
CMSC 479/679 Fall 2015

Dr. Cynthia Matuszek

Bookkeeping

- 2
- Syllabus: <u>tiny.cc/robotics-syllabus</u>
- Schedule: <u>tiny.cc/robotics-schedule</u>
- Piazza (forum): <u>tiny.cc/robotics-forum</u>
 Join (use your full name, poke around)
- Text: 2nd edition needed
- Survey 1 due last night
 - If you haven't done this, do it.
 - tiny.cc/robotics-survey-1
- Academic integrity (or, where do I sign?)

IIIah R. NOURBAKHSH Davide SCARAMUZZA

CMSC 479/679: Schedule

Fall 2015

Class Syllabus • Class Schedule Page • Academic Integrity Policy • Piazza Page

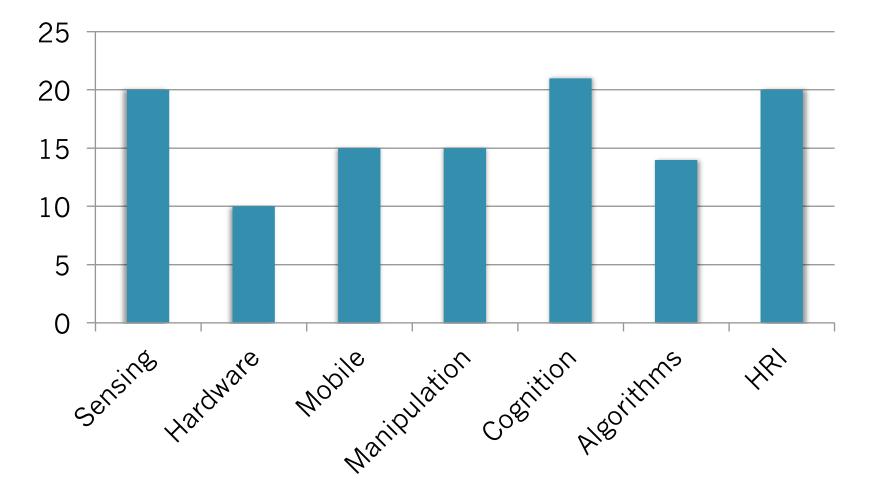
The schedule is subject to substantial change.

I will attempt to ensure slides are posted by 12:00pm on class day.

Class	Date	Topic	Reading	Assignment	Slid
1	27-Aug	Introduction and Overview Waitlist students talk to Dr M		Homework 0: survey Read integrity policy	Slides
2	1-Sep	Overview of Topics	SN Chapter 1		
3	3-Sep	Teams, project ideas			
Control Soft	tware				
4	8-Sep				
5	10-Sep				
6	15-Sep				
7	17-Sep				
Sensing					
8	22-Sep				
9	24-Sep				
10	29-Sep				
11	1-Oct				

Today's Class

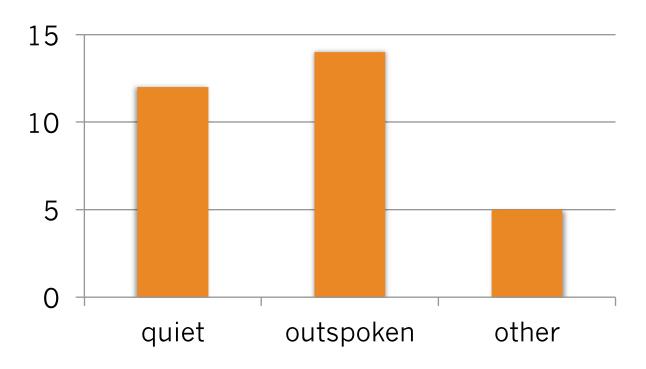
- Survey results (preliminary)
- Current robots


