6(x1,x2,x3,x4,x5,x6)

Matrix Form 

€ 

Y = F(X)

Inverse Jacobian: Math 
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Use chain rule to differentiate equations to relate 
changes in system parameters to changes in state 

variables  

),,,,,( 6543211 xxxxxxfyi =

6
6

5
5

4
4

3
3

2
2

1
1

dx
x
fdx

x
fdx

x
fdx

x
fdx

x
fdx

x
fdy iiiiii

i ∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

+++++=

Inverse Jacobian: Math 
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€ 

Y = F(X) dX
X
FdY
∂
∂

=

6
6

5
5

4
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3
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2
2

1
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dx
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∂
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∂ +++++=

Matrix Form 

Inverse Jacobian: Math 
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dX
X
FdY
∂
∂

=

Change in position (and 
orientation) of end effector Change in joint angles 

Linear approximation that relates change 
in joint angle to change in end effector 
position (and orientation)  

Inverse Jacobian: Math 



37 

dX
X
FdY
∂
∂

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

n

z

y

x

z

n

yyy

n

xxx

z

y

x

z

y

x

a

a

a

p

ppp

ppp

v
v
v

θ

θ

θ

∂θ
∂
∂θ

∂
∂θ
∂
∂θ
∂

∂θ

∂

∂θ

∂

∂θ

∂
∂θ
∂

∂θ
∂

∂θ
∂

ω

ω

ω
!
…

!
!

………

………

………

………

…

…

2

1

1

1

1

1

21

21

Inverse Jacobian: Math 
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Jacobians 
u  Let’s say we have a simple 2D robot arm with two 1-

DOF rotational joints:

Φ1 

Φ2 

• e=[ex ey] 
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Jacobians 
u  The Jacobian matrix J(e,Φ) shows how each 

component of e varies wrt. each joint angle
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Jacobians 
u  Consider what would happen if we increased φ1 by 

a small amount. What would happen to e ?

φ1 

• ∂e
∂ϕ1

=
∂ex
∂ϕ1

∂ey
∂ϕ1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
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Jacobians 
u  What if we increased φ2  by a small amount?

φ2 

• 
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Jacobian for a 2D Robot Arm 

φ2 

• 

φ1 
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Jacobian transpose

Alternate Jacobian – use goal position

HAL – human arm linkage

CCD

Damped Least Squares

Other Numeric IK 


