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Bookkeeping 
u  Quiz 2 now visible

u  Upcoming
u  Assignment 2: now Friday 11:59pm

u  Workaround for virtualbox bug distributed
u  Nisha’s extra hours: tomorrow (Friday) 2-4; tonight?
u  Check submission link today

u  Projects: groups schedule a meeting with me

u  Today
u  General notes on project progress
u  Mobile kinematics and frames of reference

u  Reading: Brush up on CB section 1 (from last week)
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Project Progress 
u  What should milestones look like?

u  Demos
u  Writeups
u  Code
u  Images

u  What should they contain?

u  What should each group be doing?

u  What’s here and what’s missing?
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Kinematics 
u  Kinematics:

u  Geometrically possible motion of a body or system of bodies 
without consideration of the causes and effects of the motions
u  What’s an example of what’s not a possible motion?

u  For mobile robots: position and orientation
u  Kinematics: 

u  I moved this way.  Where am I and where am I pointed?
u  Inverse Kinematics (IK):

u  I’m here, pointed this way.  What motions got me there?
u  I want to be here pointed this way.  What motions should I make?

u  Position and orientation wrt. an arbitrary initial frame
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Mobile Robot Kinematics 
u  Goals

u  Find description of mechanical behavior for…
u  Design purposes – how do we design it to do what we need?
u  Control purposes – how do we then get it to do that?

u  Mobile robots can move with respect to environment
u  No direct way to measure the robot’s position
u  Position must be integrated over time
u  Leads to inaccuracies of the position (motion) estimate

u  Understanding mobile robot motion starts with 
understanding constraints on the robot’s mobility.

u  Understanding motion without forces is kinematics.
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Wheeled Motion Control 
u  Requirements for understanding/controlling motion:

u  Kinematic / dynamic model of the robot.
u  Model of interaction between the wheel and the ground
u  Definition of required motion

u  What speed and position controls are there? Are possible?
u  A control policy that satisfies the requirements

Global Map 

Perception Motion Control 

Cognition 

Real World 
Environment 

Localization 

Path 
Local Map 

"Position"  

Environment Model 
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Mobile Position & Orientation 
Frames of reference:

{XI ,YI}: Global
{XR ,YR}: Robot

Position (of P):
{xI,1 , yI,1}

Heading:
{θ}: I ∠ R

x
1

y
1

P

θ

x1

y1

P

θRobot: point P

ξI = 
x
y
θ
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u  Representing robot within an arbitrary initial frame
u  Initial frame:
u  Robot frame:
u  Robot:

u  Goal
u  Map motions from global reference �

frame to local reference frame (and�
sometimes vice versa)

Mapping Between Frames 
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u  Global reference frame ßà 
local reference frame

u  Map motion from axes of one to 
axes of the other
u  This mapping depends on current pose

u  Use orthogonal reference frame:

Mapping Between Frames 
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u  Global reference frame ßà 
local reference frame

u  Map motion from axes of one to 
axes of the other
u  This mapping depends on current pose

u  How do you do this mapping?

u  How do you perform a rotation 
in Euclidean spaces?

Mapping Between Frames 
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u  How do you perform a rotation?

u  “A rotation matrix is a matrix that �
is used to perform a rotation in 
Euclidean space.”
u  Example: rotation matrix R

Mapping Between Frames 

YR

XR
YI

XI

θ

P

YR

XR

θ

YI

XI

•  Rotates	points	in	the	xy	plane	counter-
clockwise,	through	θ,	around	the	origin.	

•  To	use	R,	the	position	of	each	point	must	be	
represented	by	a	vector.	

•  A	rotated	vector	is	then	obtained	with	matrix	
multiplication.	
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u  This mapping function is called�
�
�
because it depends on θ.

Orthogonal Rotation Matrix 
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( ) I R  ξ θ 
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cos(pi/2)=0
sin(pi/2) =1
tan(pi/2) =infty
cot(pi/2) =0
csc(pi/2)=1
sec(pi/2)=inftyR π / 2( ) =

0 1 0
−1 0 0
0 0 1
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orthogonal	
rotation		
matrix	

Why?	
because	
trig!	
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u  Given some velocity in I:

u  We can compute motion 
along XR and YR.
u  Motion along XR= 
u  Motion along YR= 

Velocity Vector 

YR

XR
YI

XI

θ = π/2 
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Example, cont’d 

= π/2 
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Mapping Between Frames 

ξR = R(θ) ξI =  y 
x 

θ 
. 
. 
. 

 cosθ  sinθ  0 
-sin θ  cosθ  0 
   0    0  1 

. . 

θ 

A 

B 

What is |A|cosθ ? 

P

YR

XR

θ

YI

XI

= 

. . 
. . xcosθ + ysinθ 

-xsinθ + ycosθ 
          θ 

. 

