Manipulation – *Grasping* Actuators – *20,000 feet*

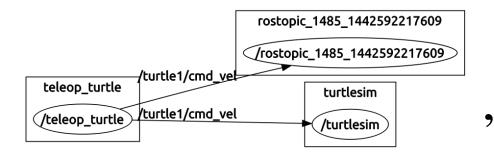
Bookkeeping

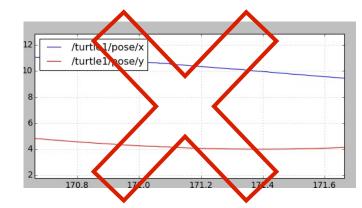
- \bullet Assignment, plan draft \leftarrow discussion next few slides
- Class participation
 - Relatively low weight, small and coarse-grain
 - Designed to let you know if you have a prob
- Upcoming
 - Project final draft due tomorrow (7th Oct.)
 - Assignment 2 posted tonight (21st Oct.)
- Quiz 2: Blackboard
 - Posted Friday, due Monday night (<u>http://tiny.cc/bb-quizzes</u>)
- Reading: [KINEMATICS]

Ask questions, attend talks, answer questions, post Q's or A's, post random interesting stuff, ...

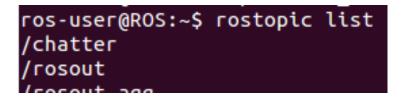
> Should be able to knock out fairly quickly unless you're missing research

Assignment 1: Tutorials


Keep up


on Piazza!

- Intermediate 4: Nisha will coverTuesday
 - for various cases


3

6b: rqt_graph , not rqt_plot

Intermediate 4: missing / chatter topic:

Assignment 1: Writeups

Writeup

1. A <u>writeup</u> of the process. This should be **a PDF file** 300-500 words, containing:

- How, on what, and using what media you did Step 1. (Which choice in Step 1, what computer
- The names of anyone who helped you (in the class or not) with Step 1, and a little about how/
- The names of anyone you helped, and a little about how/with what.
- Approximately how much time you spent on each step of the process took.

••

- The things you found hardest and any errors/problems you ran into.
- If you didn't give/receive help, please say so
- Not everyone gave times for non-setup steps
 - Common enough that I only took off a point.

General notes

- Put name on things
- Check file types

Plans: Common Problems

- Does it answer: Where are you putting your effort, starting now?
- Where is work concentrated?
- Goals and subgoals

5

- Subgoals are specific and testable
 - Stretch goals: what might you get to, or want to get to if you had more time?
- Simplification: how would you demo without this working?
 - 2. Human detection using vision (4 weeks)
 - a. Take video stream of hallways with people and save (for development).
 - b. Use OpenCV on non-Pi computer on test stream.
 - c. Show using OpenCV to detect people in images (using HOG).
 - d. Initial simplification: let the human controller do the people-spotting.
 - e. Stretch goal: stream composite video from camera in real-time.

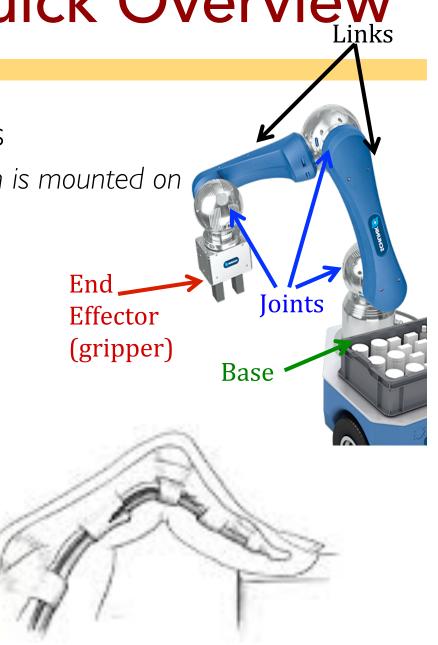
Point of plan:

decide and describe what you are going to do.

