CMSC 479/679 Fall 2014

Dr. Cynthia Matuszek

My Research Topics

Robotics

 How can we go from industrial robots to useful robots in human environments? (Schools, cars, homes...)

Natural Language Processing

 How can computers learn to understand and speak human languages (English)?

Artificial intelligence

 How to get computers to behave in ways that we would consider to be "intelligent"

Human-Robot Interaction (HRI)

Today's Class

- Introduction and goals
- Review of syllabus and schedule
- Academic honesty policy
- Expectations

3

- Topics we'll cover
- What is a robot?

Goals of This Course

- Provide an overview of big problems in robotics
- Understand the elements of a robot system
- Get hands-on experience with robot software, hardware, and problem-solving
- Understand what robots can do now, could do better, and will be doing in future

Classroom Policies

Be courteous to classmates and instructors.

- No devices in use except when specified.
 - You don't learn as much.
 - ◆ Yeah, no, you really don't.
 - People around you don't learn as much.
 - http://tiny.cc/devices-in-class
- Don't eat in the classroom.
 - Distracting to everyone.

Syllabus

6

- http://tiny.cc/robotics-syllabus
 - Links to schedule
 - Coursework, grading, and policies
- Office hours:
 - Monday 9:00-10:00pm,
 - Tuesday 10:00-11:00am
 - By appointment.
- Lab hours: TBD
- TA: Nisha Pillai

Write this down, it's important!

Grading

Class participation	10%
Team participation	5%
Homework	20%
Quizzes	5%
Projects	50%
Final exam	10%
Extra credit	(up to) 3%

Assignment Policies

- This class is primarily paperless.
- Most assignments will be turned in electronically
 - Blackboard, online forms, or email
 - I0% penalty for failing to follow turn-in instructions
- Usually due at 11:59pm the day before class
 - Late: 20% off per day
- Time management

8

- Extensions are sometimes available
- Please talk to me!

Teamwork

- Projects will be done in teams of 4-5
- Teams will be assigned based on skills and interests
 - http://tiny.cc/robotics-survey-l
- Teams will:
 - Meet regularly
 - Do in-class and out-of-class group assignments
 - Share effort on project elements reasonably
 - Occasionally describe who's doing what

Academic Integrity

- ◆ I hate policing students, and I hope not to have to do so.
 - But, it is extremely unfair to the other students, so...

• I take integrity very seriously.

- Fabrication: Fabricating sources or any other information in your assignments is academically dishonest.
- Aiding and abetting: Providing another student with answers, or helping them to cheat.
- Plagiarism: Using a source (for code, blocks of text, images, or designs) without appropriate citations and recognition.
- Copying: Using another student's work for an assignment, exam, or project without acknowledgment.
- You can do a LOT of collaboration in this class!

Integrity and Teamwork

- ◆ 50% of your grade in this class involves teamwork.
- How can teamwork be unethical?
 - Not sharing the workload evenly
 - Not contributing to the group
 - Misrepresenting who did what
 - Working together on individual assignments
- Falsely claiming someone contributed to the group.

Don't make me handle a cheating case.

Expectations

Attend class regularly

- If you will miss class for a good reason (work commitment, religious holiday, serious illness), drop me an email in advance
- Complete the assigned reading before coming to class
 Class participation is hard otherwise!

Participate

- Participate actively in class discussions
- Let other people participate, and listen attentively
- Ask questions!
- Read and post to the forum

Projects

- Several broad areas are possible
 - E.g., perception, robot building, manipulation, HRI, ...
- Team-based
- Will (almost certainly) not all be the same
 - Your team will come up with 2-3 ideas and meet with me
 - I will provide ideas and examples
- Will be broken down into milestones, reports, demos, and final presentation
- We'll all know more Tuesday!

Communications

For help:

- Post to the forum (if appropriate)
- Come to office hours
- Drop by ITE 331
- Email the instructor
- Email the TA (if appropriate)

Email:

- ♦ 24-hour cooling period
- Email must include a link to your forum post.

Communications

- Developing this class is an ongoing project.
 I genuinely value your continual input!
 - Suggestions/criticisms/complaints/compliments?

Policies	Assignments	Grading
Course Structure	Workload	Groups
In-class Activities	Topics	Readings

5

 Post on the forum, email me directly, email/talk to Nisha, slip a note under my door, smoke signals, ...

