Probabilistic Modeling and Expectation Maximization

CMSC 678 UMBC

Outline

Latent and probabilistic modeling Generative Modeling Example 1: A Model of Rolling a Die Example 2: A Model of Conditional Die Rolls

EM (Expectation Maximization) Basic idea Three coins example Why EM works

What is (Generative) Probabilistic Modeling?

So far, we've (mostly) had *labeled* data pairs (x, y), and built classifiers p(y | x)

What is (Generative) Probabilistic Modeling?

So far, we've (mostly)

had *labeled* data pairs (x, y), and

built classifiers p(y | x)

What if we want to model *both* x and y together?

p(x, y)

What is (Generative) Probabilistic Modeling?

So far, we've (mostly)

had *labeled* data pairs (x, y), and

built classifiers p(y | x)

What if we want to model *both* x and y together?

Q: Where have we used p(x,y)?

What is (Generative) Probabilistic Modeling?

So far, we've (mostly)

had *labeled* data pairs (x, y), and

built classifiers p(y | x)

What if we want to model *both* x and y together?

Q: Where have we used p(x,y)?

A: Linear Discriminant Analysis

What is (Generative) Probabilistic Modeling?

So far, we've (mostly)

had *labeled* data pairs (x, y), and

built classifiers p(y | x)

What if we want to model *both* x and y together?

p(x, y)

Q: Where have we used p(x,y)?

A: Linear Discriminant Analysis

Like A3, Q1

Piazza Q68

•

Or what if we only have data but no labels?

p(x)

Generative Stories

"A useful way to develop probabilistic models is to tell a generative story. This is a *fictional* story that explains how you believe your training data came into existence." --- CIML Ch 9.5

Generative Stories

"A useful way to develop probabilistic models is to tell a generative story. This is a *fictional* story that explains how you believe your training data came into existence." --- CIML Ch 9.5

Generative stories are most often used with joint models p(x, y).... but despite their name, generative stories are applicable to both generative and conditional models

p(x, y) vs. p(y | x): Models of our Data

p(x, y) is the **joint** distribution

Two main options for estimating:

1. Directly

2.

p(x, y) vs. p(y | x): Models of our Data

p(x, y) is the **joint** distribution

Two main options for estimating:

- 1. Directly
- 2. Using Bayes rule: p(x, y) = p(x | y)p(y)

Using Bayes rule *transparently* provides a **generative story** for how our data x and labels y are generated

p(x,y) vs. p(y | x): Models of our Data

p(x, y) is the **joint** distribution

Two main options for estimating:

- 1. Directly
- 2. Using Bayes rule: p(x, y) = p(x | y)p(y)

Using Bayes rule *transparently* provides a **generative story** for how our data x and labels y are generated p(y | x) is the **conditional** distribution

Two main options for estimating:

1. Directly: used when you *only* care about making the right prediction

Examples: perceptron, logistic regression, neural networks (we've covered)

2.

p(x,y) vs. p(y | x): Models of our Data

p(x, y) is the **joint** distribution

Two main options for estimating:

- 1. Directly
- 2. Using Bayes rule: p(x, y) = p(x | y)p(y)

Using Bayes rule *transparently* provides a **generative story** for how our data x and labels y are generated

p(y | x) is the **conditional** distribution

Two main options for estimating:

1. Directly: used when you *only* care about making the right prediction

Examples: perceptron, logistic regression, neural networks (we've covered)

2. Estimate the joint

Outline

Latent and probabilistic modeling Generative Modeling Example 1: A Model of Rolling a Die Example 2: A Model of Conditional Die Roles

EM (Expectation Maximization) Basic idea Three coins example Why EM works

Example: Rolling a Die

$$p(w_1, w_2, \dots, w_N) = p(w_1)p(w_2)\cdots p(w_N) = \prod_i p(w_i)$$

Example: Rolling a Die

N different
(independent) rolls
$$p(w_1, w_2, ..., w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)$$

 $w_1 = 1$ •
 $w_2 = 5$ ••
 $w_3 = 4$ ••

. . .

N different
(independent) rolls
$$p(w_1, w_2, ..., w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)$$

$$w_1 = 1$$

$$w_2 = 5$$

$$w_3 = 4$$

. . .

Generative Story for roll i = 1 to N:

N different
(independent) rolls
$$p(w_1, w_2, ..., w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)$$

$$w_1 = 1$$

$$w_2 = 5$$

$$w_3 = 4$$

. . .