Project Plans: Schedule

Goal: on 10/14, 10/28, 11/11, 11/24, 12/1, and 12/8, we have a clearly defined check: are things on track?
If not, that's when we know to meet and replan.

They should be:

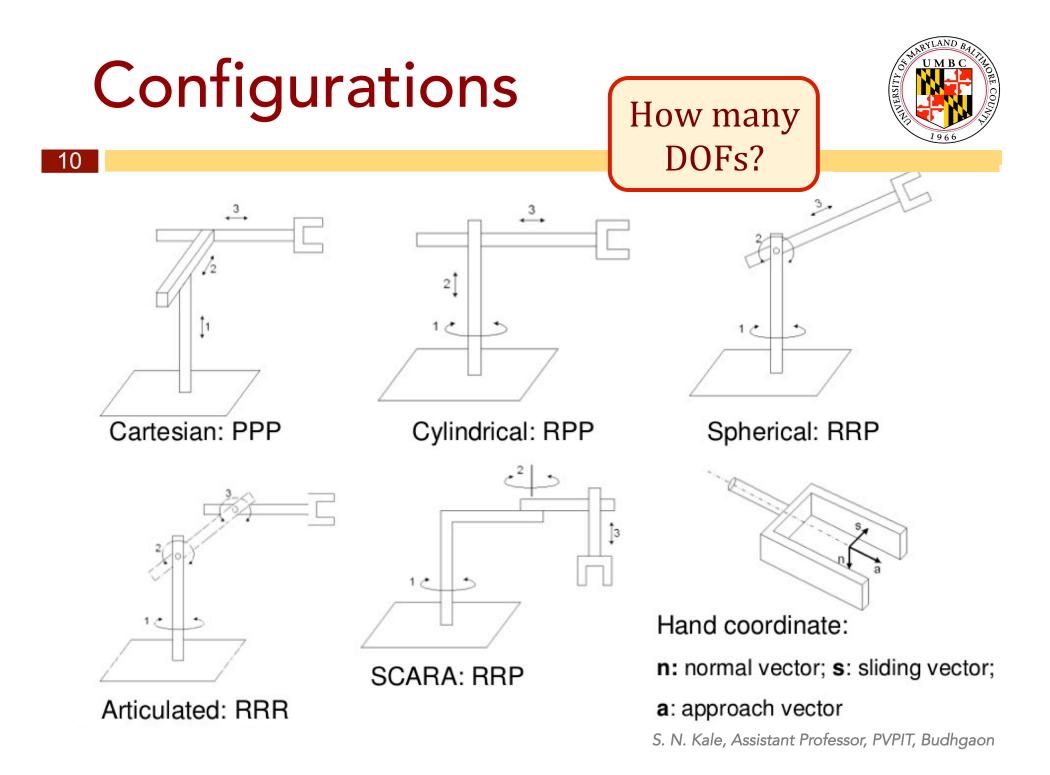

Detailed

6

- "Ubuntu running on raspberry pi", not "software integrated"
- Testable / demonstrable
 - "Programming robot underway" is not testable
 - Possible tests: demo; writeup or architecture diagram; screenshots; ...
- Shopping list give links!
 - If you don't know what works best or what exactly you want, start Googling.

Manipulation: Quick Overview

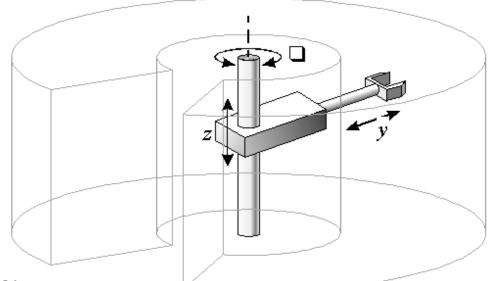
- Links, joints, base, end effectors
 - Base is base of arm, not thing arm is mounted on
- Actuator
 - Generates motion or force
 - Usually a motor
- Actuation
 - How are parts made to move?
 - Example: tendon-driven
 - Not 1:1 with actuators



Manipulation: Quick Overview

Joints, P(rismatic) & R(evolute)

- Prismatic (denoted P): sliding / translational / linear; allows a linear relative motion between 2 links
- Revolute (denoted R): R
 Rotational; allows relative rotation between two links
 Combinations of these describe 3D arm configuration
- All possible configurations = configuration space Spong, Hutchinson, Vidyasagar. Robot Modeling and Control. 2006.