3

Terminology and concepts

Interests

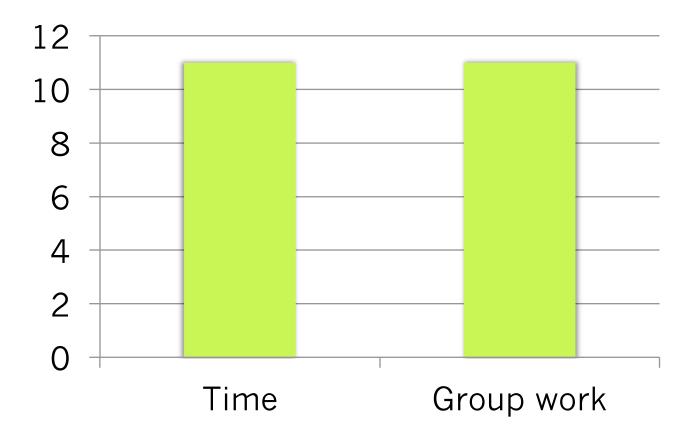
Areas of interest are very evenly spread



Participation

5

Very common concern



Engage with material, look for opportunities

Group Work and Time

• Time management is a real concern

General Topics

Hardware Design

- Sensing
 - Environment Models
- Actuation
 - Mobility
 - Mapping
 - Localization
 - Manipulation
 - Motors

These topics overlap in many places!

- Control
 - (Inverse) Kinematics
 - Dynamics
 - Motion planning
- Cognition
 - Machine learning
 - Classic Al
 - Others
- Human-robot interaction

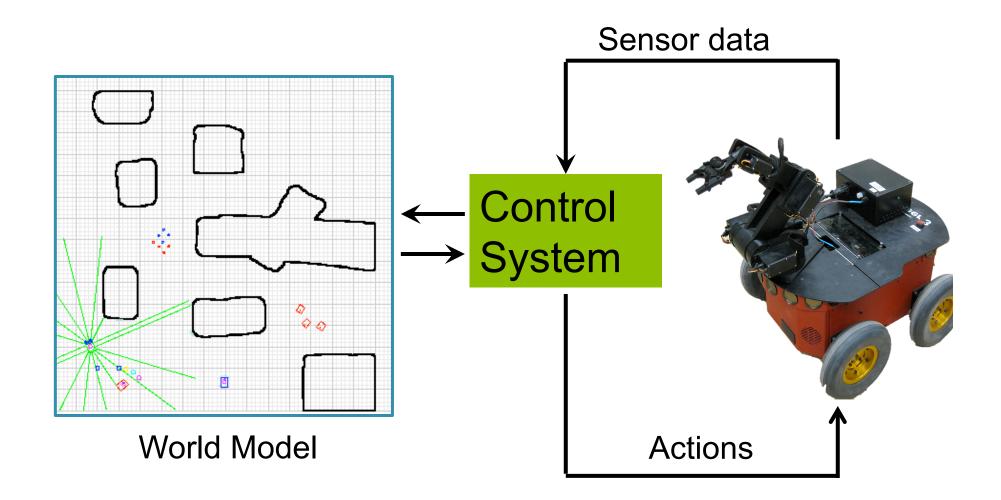
What Subsystems Are There?

Or: what does a robot need to know?

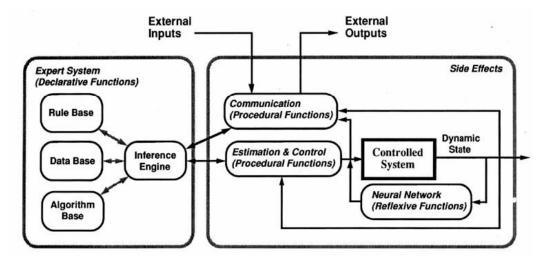
Where am I?

- What's around me?
- How am I posed?
 - How do I change it?
- What do I want to do?
 - With respect to the environment?
 - Where do I go, and how?
 - What do I want to change?
- How do I do that?
- Who needs to be involved?
 - People? Other robots?

What Subsystems Are There?


