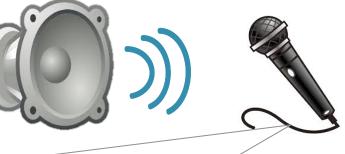

Kinematics Mobile Kinematics

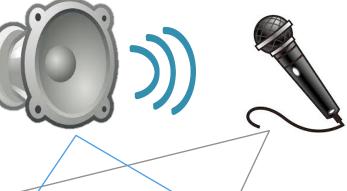
Bookkeeping


- Upcoming
 - Assignment 2
- Quiz 2
 - ◆ Curve TBD: probably ~8%
 - ◆ A note on number/length of answers
- ◆ Today
 - Quiz 2 review
 - Mobile Robot Kinematics
- ◆ Reading: SNS 3.2 (should now have 3.1-3.3)

About That Microphone

- ◆ 5-hertz sampling rate
- Sequential notes
 - Playing one note per second
- ◆ Every time a change is detected:
 - Output changes color
 - Vertical bar added
 - ◆ Gray = no tone is detected

Sensor output


About That Microphone

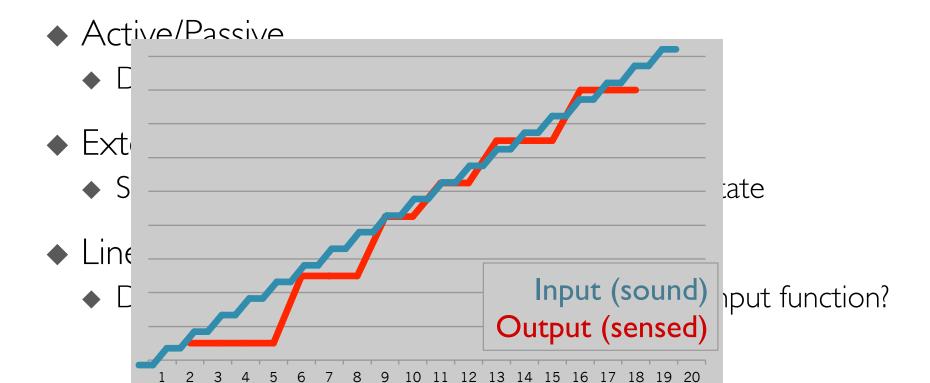
- ◆ 5-hertz sampling rate
- Sequential notes
 - Playing one note per second
- ◆ Every time a change is detected:
 - Output changes color
 - Vertical bar added
 - ◆ Gray = no tone is detected

======= | ====== | ===== |

Actual Sensor world output

A4 B4 C4 D4 E4 F4 G4 A5 B5 C5 D5 E5 F5 G5 A6 B6 C6 D6 E6 F6

Characterizing Sensors



- Active/Passive
 - Does it put energy out into the world?
- Exteroceptive/Proprioceptive
 - Senses the world around it, vs. sensing internal state
- Linear/Nonlinear
 - Does the output function vary with respect to input function?

6

Characterizing Sensors

A4 B4 C4 D4 E4 F4 G4 A5 B5 C5 D5 E5 F5 G5 A6 B6 C6 D6 E6 F6

====== | ====== | ====== | --

Detecting Changes

- Doesn't detect a change every note because...
 - Sampling Rate: how often the sensor can take a reading
 - Notes are playing I/second
 - ◆ Sensor is 5 Hz − 5 samples per second
 - Cross-Sensitivity: sensitive to something other than target signal
 - ◆ E.g., a mic is supposed to pick up sound but also picks up EM noise
 - Sensitivity: Ratio of output change to input change
 - ♦ How much change in world affects change in sensor readings
 - E.g., does the reading change every note? Every 1/10th note?

Classification

The way this microphone reports output suggests that it is an:

- Incremental sensors
 - Reports an incremental change (up/down, warmer/cooler)
- Absolute sensors
 - Unambiguously reports its state
- ◆ This mic:
 - Every time a change is detected, output changes color, vertical bar added

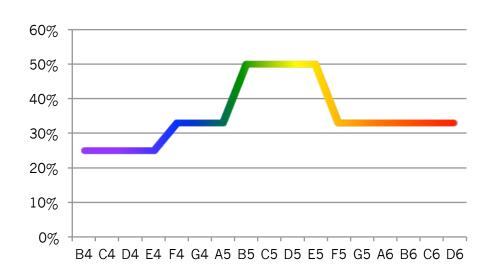
Sidebar: is this how microphones work?

