
Decision Tree Learning[read Chapter 3][recommended exercises 3.1, 3.4]� Decision tree representation� ID3 learning algorithm� Entropy, Information gain� Over�tting
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A Tree to Predict C-Section RiskLearned from medical records of 1000 womenNegative examples are C-sections[833+,167-] .83+ .17-Fetal_Presentation = 1: [822+,116-] .88+ .12-| Previous_Csection = 0: [767+,81-] .90+ .10-| | Primiparous = 0: [399+,13-] .97+ .03-| | Primiparous = 1: [368+,68-] .84+ .16-| | | Fetal_Distress = 0: [334+,47-] .88+ .12-| | | | Birth_Weight < 3349: [201+,10.6-] .95+ .05-| | | | Birth_Weight >= 3349: [133+,36.4-] .78+ .22-| | | Fetal_Distress = 1: [34+,21-] .62+ .38-| Previous_Csection = 1: [55+,35-] .61+ .39-Fetal_Presentation = 2: [3+,29-] .11+ .89-Fetal_Presentation = 3: [8+,22-] .27+ .73-
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Decision TreesDecision tree representation:� Each internal node tests an attribute� Each branch corresponds to attribute value� Each leaf node assigns a classi�cationHow would we represent:� ^;_; XOR� (A ^B) _ (C ^ :D ^ E)�M of N
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When to Consider Decision Trees� Instances describable by attribute{value pairs� Target function is discrete valued� Disjunctive hypothesis may be required� Possibly noisy training dataExamples:� Equipment or medical diagnosis� Credit risk analysis�Modeling calendar scheduling preferences
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Top-Down Induction of Decision TreesMain loop:1. A the \best" decision attribute for next node2. Assign A as decision attribute for node3. For each value of A, create new descendant ofnode4. Sort training examples to leaf nodes5. If training examples perfectly classi�ed, ThenSTOP, Else iterate over new leaf nodesWhich attribute is best?
A1=? A2=?

ft ft

[29+,35-] [29+,35-]

[21+,5-] [8+,30-] [18+,33-] [11+,2-]51 lecture slides for textbook Machine Learning, c
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EntropyEntropy(S) = expected number of bits needed toencode class (� or 	) of randomly drawnmember of S (under the optimal, shortest-lengthcode)Why?Information theory: optimal length code assigns� log2 p bits to message having probability p.So, expected number of bits to encode � or 	 ofrandom member of S:p�(� log2 p�) + p	(� log2 p	)Entropy(S) � �p� log2 p� � p	 log2 p	
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Information GainGain(S;A) = expected reduction in entropy due tosorting on AGain(S;A) � Entropy(S)� Xv2V alues(A) jSvjjSjEntropy(Sv)
A1=? A2=?

ft ft

[29+,35-] [29+,35-]

[21+,5-] [8+,30-] [18+,33-] [11+,2-]
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Training ExamplesDay Outlook Temperature Humidity Wind PlayTennisD1 Sunny Hot High Weak NoD2 Sunny Hot High Strong NoD3 Overcast Hot High Weak YesD4 Rain Mild High Weak YesD5 Rain Cool Normal Weak YesD6 Rain Cool Normal Strong NoD7 Overcast Cool Normal Strong YesD8 Sunny Mild High Weak NoD9 Sunny Cool Normal Weak YesD10 Rain Mild Normal Weak YesD11 Sunny Mild Normal Strong YesD12 Overcast Mild High Strong YesD13 Overcast Hot Normal Weak YesD14 Rain Mild High Strong No
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Selecting the Next Attribute
Which attribute is the best classifier?

High Normal

Humidity

[3+,4-] [6+,1-]

Wind

Weak Strong

[6+,2-] [3+,3-]

  = .940 - (7/14).985 - (7/14).592
  = .151

  = .940 - (8/14).811 - (6/14)1.0
  = .048

Gain (S, Humidity ) Gain (S,          )Wind

=0.940E =0.940E

=0.811E=0.592E=0.985E =1.00E

[9+,5-]S:[9+,5-]S:
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Outlook

Sunny Overcast Rain

[9+,5−]

{D1,D2,D8,D9,D11} {D3,D7,D12,D13} {D4,D5,D6,D10,D14}

[2+,3−] [4+,0−] [3+,2−]

Yes

{D1, D2, ..., D14}

? ?

Which attribute should be tested here?