Workspaces

11

Configuration only provides geometry

Workspace

- Set of all possible positions of end effector
- Dexterous workspace
 - Set of points where end effector can be any orientation

Spong, Hutchinson, Vidyasagar. Robot Modeling and Control. 2006. engineerjau.wordpress.com/2013/07/07/on-the-basis-of-workspaces-of-robotic-manipulators-part-1

Manifolds and Motion

- Manifold: the surface an end effector can trace out
- Motion: point-to-point or manifold following

www.iri.upc.edu/research/webprojects/cuikweb/aims.php Spong, Hutchinson, Vidyasagar. Robot Modeling and Control. 2006. engineerjau.wordpress.com/2013/07/07/on-the-basis-of-workspaces-of-robotic-manipulators-part-1

Monkman, Hesse, Steinmann, Schunk. Robot Grippers. 2007. news.nationalgeographic.com/news/2009/05/090505-robot-hand-picture.html

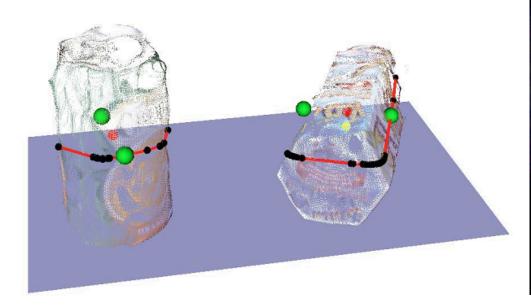
Grippers

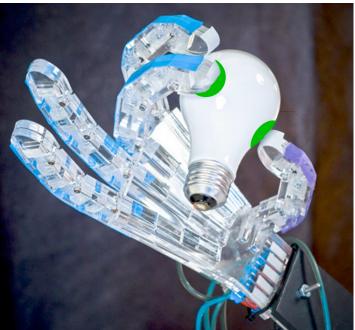
Four categories of robot grippers: grasping

- Impactive
 - ◆ Jaws or claws which physically grasp by direct impact upon the object
- Ingressive
 - Pins, needles or hackles penetrate surface
 - Textile, carbon and glass fibre handling
- Astrictive
 - Suction forces applied to surface
 - Vacuum, magneto- or electroadhesion
- Kontugutive / Contigutive
 - Requiring direct contact for adhesion
 - Glue, surface tension or freezing

Universal Gripper: Video

4


https://www.youtube.com/watch?v=0d4f8fEysf8


Grasps

15

- Grasp:
 - ◆ A set of contact points on an object's surface
 - Goal: constrain object's movement

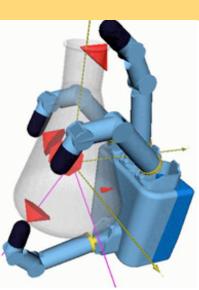
www.intechopen.com/books/robot-arms/robotic-grasping-of-unknown-objects1 news.nationalgeographic.com/news/2009/05/090505-robot-hand-picture.html

www.madry.pro León, Morales, Sancho-Bru. Robot Grasping Foundations. 2013

Grasps

16

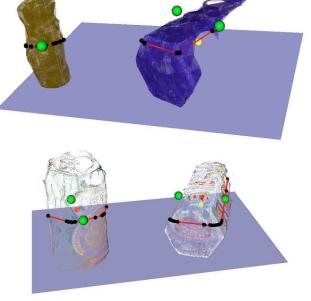
Grasps vary by: Drinking Hand (gripper) Object being grasped Topology, topography, mass, surface, ... Type of motion desired YES NO For each hand or Tool use hand/object pair: • Where to grasp it? ◆ How hard? • Then what? YES NO Additional constraints (e.g., don't spill)