Sensing

- Perceiving the world
- Creating a world model
- Actuation
 - Doing something in the (physical) world
 - Mobility, manipulation, ...
- Control
 - Navigation, motion planning, kinematics, dynamics
- Cognition and Learning
- Interfaces


High Level View

Control: The Brain

- Open loop, i.e., no feedback
 - Instructions
 - Rules
- Closed loop, i.e., feedback
 - Adapts
 - Can learn

Sensors

Perceive the world

- Passive sensors capture signals generated by environment.
 - Background, lower power. E.G.: cameras.
- Active sensors probe the environment. Explicitly triggered,
 - More info, higher power consumption. Example: lidar
- What are they sensing?
 - ◆ The environment: e.g. range finders, obstacle detection
 - The robot's location: e.g., gps, wireless stations
 - Robot's internals: joint encoders

Proprioception

Close your eyes - where's your hand?

Some Typical Sensors

- Optical
 - Laser / radar
 - ♦ 3D
 - Color spectrum
- Pressure, temperature, chemical
- Motion & Accelerometer
- Acoustic
 - Sonar, ultrasonic
- E-field Sensing

Robot Systems

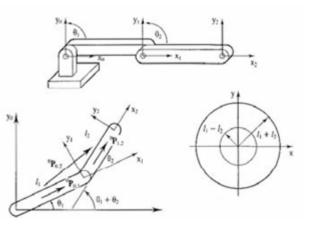
14

Manipulators

- Anchored somewhere: assembly lines, ISS, hospitals.
- Common industrial robots
- Mobile Robots
 - Move around environment
 - ◆ UGVs, UAVs, AUVs, UUVs
 - Mars rovers, delivery bots, ocean explorers
- Mobile Manipulators
 - Both move and manipulate
 - Packbot, humanoid robots

Actuators


- Take some kind of action in the world
 - Involve movement of robot or subcomponent of robot
- Robot actions can include
 - Pick and place: Move items between points
 - Path control: Move along a programmable path
 - Sensory: Employ sensors for feedback (e-field sensing)
 - Manipulation: interact with objects in the world



Some Typical Actuators

- 16
 - Pneumatic
 - Hydraulic
 - Electric solenoid
 - Motors
 - Analog (continuous)
 - Stepping (discrete increments)
 - Gears, belts, screws, levers
 - What's missing?

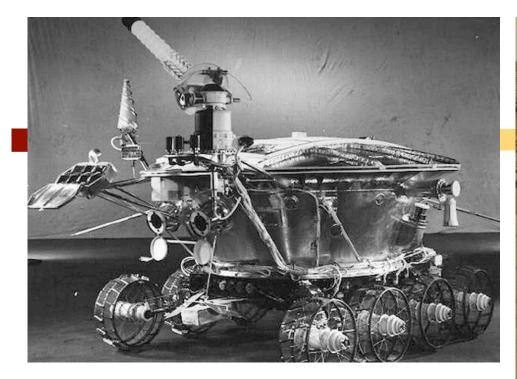
Mobility

17

- Legs
- Wheels
- Tracks
- Crawls
- Rolls
- Treads

. . .

UMBC UMBC


Mobile Robots

18


Space Rovers

- Key issues: mobility in rough terrain, time delay, temperatures, maintenance, joint infiltration
- Autonomous Robotic Cars
 - Key issues: dynamic environments, safety
- Flying Robots
 - Key issues: limited computation power and payload
- Personal Robots
 - Key issues: safety, human-friendliness

Mobile Robots: Cars

Mobile Robots: Factories

Project Possibilities

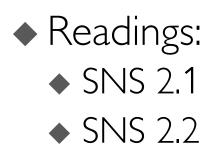
- Actuator based
 - Manipulate objects
 - Move through an area
- Design & building
 - New end effector

- Cognition
 - Machine learning
 - Decision making

Studies

HRI

Interface designs


Algorithmic

For Next Class

Join Piazza: <u>tiny.cc/robotics-forum</u>

Think about project ideas
I-2 ideas to share with your team next class