Ssunny = {D1,D2,D8,D9,D11}

Gain (Ssunny , Humidity)

sunnyGain (S , Temperature) =  .970  −  (2/5) 0.0  −  (2/5) 1.0  −  (1/5) 0.0  =  .570

Gain (S sunny , Wind) =  .970  −  (2/5) 1.0  −  (3/5) .918  =  .019

 

=  .970  −  (3/5) 0.0  −  (2/5) 0.0  =  .970
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Hypothesis Space Search by ID3
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Hypothesis Space Search by ID3� Hypothesis space is complete!{ Target function surely in there...� Outputs a single hypothesis (which one?){ Can't play 20 questions...� No back tracking{ Local minima...� Statisically-based search choices{ Robust to noisy data...� Inductive bias: approx \prefer shortest tree"
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Inductive Bias in ID3Note H is the power set of instances X!Unbiased?Not really...� Preference for short trees, and for those withhigh information gain attributes near the root� Bias is a preference for some hypotheses, ratherthan a restriction of hypothesis space H� Occam's razor: prefer the shortest hypothesisthat �ts the data
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Occam's RazorWhy prefer short hypotheses?Argument in favor:� Fewer short hyps. than long hyps.! a short hyp that �ts data unlikely to becoincidence! a long hyp that �ts data might be coincidenceArgument opposed:� There are many ways to de�ne small sets of hyps� e.g., all trees with a prime number of nodes thatuse attributes beginning with \Z"�What's so special about small sets based on sizeof hypothesis??
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Over�tting in Decision TreesConsider adding noisy training example #15:Sunny; Hot; Normal; Strong; P layTennis = NoWhat e�ect on earlier tree?
Outlook
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NormalHigh
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Strong Weak
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Yes

RainSunny
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Over�ttingConsider error of hypothesis h over� training data: errortrain(h)� entire distribution D of data: errorD(h)Hypothesis h 2 H over�ts training data if there isan alternative hypothesis h0 2 H such thaterrortrain(h) < errortrain(h0)and errorD(h) > errorD(h0)
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Over�tting in Decision Tree Learning
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Avoiding Over�ttingHow can we avoid over�tting?� stop growing when data split not statisticallysigni�cant� grow full tree, then post-pruneHow to select \best" tree:�Measure performance over training data�Measure performance over separate validationdata set�MDL: minimizesize(tree) + size(misclassifications(tree))
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Reduced-Error PruningSplit data into training and validation setDo until further pruning is harmful:1. Evaluate impact on validation set of pruningeach possible node (plus those below it)2. Greedily remove the one that most improvesvalidation set accuracy� produces smallest version of most accuratesubtree�What if data is limited?
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E�ect of Reduced-Error Pruning
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Rule Post-Pruning1. Convert tree to equivalent set of rules2. Prune each rule independently of others3. Sort �nal rules into desired sequence for usePerhaps most frequently used method (e.g., C4.5)
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Converting A Tree to Rules
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IF (Outlook = Sunny) ^ (Humidity = High)THEN PlayTennis = NoIF (Outlook = Sunny) ^ (Humidity = Normal)THEN PlayTennis = Y es: : :
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Continuous Valued AttributesCreate a discrete attribute to test continuous� Temperature = 82:5� (Temperature > 72:3) = t; fTemperature: 40 48 60 72 80 90PlayTennis: No No Yes Yes Yes No
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Attributes with Many ValuesProblem:� If attribute has many values, Gain will select it� Imagine using Date = Jun 3 1996 as attributeOne approach: use GainRatio insteadGainRatio(S;A) � Gain(S;A)SplitInformation(S;A)SplitInformation(S;A) � � cXi=1 jSijjSj log2 jSijjSjwhere Si is subset of S for which A has value vi
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Attributes with CostsConsider�medical diagnosis, BloodTest has cost $150� robotics, Width from 1ft has cost 23 sec.How to learn a consistent tree with low expectedcost?One approach: replace gain by� Tan and Schlimmer (1990)Gain2(S;A)Cost(A) :� Nunez (1988) 2Gain(S;A)� 1(Cost(A) + 1)wwhere w 2 [0; 1] determines importance of cost
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Unknown Attribute ValuesWhat if some examples missing values of A?Use training example anyway, sort through tree� If node n tests A, assign most common value ofA among other examples sorted to node n� assign most common value of A among otherexamples with same target value� assign probability pi to each possible value vi ofA{ assign fraction pi of example to eachdescendant in treeClassify new examples in same fashion
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