Generative Story for roll i = 1 to N: $w_i \sim Cat(\theta)$

• •

$$p(w_1, w_2, \dots, w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)$$

maximize (log-) likelihood to learn the probability parameters

Q: Why is maximizing loglikelihood a reasonable thing to do?

$$p(w_1, w_2, \dots, w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)$$

maximize (log-) likelihood to learn the probability parameters

Q: Why is maximizing loglikelihood a reasonable thing to do?

A: Develop a good model for what we observe

$$p(w_1, w_2, \dots, w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)$$

maximize (log-) likelihood to learn the probability paramete

Q: Why is maximizing loglikelihood a reasonable thing to do?

Q: (for discrete observations) What loss function do we minimize to maximize log-likelihood? A: Develop a good model for what we observe

$$p(w_1, w_2, \dots, w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)$$

maximize (log-) likelihood to learn the probability parameters

Q: Why is maximizing loglikelihood a reasonable thing to do?

Q: (for discrete observations) What loss function do we minimize to maximize log-likelihood? A: Develop a good model for what we observe

A: Cross-entropy

$$p(w_1, w_2, ..., w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)$$

maximize (log-) likelihood to learn the probability parameters

If you observe these 9 rolls... ...what are "reasonable" estimates for p(w)?

p(5) = ? p(6) = ?

$$p(w_1, w_2, ..., w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)$$

maximize (log-) likelihood to learn the probability parameters

If you observe these 9 rolls... ...what are "reasonable" estimates for p(w)?

$$p(1) = 2/9$$
 $p(2) = 1/9$
 $p(3) = 1/9$ $p(4) = 3/9$ maximum
likelihood
estimates
 $p(5) = 1/9$ $p(6) = 1/9$

N different
(independent) rolls
$$p(w_1, w_2, \dots, w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)$$

$$w_1 = 1$$

$$w_2 = 5$$

$$w_3 = 4$$

Generative Story for roll i = 1 to N: $w_i \sim Cat(\theta)$

Maximize Log-likelihood

$$\mathcal{L}(\theta) = \sum_{i} \log p_{\theta}(w_{i})$$
$$= \sum_{i} \log \theta_{w_{i}}$$

N different (independent) rolls $p(w_1, w_2, \dots, w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)$

Generative Story

for roll i = 1 to N: $w_i \sim Cat(\theta)$ Maximize Log-likelihood

$$\mathcal{L}(\theta) = \sum_{i} \log \theta_{w_i}$$

Q: What's an easy way to maximize this, as written *exactly* (even without calculus)?

N different (independent) rolls $p(w_1, w_2, \dots, w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)$

Generative Story for roll i = 1 to N: $w_i \sim Cat(\theta)$ Maximize Log-likelihood

$$\mathcal{L}(\theta) = \sum_{i} \log \theta_{w_i}$$

Q: What's an easy way to maximize this, as written *exactly* (even without calculus)?

A: Just keep increasing θ_k (we know θ must be a distribution, but it's not specified)

N different
(independent) rolls
$$p(w_1, w_2, \dots, w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)$$

Maximize Log-likelihood (with distribution constraints)

$$\mathcal{L}(\theta) = \sum_{i} \log \theta_{w_i} \text{ s.t.} \sum_{k=1}^{6} \theta_k = 1 \quad 0$$

(we can include the inequality constraints $0 \le \theta_k$, but it complicates the problem and, *right now*, is not needed)

solve using Lagrange multipliers

N different
(independent) rolls
$$p(w_1, w_2, \dots, w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)$$

Maximize Log-likelihood (with distribution constraints)

$$\mathcal{F}(\theta) = \sum_{i} \log \theta_{w_i} - \lambda \left(\sum_{k=1}^{6} \theta_k - 1 \right)$$

(we can include the inequality constraints $0 \le \theta_k$, but it complicates the problem and, *right now*, is not needed)

$$\frac{\partial \mathcal{F}(\theta)}{\partial \theta_k} = \sum_{i:w_i=k} \frac{1}{\theta_{w_i}} - \lambda \qquad \frac{\partial \mathcal{F}(\theta)}{\partial \lambda} = -\sum_{k=1}^6 \theta_k + 1$$

N different
(independent) rolls
$$p(w_1, w_2, \dots, w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)$$

Maximize Log-likelihood (with distribution constraints)

$$\mathcal{F}(\theta) = \sum_{i} \log \theta_{w_i} - \lambda \left(\sum_{k=1}^{6} \theta_k - 1 \right)$$

