Kinematics Mobile Kinematics

Bookkeeping

- Quiz 2 now visible
- Upcoming
 - Assignment 2: now Friday 11:59pm
 - Workaround for virtualbox bug distributed
 - Nisha's extra hours: tomorrow (Friday) 2-4; tonight?
 - Check submission link today
 - Projects: groups schedule a meeting with me
- Today
 - General notes on project progress
 - Mobile kinematics and frames of reference
- Reading: Brush up on CB section 1 (from last week)

Project Progress

- What should milestones look like?
 - Demos

3

- Writeups
- Code
- Images
- What should they contain?
- What should each group be doing?
- What's here and what's missing?

Kinematics

Kinematics:

- Geometrically possible motion of a body or system of bodies without consideration of the causes and effects of the motions
 - What's an example of what's not a possible motion?
- For mobile robots: position and orientation
 - Kinematics:
 - ◆ I moved this way. Where am I and where am I pointed?
 - Inverse Kinematics (IK):
 - I'm here, pointed this way. What motions got me there?
 - I want to be here pointed this way. What motions should I make?

Position and orientation wrt. an arbitrary initial frame

Mobile Robot Kinematics

5

Goals

- Find description of mechanical behavior for...
 - Design purposes how do we design it to do what we need?
 - Control purposes how do we then get it to do that?
- Mobile robots can move with respect to environment
 - No direct way to measure the robot's position
 - Position must be integrated over time
 - Leads to inaccuracies of the position (motion) estimate
- Understanding mobile robot motion starts with understanding constraints on the robot's mobility.
- Understanding motion without forces is kinematics.

Wheeled Motion Control

- Requirements for understanding/controlling motion:
 - Kinematic / dynamic model of the robot.
 - Model of interaction between the wheel and the ground
 - Definition of required motion

6

- What speed and position controls are there? Are possible?
- A control policy that satisfies the requirements

Mobile Position & Orientation

Frames of reference: $(V, V) \cdot Clobal$

 $\{X_I, Y_I\}$: Global $\{X_R, Y_R\}$: Robot

Robot: point P

Position (of P): $\{x_{I,l}, y_{I,l}\}$

Heading: $\{\theta\}: I \angle R$

$$\xi_{\rm I} = \begin{bmatrix} x \\ y \\ \theta \end{bmatrix}$$

• Representing robot within an arbitrary initial frame $\begin{bmatrix} v & v \end{bmatrix}$

- Initial frame: $\{X_I, Y_I\}$
- Robot frame: $\{X_R, Y_R\}$
- Robot: $\xi_{I} = \begin{bmatrix} x & y & \theta \end{bmatrix}^{T}$
- Goal

8

 Map motions from global reference frame to local reference frame (and sometimes vice versa)

 $\{X_I, Y_I\} \longrightarrow \{X_R, Y_R\}$

◆ Global reference frame ← →
 local reference frame

 $\{X_I, Y_I\} \longleftrightarrow \{X_R, Y_R\}$

- Map motion from axes of one to axes of the other
 - This mapping depends on current pose
- ◆ Use orthogonal reference frame:

$$R(\theta) = \begin{bmatrix} \cos\theta & \sin\theta & 0\\ -\sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix}$$

◆ Global reference frame ← →
 local reference frame

 $\{X_I, Y_I\} \longleftrightarrow \{X_R, Y_R\}$

- Map motion from axes of one to axes of the other
 - This mapping depends on current pose
- How do you do this mapping?
- How do you perform a rotation in Euclidean spaces?

How do you perform a rotation?

- "A rotation matrix is a matrix that is used to perform a rotation in Euclidean space."
 - Example: rotation matrix *R*

$$R = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

- Rotates points in the xy plane counterclockwise, through θ , around the origin.
- To use *R*, the **position of each point** must be represented by a vector.
- A rotated vector is then obtained with matrix multiplication.

Orthogonal Rotation Matrix

12

Velocity Vector

13

◆ Given some velocity in *I*: x y θ

- We can compute motion along X_R and Y_R.
 - Motion along $X_R = \dot{y}$
 - Motion along $Y_R = -\dot{x}$

Example, cont'd

14

$$R(\theta) = \begin{bmatrix} \cos\theta & \sin\theta & 0\\ -\sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix}$$

$$\dot{\xi_R} = R(\frac{\pi}{2})\dot{\xi_I} = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} \dot{y} \\ -\dot{x} \\ \dot{\theta} \end{bmatrix}$$

 X_I

Mapping Between Frames

Kinematics Models

♦ Goal:

6

• Establish speed $\xi = \begin{bmatrix} x & y & \theta \end{bmatrix}^T$ as a function of the wheel speeds φ_i , steering angles β_i , steering speeds β_i and the geometric parameters of the robot (configuration coordinates)

- $\blacklozenge~\dot{\phi}$ measured in radians/sec, so $\dot{\phi}/2\pi$ is revolutions/sec
- In one revolution wheel translates 2π r linear units
- Translational velocity is $2\pi r(\dot{\phi}/2\pi) = r\dot{\phi}$

Forward Kinematics Models

17

♦ Goal:

• Establish speed $\xi = \begin{bmatrix} x & y & \theta \end{bmatrix}^T$ as a function of the wheel speeds φ_i , steering angles β_i , steering speeds β_i and the geometric parameters of the robot (configuration coordinates)

Forward kinematics:

"'If I do this, what will happen?"

$$\xi = \begin{bmatrix} x \\ y \\ \theta \end{bmatrix} = f(\phi_1, \cdots \phi_n, \beta_1, \cdots \beta_m, \dot{\beta}_1, \cdots \dot{\beta}_m)$$