The Grasping Problem

- Grasps are not obvious (easy to calculate)
 - Any given object has arbitrary contact points
 - Hand has geometry constraints, etc.
- Synthesized trial-and-error
 - For a hand/object pair:
 - Different grasp types planned and analyzed

Grasp Planning

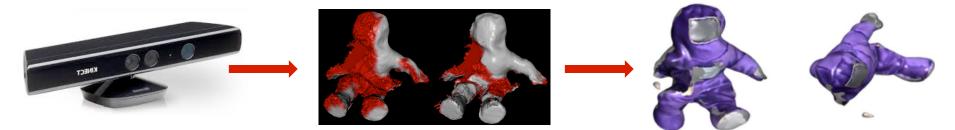

 Grasp synthesis: Find suitable set of contacts, given

- Object model
- Constraints on allowable contacts
- Grasp points are determined
 - Mostly assume point contacts
 - Larger areas usually discretized
 - Contact model defines the force the manipulator exerts on contact areas

Grasp analysis

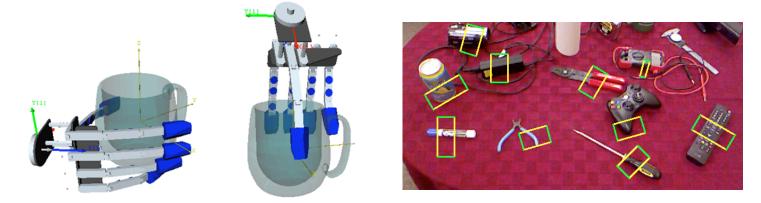
Is that grasp stable?

León, Morales, Sancho-Bru. Robot Grasping Foundations. 2013. www.intechopen.com/books/robot-arms/robotic-grasping-of-unknown-objects1



18

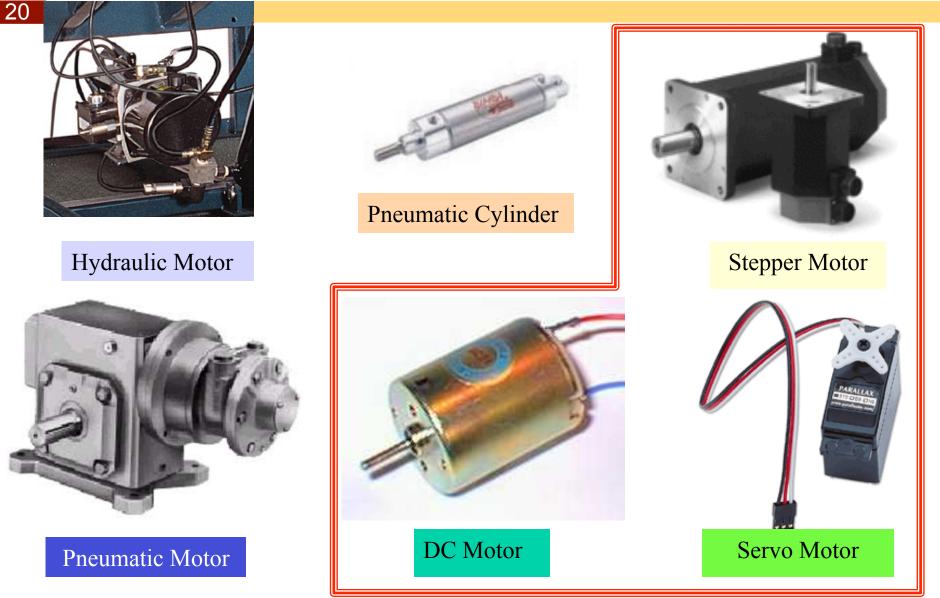
Ongoing Research



How do you get the object model?

What are the constraints?

