Logistic Regression

1 Learn the conditional distribution P(y | x)

1 Let p,(x; w) be our estimate of P(y | x), where w is a
vector of adjustable parameters. Assume only two
classes y=0and y =1, and

EXPpW - -X
14+ expw-x

p1(x;w) =

po(x; w) =1 — p1(x; w).

1 On the homework, you will show that this is equivalent to

1 |In other words, the log odds of class 1 is a linear function

of x. »




Why the exp function?

1 One reason: A linear function has a range from
[—00, oo] and we need to force it to be positive

and sum to 1 in order to be a probability:




Deriving a Learning Algorithm

1 Since we are fitting a conditional probability distribution, we no
longer seek to minimize the loss on the training data. Instead, we
seek to find the probability distribution h that is most likely given the
training data

1 Let S be the training sample. Our goal is to find h to maximize P(h |

S):
P(S|\h)P(h
argmax P(hlS) argmax Elfo)iPn) by Bayes' Rule
h h P(S)

= argmax P(S|h)P(h) because P(S) doesn't depend on h
h

argmax P(S|h) if we assume P(h) = unifom
h

argmax log P(S|h) because log is monotonic
h

The distribution P(S|h) is called the likelihood function. The log
likelihood is frequently used as the objective function for learning. Itis
often written as {(w).

The h that maximizes the likelihood on the training data is called the
maximum likelihood estimator (MLE) 2




Computing the Likelihood

1 In our framework, we assume that each training
example (x,y:) is drawn from the same (but
unknown) probability distribution P(x,y). This
means that the log likelihood of S is the sum of
the log likelihoods of the individual training
examples:

log P(S|h) log | [ P (x4, yih)
)

Y log P(x;,y4h)
')




Computing the Likelihood (2)

1 Recall that any joint distribution P(a,b) can be
factored as P(a|b) P(b). Hence, we can write

argmaxlogP(S|h) = argmax) logP(x;,y;h)
h h -

= argmax ) log P (y;|x;, h) P(x;|h)
h i

1 |[n our case, P(x | h) = P(x), because it does not
depend on h, so

argmaxlogP(S|h) = argmax) log P (y;|x;, h)P(x;|h)
h h ;

= argmax ) _logP(y;|x;, h)
h i




Log Likelihood for Conditional
Probability Estimators

1 \We can express the log likelihood in a compact
form known as the cross entropy.

1 Consider an example (x;, V)
— If y; = 0, the log likelihood is log [1 — p4(x; W)]

— if y, = 1, the log likelihood is log [p,(x; w)]

1 These cases are mutually exclusive, so we can
combine them to obtain:
iy x;,w) = log P(y; | x,w) = (1 = y) log[1 — p,(x;w)] +; log p,(x;w)

1 The goal of our learning algorithm will be to find
w to maximize

J(w) = 2 {y;; x;,w)




Fitting Logistic Regression by
Gradient Ascent
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Gradient Computation (continued)

1 Note that p, can also be written as

1
(14 exp[—w - Xz])

p1(x;;w) =

1 From this, we obtain:

Op1 (xi; W) 1 9
— . 1 _ . Z
8wj (1 + exp[—w - XZ])Qawj( + exp[-w - x;])

1 0

Tar el w0

(14 exp[—w - x])?
p1(xi; W)(1 — p1(x4;, W)) x5

exp[—w - x;](—x;;)




Completing the Gradient
Computation

1 The gradient of the log likelihood of a
single point is therefore

iﬁ(yi;xi,W) . y; — p1(X;; W) | <8p1(Xi;W))

Ow; | p1(x;; W)(1 —p1(x;; W) Ow;

- pl(Xi;?JiV;(zil(_X;\?(v}zi;w)) p1 (x5 W)(1 — p1(x4; W))xi;

= (yi — p1(xs W)y

1 The overall gradient is

8;(@ = Y (y; — p1(xi; W) 2
W; 1




Batch Gradient Ascent for Logistic Regression

Given: training examples (x;,4;), i=1...N
Letw =(0,0,0,0,...,0) be the initial weight vector.
Repeat until convergence
Let g =(0,0,...,0) be the gradient vector.
For:=1 to N do
pi = 1/(1+ exp[—w - x;])
error; = y; — p;
For =1 to n do
gj = 9gj + error; - Tij
W =W+ ng step in direction of increasing gradient

1 An online gradient ascent algorithm can be constructed, of course

1 Most statistical packages use a second-order (Newton-Raphson)
algorithm for faster convergence. Each iteration of the second-order
method can be viewed as a weighted least squares computation, so

the algorithm is known as lteratively-Reweighted Least Squares
(IRLS)




Logistic Regression Implements a
Linear Discriminant Function

1 In the 2-class 0/1 loss function case, we should

predicty =1 if
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1 A similar derivation can be done for arbitrary

L(0,1) and L(1,0).




Extending Logistic Regression to K > 2 classes

1 Choose class K to be the “reference class” and
represent each of the other classes as a logistic
function of the odds of class k versus class K:

P(y=1]x) _

P(y= Kx)

P(y=2x) _
P(y = K|x)

log

log

Ply=K-1[x)
P(y = K[x)

log = WK_1-X

1 Gradient ascent can be applied to
simultaneously train all of these weight vectors
Wi




Logistic Regression for K > 2 (continued)

1 The conditional probability for class k # K can be
computed as

Py = k|x) = 2y 5

14+ Zg{:_ll exp(wy - x)

1 For class K, the conditional probability is

1

P = K —
(y |X) 1+ Zg(:—ll eXD(Wg _ X)




Summary of Logistic Regression

1 |_earns conditional probability distribution P(y | x)

1 Local Search

— begins with initial weight vector. Modifies it iteratively
to maximize the log likelihood of the data

1 Eager

— the classifier is constructed from the training
examples, which can then be discarded

1 Online or Batch
— both online and batch variants of the algorithm exist