General Topics

- Overview and Concepts
- Sensing
- Actuators
- Control software
- Motors/motor control
- Locomotion
- Manipulation

- Kinematics
- Localization
- Motion planning
- Machine learning
- Hardware Design
- Cognition
- Human-robot interaction

For Next Class

Read the academic integrity page

- Read the syllabus
 - http://tiny.cc/robotics-syllabus
- Make sure the schedule makes sense
- Fill out the course survey
 - http://tiny.cc/robotics-survey-1 (posted 8/28)
- Read S&N Chapter I

Familiar Robots

18

Sentinel. X-Men, Days of Future Past: 2014

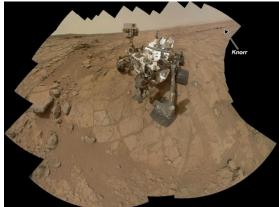
ED-209. Robocop: 2014

Wall•E: 2008

Data. Star Trek: TNG: 1987

Optimus Prime. Transformers: 2007-current

Some 21st century robots



What is a Robot?

"A robot is a reprogrammable, multifunctional manipulator designed to move material, parts, tools, or specialized devices through variable programmed motions for the performance of a variety of tasks." (Robot Institute of America)

- Autonomous? Humanoid?
- Physical?

20

- Sensory?
- Human-friendly?
- Intelligent?

- Mobile?
- Manipulative?
- What else?

Robots Up to Now

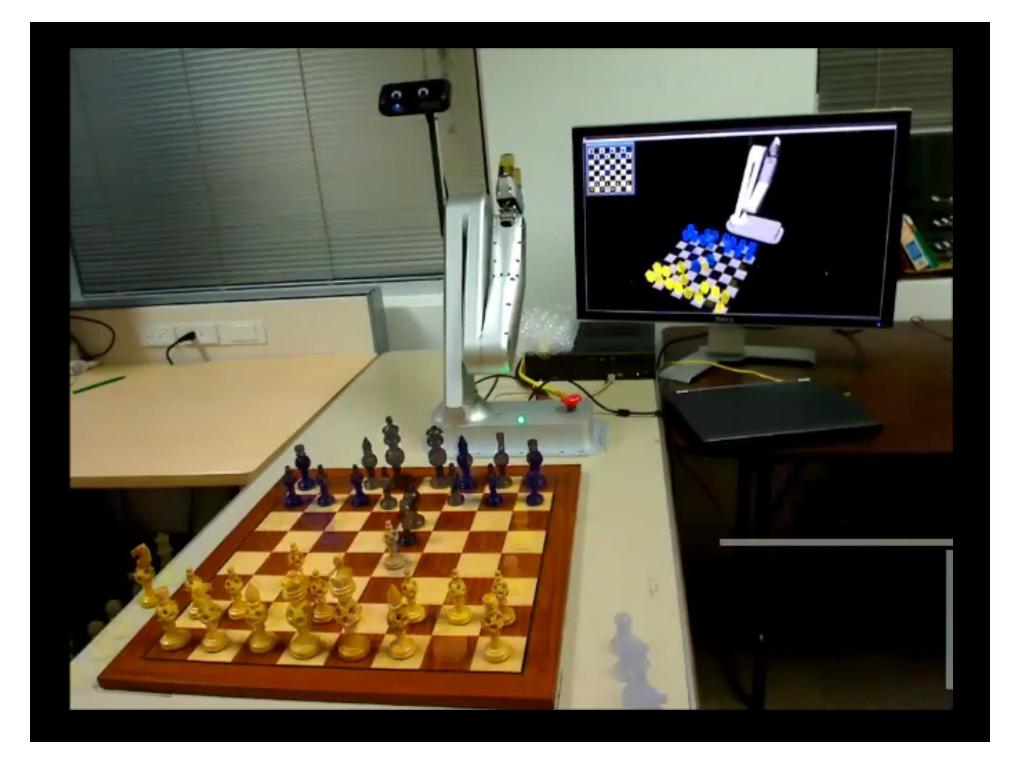
- Robots now:
 - Expensive
 - Complex
 - Special-purpose
- Environments
 - Dedicated
 - Constrained
- Use and Management
 - Controlled by trained experts
 - Slow and expensive to reconfigure/repurpose

Robots Now

22

- As technology improves:
 - Smaller
 - Cheaper
 - More broadly capable
- Can consider deploying in human-centric environments
 - Homes
 - Schools
 - Care facilities

• Requires: flexibility and human-robot interaction (HRI).


What Should They Do?

- ◆ Robots are moving away from factory floors to...
 - Entertainment, toys
 - Homes (personal robotics)
 - Medical, surgery
 - Industrial automation (mining, harvesting, warehouses, ...)
 - Hazardous environments (space, underwater, battlefields, ...)
 - Roads

23

- Research Trends
 - Manipulation of everyday objects
 - Complex household tasks
 - Object recognition, mapping, interaction
 - Human robot interaction