Recall 
•  cos(π / 2 - θ) = sin(θ) 
•  cos(π / 2 + θ) = -sin(θ) 
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u  Goal:
u  Establish speed                       as a function of the wheel 

speeds    , steering angles     , steering speeds     and the 
geometric parameters of the robot (configuration coordinates)

u  ϕ measured in radians/sec, so ϕ/2π is revolutions/sec

u  In one revolution wheel translates 2πr linear units

u  Translational velocity is 2πr(ϕ/2π) = rϕ

Kinematics Models 

ϕ . β 
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Forward Kinematics Models 
u  Goal:

u  Establish speed                       as a function of the wheel 
speeds    , steering angles     , steering speeds     and the 
geometric parameters of the robot (configuration coordinates)

u  Forward kinematics:

    “If I do this, what will happen?”
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Inverse Kinematics Models 

) , ,   ( θ 
. . . 

y x f [ ]     1 1 1 β β β β ϕ ϕ 
. 

… 
. … . … . T 

m m n = 

u  Goal:
u  Establish speed                       as a function of the wheel 

speeds    , steering angles     , steering speeds     and the 
geometric parameters of the robot (configuration coordinates)

u  Inverse kinematics:

    “If I want this to happen, what should I do?”
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Differential Drive Model 
u  The robot has:

u  Two wheels - radius r
u  Point P centered between wheels
u  Each wheel is distance l (l) from P
u  Wheels have rotational velocity ϕ1 and ϕ2

u  Forward kinematic model

u  Mapping from global to local is

           ξR = R(θ) ξI , so ξI = R-1(θ) ξR

. . 

ξI = y 
x 

θ 
. 
. 
. 

. 
= f(l, r, θ, ϕ1, ϕ2) 

. . 

. . . . 

r 
l 

p . 

XR 

YR 
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Differential Drive (cont.) 
u  Since ξR = R(θ) ξI  ,  ξI = R-1(θ) ξR

u  Compute how wheel speeds influence ξR

u  Translate to ξI via R-1(θ)

u  Contribution to translation along XR

u  If one wheel spins and the other is still:
u  P will move at half the translational velocity �

of the wheel: 1/2r ϕ1 or 1/2r ϕ2
u  Sum these for both wheels spinning

u  XR = 1/2rϕ1 + 1/2rϕ2

u  What if they spin in opposite directions? Same direction?

. . . . . 

. 

. r 
l 

p . 

XR 

YR 

. . . 

. 

. 
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u  Wheel rotation never contributes to YR.  Why?

u  What about θ?
u  Wheel 1 spin makes robot rotate counterclockwise
u  Pivot around wheel 2 (left wheel)
u  Translational velocity is rϕ
u  Traces circle with radius 2l
u  Rotational velocity 2π * rϕ / (2π * 2l) = rϕ / 2l 
u  Wheel 2 spin makes robot rotate clockwise
u  Sum to get net effect: θ = (rϕ1 - rϕ2) / 2l

Differential Drive (cont.) 

. 

. . 

. . . 
r 

l 
p . 

XR 

YR 
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Differential Drive: The Punchline 

ξI = R-1(θ) ξR = R-1(θ) 
r(ϕ1 + ϕ2) / 2 

0 
r(ϕ1 - ϕ2) / 2l 

. . 
. . 

. . 
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Wheel Constraints: Assumptions 
u  Movement is on a horizontal plane

u  Wheels:
u  Make point contact
u  Are not deformable
u  Are connected to rigid chassis
u  Have steering axes orthogonal�

to surface being moved on

u  Pure rolling 

u  No slipping, skidding or sliding 

u  No friction in rotation around contact point

r ϕ 
.   

v 

P

YR

XR

θ

YI

XI
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Wheels: Rolling Constraint 
Rolling constraint: all motion along wheel plane (in 
the direction of v) must be accompanied by the 
same amount of wheel spin so that there is pure 
rolling at contact point

Now	we	
discuss	

&ixed	wheel	
A
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Wheels: Sliding Constraint 
Sliding constraint: there can be no motion 
orthogonal to wheel plane (perpendicular to v), 
otherwise wheel skids
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Wheels: Round Constraint 
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Round Constraint (2) 

Angle between XR and v is
α + β - π/2



28 

Round Constraint (3) 

Angle between YR and v is
α + β - π
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. 

Round Constraint (4) 

When robot rotates, A has translational velocity lθ.

Component in direction of  V is  -lθcosβ.  
Why? 

Why? 
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Sliding Constraint (2) 
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Example 

u  Suppose that the wheel A is in position such that �
α = 0 and β = 0

u  Puts contact point of wheel on XI, with plane of the 
wheel oriented parallel to YI

u  If θ = 0, then the sliding constraint reduces to:
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Steered Standard Wheel 
u This has all been for fixed wheels.
u For steered standard (not offset) wheels:

u Same as fixed wheel, but β changes over time.  
u Instantaneously, it is fixed.

(t)
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Castor (Offset) Wheel 
u Wheel contact point at B
u Steering at A
u Rigid connector AB
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Not Omnidirectional: Why? 
. 

u  Can constraints be satisfied for ANY ξI?

u  How will constraints be used?

u  Once again, maneuverability / capability is…?

    Inversely proportional to complexity of control

Capability Control Complexity
1

∝

. 