A4 B4 C4 D4 E4 F4 G4 A5 B5 C5 D5 E5 F5 G5 A6 B6 C6 D6 E6 F6

Range and Resolution

- ◆ Range of a sensor:
 - Upper limit to lower limit
- Resolution
 - Minimum measurable difference between any two values

Representing Uncertainty



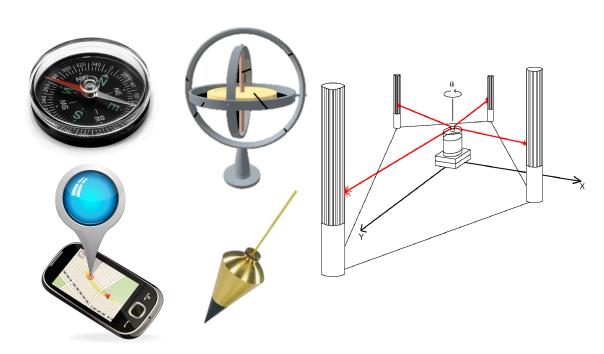
- "A probability mass function gives the probability that a discrete random variable is equal to some value."
 - Given green output, what is the probability the input is B5?
 - ◆ What is the hidden variable we want?
 - ◆ The thing we don't know for certain but are trying to sense.
- Given some input, what is the probability of the output being a particular note?
- What does that look like across all notes in the range?

Representing Uncertainty

 Graph: given some input, likelihood of knowing the correct output

- Unimodal?
 - One hump
- Bimodal?
 - Two humps
- □ Zero mean?
 - Equally likely to be wrong up or down
- Asymmetric?
 - Same error distribution above and below zero

Depth / Range Sensing



- Structured Light: display a known pattern of light and dark and measure geometric distortion.
 - ◆ Kinect
- ◆ Time-of-flight: emit a wave and measure time for it to reach something and reflect back.
 - Laser range-finder, Sonar, Kinect 2
- Stereo: two calibrated cameras see a scene from different angles and calculate depth based on disparities.
 - Humans, Bumblebee sensor

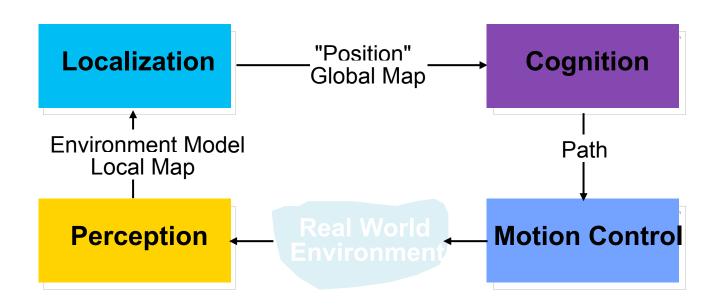
Heading Sensor

- ◆ Tells you what direction you are pointed
 - ◆ With respect to some frame of reference
 - ◆ Is this position or orientation?
- What do the following tell you?
 - Compass
 - Gyroscope
 - Inclinometer
 - **GPS**
 - Location beacons

Image Processing

- What type of processing has been performed here?
- We looked at edge detection, corner detection, blob finding

Types of Errors



- ◆ Systematic error → deterministic failures
 - Caused by factors that can (in theory) be modeled
 - Can be corrected with calibration
- ◆ Random error → non-deterministic failures
 - No modeling or prediction possible
- How would you correct for...
 - "Fisheye" distortion on a camera lens.
 - Background noise picked up by a microphone.
 - Thermometer readings that are occasionally too high or too low.
 - A range-finding sensor that reads things as being too close.
 - Sonar distortion in an unfamiliar underwater environment.

Wheeled Motion Control

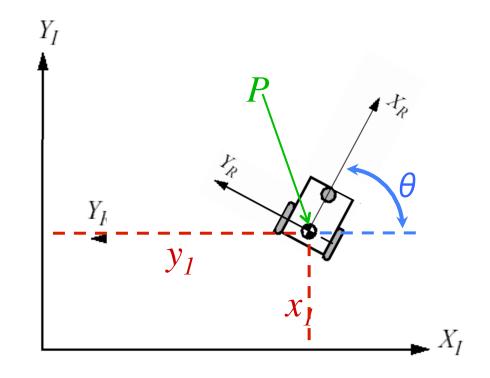
- Requirements for Motion Control
 - Kinematic / dynamic model of the robot
 - Model of interaction between the wheel and the ground
 - Definition of required motion \rightarrow speed & position control
 - A control law that satisfies the requirements

Mobile Robot Kinematics

Aim

- Description of mechanical behavior of the robot for:
 - Design purposes how do we design it to do what we need?
 - ◆ Control purposes how do we then get it to do that?
- Mobile robots can move with respect to environment
 - No direct way to measure the robot's position
 - Position must be integrated over time
 - Leads to inaccuracies of the position (motion) estimate
- Understanding mobile robot motion starts with understanding constraints on the robot's mobility

Mobile Position & Orientation


Frames of reference:

 $\{X_I,Y_I\}$: Global $\{X_R,Y_R\}$: Robot

Robot: point P

Position (of P): $\{x_{I,I}, y_{I,I}\}$

Heading: $\{\theta\}: I \angle R$

$$\xi_{\mathbf{I}} = \begin{bmatrix} x \\ y \\ \theta \end{bmatrix}$$