Kinematics Manipulator Kinematics

Bookkeeping

- Team meetings status
- Assignment 2
- ◆ Thursday:
 - ◆ Quiz 3 (will be easier than 1 and 2)
 - Manipulation concepts, Grasping, Kinematics concepts
 - Closes I I:59pm Nov 4
 - ◆ Homework 2 (homeworks are always easy)
 - Resolution, Kinematics & IK, Course Progress
- Nov 5
 - Assignment 3 (due Nov 13)

Bookkeeping

- ◆ Today:
- General notes on project progress
 - ◆ Schedule wiki
 - Signout sheet
 - Meetings
- A final note on mobile kinematics
- Manipulator kinematics
- ◆ Reading: CB 2.1 & 2.2—2.2.2

Project Progress

- Checkout sheet: http://tiny.cc/iral-checkout-sheet
- Schedule wiki: http://tiny.cc/robotics-team-schedules
 - ◆ Look for your team in left-hand nav column
- Milestones: How is each component going?
 - ◆ Contain:
 - Writeups what am I seeing?
 - Demos, images, code, videos, ...
- Is everyone fully involved?

(A final note on) Mobile Kinematics

Given this setup:

$$\xi_{\mathbf{I}} = \begin{bmatrix} x \\ y \\ \theta \end{bmatrix}$$

- lacktriangle We can map $\{X_I,Y_I\}$ (global) \longleftrightarrow $\{X_R,Y_R\}$ (robot)
 - Use rotation matrices and velocity vector in x, y, θ
- Why do we care so much?

(A final note on) Mobile Kinematics

- lacktriangle Goal: take robot from A_I to B_I
 - ◆ We know where we want it in the global setting
 - ◆ What do we actually control? (In what frame of reference?)

 \bullet Point: Convert from A_I to B_I by changing ξ_R

Manipulator Kinematics

Kinematics:

- Geometrically possible motion of a body or system of bodies
- For <u>manipulator</u> robots
 - End effector position and orientation, wrt. an arbitrary initial frame
- A manipulator is moved by changing its...
 - Joints: revolute and prismatic

Manipulator State

- Configuration: where is every point on manipulator?
 - Instantaneous description of geometry of a manipulator
- ◆ State: a set of variables which describe
 - ◆ Change of configuration in time in response to joint forces
 - Control inputs
 - ◆ External influences

Position & Orientation

Position & Orientation

Forward Kinematics & IK

Mobile vs. Manipulator

- Description: how many terms...
 - ...to describe planar position & orientation?
 - ...to describe 3D position & orientation?
- AKA, how many
 - Degrees of freedom

Kinematics Problem

- ◆ The state space is the set of all possible states
- ◆ The state of the manipulator is:
 - A set of variables which describe changes in configuration over time, in response to joint forces + external forces
- Where do joint forces come from?
 - Controllers!
- So, given some set of joints, what signals do we send?
- ◆ In joint space vs. Cartesian space

Goal

- lacktriangle Goal: take robot end effector from A_I to B_I
 - ◆ We know where we want it n the global setting
 - ◆ What do we actually control? (In what frame of reference?)
- ◆ Point: Convert from A_I to B_I

 \bullet Now a 6 \leftarrow \rightarrow 6 transformation

Mobile to Manipulator

Multiframe Kinematics

- ◆ How many frames of reference do we have?
 - We've been translating among frames based on possible motion

◆ How do they relate?

Kinematic Chaining

- ◆ Do you need to do every transformation?
- What do we really care about?