(we can include the inequality constraints $0 \le \theta_k$, but it complicates the problem and, *right now*, is not needed)

$$\theta_k = \frac{\sum_{i:w_i=k} 1}{\lambda}$$
 optimal λ when $\sum_{k=1}^6 \theta_k = 1$

N different
(independent) rolls
$$p(w_1, w_2, \dots, w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)$$

Maximize Log-likelihood (with distribution constraints)

$$\mathcal{F}(\theta) = \sum_{i} \log \theta_{w_i} - \lambda \left(\sum_{k=1}^{6} \theta_k - 1 \right)$$

(we can include the inequality constraints $0 \le \theta_k$, but it complicates the problem and, *right now*, is not needed)

$$\theta_k = \frac{\sum_{i:w_i=k} 1}{\sum_k \sum_{i:w_i=k} 1} = \frac{N_k}{N} \quad \text{optimal } \lambda \text{ when } \sum_{k=1}^6 \theta_k = 1$$

Outline

Latent and probabilistic modeling Generative Modeling Example 1: A Model of Rolling a Die Example 2: A Model of Conditional Die Rolls

EM (Expectation Maximization) Basic idea Three coins example Why EM works

Example: Conditionally Rolling a Die

$$p(w_1, w_2, \dots, w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)$$

$$\int_i^{add \ complexity \ to \ better}_{explain \ what \ we \ see}$$

$$p(z_1, w_1, z_2, w_2, \dots, z_N, w_N) = p(z_1)p(w_1|z_1) \cdots p(z_N)p(w_N|z_N)$$

$$= \prod_i p(w_i|z_i) p(z_i)$$

Example: Conditionally Rolling a Die

$$p(w_1, w_2, \dots, w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)$$

$$\int_i^{add \ complexity \ to \ better} explain \ what \ we \ see}$$

$$p(z_1, w_1, z_2, w_2, \dots, z_N, w_N) = p(z_1)p(w_1|z_1) \cdots p(z_N)p(w_N|z_N)$$

$$= \prod_i p(w_i|z_i) \ p(z_i)$$

First flip a coin...

$$\sum_{i=1}^{\infty} z_1 = T$$
$$\sum_{i=1}^{\infty} z_2 = H$$
$p(w_1, w_2, \dots, w_N) = p(w_1)p(w_2)\cdots p(w_N) = \prod_{i=1}^{N} p(w_i)$ add complexity to better explain what we see $p(z_1, w_1, z_2, w_2, \dots, z_N, w_N) = p(z_1)p(w_1|z_1)\cdots p(z_N)p(w_N|z_N)$ $= \prod_{i} p(w_i | \mathbf{z}_i) p(\mathbf{z}_i)$...then roll a different die First flip a coin... depending on the coin flip $z_1 = T \quad w_1 = 1$ $z_2 = H \quad w_2 = 5$

$$p(w_1, w_2, \dots, w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)$$

$$\prod_{\substack{add \text{ complexity to better}\\explain what we see}} p(z_1, w_1, z_2, w_2, \dots, z_N, w_N) = p(z_1)p(w_1|z_1) \cdots p(z_N)p(w_N|z_N)$$

$$= \prod_i p(w_i|z_i) p(z_i)$$

If you observe the z_i values, this is easy!

$$p(z_1, w_1, z_2, w_2, \dots, z_N, w_N) = \prod_i p(w_i | z_i) p(z_i)$$

If you observe the z_i
values, this is easy!

First: Write the Generative Story

 $\lambda = \text{distribution over coin } (z)$ $\gamma^{(H)} = \text{distribution for die when coin comes up heads}$ $\gamma^{(T)} = \text{distribution for die when coin comes up tails}$ for item i = 1 to N: $z_i \sim \text{Bernoulli}(\lambda)$ $w_i \sim \text{Cat}(\gamma^{(z_i)})$

$$p(z_1, w_1, z_2, w_2, \dots, z_N, w_N) = \prod_i p(w_i | z_i) p(z_i)$$

If you observe the z_i
values, this is easy!