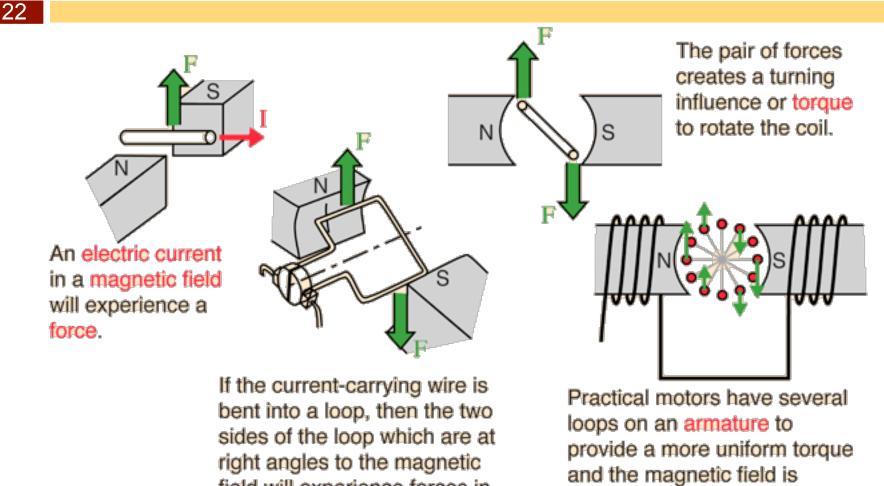
9



Background knowledge, mathematical modeling, ...

www.madry.pro www.cs.washington.edu/robotics/3d-in-hand

Actuators


When Do We Use...

- Most common: combinations of different motors
 - Stepper motor
 - Subdivides a rotation into 4-10 increments
 - Open Loop
 - Servo Motor
 - Subdivides a rotation arbitrarily
 - Closed Loop
 - AC servo, brushless DC servo, brushed DC servo
- What is a motor?
 - Basic idea: electricity goes in, rotation happens.
 - Rotation is really useful!

Motors writ (very) broad

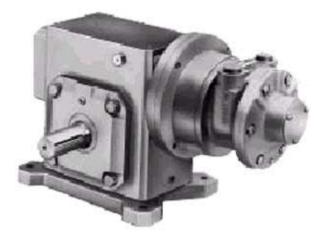
field will experience forces in

opposite directions.

http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/mothow.html

coils.

produced by an electromagnet


arrangement called the field

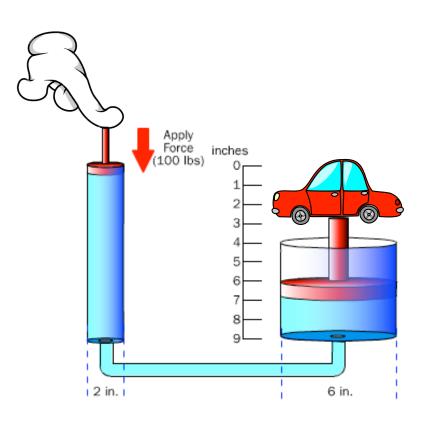
Other Choices

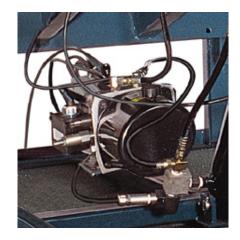
23

- Hydraulic/pneumatic
 - Heavy loads, high speeds
 - Sometimes hard to control (esp. pneumatic)
 - Doesn't produce sparks

Pneumatic Motor

Pneumatic Cylinder


Hydraulic Motor



24

ALISHALITY 1966

Hydraulics: Force multiplication using incompressible liquid In practice: pistons, tapers, ...

Hydraulic Motor

http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/mothow.html

Pneumatics

25

- Use compressed air to generate energy.
 - Quick to respond
 - Not ideal under high pressures
 - Why?
- Piston style
 - Generate linear force by acting on a piston
 - Then convert linear force to torque (if needed)
- Diaphragm style
 - Rubber diaphragm and stem in circular housing
 - Good for valces requiring shorter travel