Inverse Kinematics Models

♦ Goal:

8

• Establish speed $\xi = \begin{bmatrix} x & y & \theta \end{bmatrix}^T$ as a function of the wheel speeds φ_i , steering angles β_i , steering speeds β_i and the geometric parameters of the robot (configuration coordinates)

Inverse kinematics:

"If I want this to happen, what should I do?"

$$\begin{bmatrix} \phi_1 & \cdots & \phi_n & \beta_1 & \cdots & \beta_m \end{bmatrix} = f(x, y, \theta)$$

Differential Drive Model

19

The robot has:

- Two wheels radius r
- Point P centered between wheels
- ♦ Each wheel is distance I (ℓ) from P
- \blacklozenge Wheels have rotational velocity $\dot{\phi}_1$ and $\dot{\phi}_2$
- Forward kinematic model

$$\dot{\boldsymbol{\xi}_{\mathsf{I}}} = \begin{bmatrix} \dot{\mathbf{x}} \\ \dot{\mathbf{y}} \\ \dot{\boldsymbol{\theta}} \end{bmatrix} = f(\ell, r, \theta, \dot{\boldsymbol{\varphi}}_{1}, \dot{\boldsymbol{\varphi}}_{2})$$

Mapping from global to local is

$$\dot{\xi}_{R} = R(\theta) \dot{\xi}_{I}$$
, so $\dot{\xi}_{I} = R^{-1}(\theta) \dot{\xi}_{R}$

Differential Drive (cont.)

- Since $\xi_R = R(\theta) \xi_I$, $\xi_I = R^{-1}(\theta) \xi_R$
- Compute how wheel speeds influence ξ_{R}
- Translate to ξ_{I} via $\mathbf{R}^{-1}(\theta)$
- Contribution to translation along X_{R}
- ♦ If one wheel spins and the other is still:
 - P will move at half the translational velocity of the wheel: $1/2r\phi_1$ or $1/2r\phi_2$
 - Sum these for both wheels spinning
 - $X_{\rm R} = 1/2r\dot{\phi}_1 + 1/2r\dot{\phi}_2$

What if they spin in opposite directions? Same direction?

Differential Drive (cont.)

• Wheel rotation never contributes to Y_R . Why?

- What about θ ?
 - Wheel I spin makes robot rotate counterclockwise
 - Pivot around wheel 2 (left wheel)
 - \blacklozenge Translational velocity is $r\dot{\phi}$
 - Traces circle with radius 21
 - Rotational velocity $2\pi * r\dot{\phi} / (2\pi * 2I) = r\dot{\phi} / 2I$
 - Wheel 2 spin makes robot rotate clockwise
 - Sum to get net effect: $\dot{\theta} = (r\dot{\phi}_1 r\dot{\phi}_2) / 2I$

$$\dot{\xi}_{I} = R^{-1}(\theta) \dot{\xi}_{R} = R^{-1}(\theta) \begin{bmatrix} r(\dot{\phi}_{1} + \dot{\phi}_{2}) / 2 \\ 0 \\ r(\dot{\phi}_{1} - \dot{\phi}_{2}) / 2 \end{bmatrix}$$

Wheel Constraints: Assumption

- Movement is on a horizontal plane
- Wheels:
 - Make point contact
 - Are not deformable
 - Are connected to rigid chassis
 - Have steering axes orthogonal to surface being moved on
- Pure rolling
- No slipping, skidding or sliding
- No friction in rotation around contact point

Wheels: Rolling Constraint

 Y_R

Rolling constraint: all motion along wheel plane (in the direction of v) must be accompanied by the same amount of wheel spin so that there is pure rolling at contact point

Wheels: Sliding Constraint

25

 Y_R

Sliding constraint: there can be no motion orthogonal to wheel plane (perpendicular to v), otherwise wheel skids

Wheels: Round Constraint

Round Constraint (2)

Round Constraint (3)

Round Constraint (4)

Sliding Constraint (2)

30

Example

$$\begin{bmatrix} \sin(\alpha + \beta) - \cos(\alpha + \beta) & (-l)\cos\beta \end{bmatrix} R(\theta)\dot{\xi}_I - r\dot{\phi} = 0 \\ \begin{bmatrix} \cos(\alpha + \beta) & \sin(\alpha + \beta) & l\sin\beta \end{bmatrix} R(\theta)\dot{\xi}_I - r\dot{\phi} = 0 \end{bmatrix}$$

- \blacklozenge Suppose that the wheel A is in position such that α = 0 and β = 0
- Puts contact point of wheel on X_{l} , with plane of the wheel oriented parallel to Y_{l}
- If $\theta = 0$, then the sliding constraint reduces to:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = 0$$

Steered Standard Wheel

Castor (Offset) Wheel

33 Wheel contact point at B Y_R Steering at A Rigid connector AB $\beta(t)$ R Robot chassis φ, *r* v α

P

 X_R

Not Omnidirectional: Why?

$$\begin{bmatrix} \sin(\alpha + \beta) - \cos(\alpha + \beta) & (-l)\cos\beta \end{bmatrix} R(\theta)\dot{\xi}_I - r\dot{\phi} = 0 \\ \begin{bmatrix} \cos(\alpha + \beta) & \sin(\alpha + \beta) & l\sin\beta \end{bmatrix} R(\theta)\dot{\xi}_I - r\dot{\phi} = 0 \end{bmatrix}$$

- Can constraints be satisfied for ANY ξ_{l} ?
- How will constraints be used?
- Once again, maneuverability / capability is...?

Inversely proportional to complexity of control Capability $\propto \frac{I}{Control Complexity}$