First: Write the Generative Story $\lambda = \text{distribution over coin } (z)$ $\gamma^{(H)} = \text{distribution for H die}$ $\gamma^{(T)} = \text{distribution for T die}$ for item i = 1 to N: $z_i \sim \text{Bernoulli}(\lambda)$ $w_i \sim \text{Cat}(\gamma^{(z_i)})$ Second: Generative Story \rightarrow Objective

$$\mathcal{F}(\theta) = \sum_{i}^{n} (\log \lambda_{z_i} + \log \gamma_{w_i}^{(z_i)})$$

Lagrange multiplier constraints

$$p(z_1, w_1, z_2, w_2, ..., z_N, w_N) = \prod_i p(w_i | z_i) p(z_i)$$

If you observe the z_i
values, this is easy!

First: Write the Generative Story $\lambda = \text{distribution over coin } (z)$ $\gamma^{(H)} = \text{distribution for H die}$ $\gamma^{(T)} = \text{distribution for T die}$ for item i = 1 to N: $z_i \sim \text{Bernoulli}(\lambda)$ $w_i \sim \text{Cat}(\gamma^{(z_i)})$ Second: Generative Story \rightarrow Objective

$$\mathcal{F}(\theta) = \sum_{i}^{n} (\log \lambda_{z_i} + \log \gamma_{w_i}^{(z_i)})$$
$$-\eta \left(\sum_{k=1}^{2} \lambda_k - 1\right) - \sum_{k=1}^{2} \delta_k \left(\sum_{j=1}^{6} \gamma_j^{(k)} - 1\right)$$

$$p(z_1, w_1, z_2, w_2, ..., z_N, w_N) = \prod_i p(w_i | z_i) p(z_i)$$

If you observe the z_i But if you don't observe the values, this is easy! z_i values, this is not easy!

First: Write the Generative Story $\lambda = \text{distribution over coin } (z)$ $\gamma^{(H)} = \text{distribution for H die}$ $\gamma^{(T)} = \text{distribution for T die}$ for item i = 1 to N: $z_i \sim \text{Bernoulli}(\lambda)$ $w_i \sim \text{Cat}(\gamma^{(z_i)})$ Second: Generative Story \rightarrow Objective

$$\mathcal{F}(\theta) = \sum_{i}^{n} (\log \lambda_{z_i} + \log \gamma_{w_i}^{(z_i)})$$
$$-\eta \left(\sum_{k=1}^{2} \lambda_k - 1\right) - \sum_{k=1}^{2} \delta_k \left(\sum_{j=1}^{6} \gamma_j^{(k)} - 1\right)$$

$$p(z_1, w_1, z_2, w_2, ..., z_N, w_N) = \prod_i p(w_i | z_i) p(z_i)$$

goal: maximize (log-)likelihood we don't actually observe these z values we just see the items w

if we *did* observe *z*, estimating the probability parameters would be easy... but we don't! :(

$$p(z_1, w_1, z_2, w_2, ..., z_N, w_N) = \prod_i p(w_i | z_i) p(z_i)$$

goal: maximize (log-)likelihood we don't actually observe these z values we just see the items w

if we *did* observe *z*, estimating the probability parameters would be easy... but we don't! :(if we *knew* the probability parameters then we could estimate *z* and evaluate likelihood... but we don't! :(

$$p(z_1, w_1, z_2, w_2, ..., z_N, w_N) = \prod_i p(w_i | z_i) p(z_i)$$

we don't actually observe these *z* values

goal: maximize *marginalized* (log-)likelihood

$$p(z_1, w_1, z_2, w_2, ..., z_N, w_N) = \prod_i \left[p(w_i | z_i) p(z_i) \right]$$

we don't actually observe these *z* values

goal: maximize *marginalized* (log-)likelihood

W

$$p(z_1, w_1, z_2, w_2, ..., z_N, w_N) = \prod_i p(w_i | z_i) p(z_i)$$

we don't actually observe these z values

goal: maximize *marginalized* (log-)likelihood

$$p(z_1, w_1, z_2, w_2, \dots, z_N, w_N) = \prod_i p(w_i | z_i) p(z_i)$$

we don't actually observe these *z* values

goal: maximize *marginalized* (log-)likelihood

$$p(w_1, w_2, \dots, w_N) = \left(\sum_{z_1} p(z_1, w_1)\right) \left(\sum_{z_2} p(z_2, w_2)\right) \cdots \left(\sum_{z_N} p(z_N, wN)\right)$$

 $p(z_1, w_1, z_2, w_2, \dots, z_N, w_N) = p(z_1)p(w_1|z_1) \cdots p(z_N)p(w_N|z_N)$

goal: maximize *marginalized* (log-)likelihood

$$p(w_1, w_2, \dots, w_N) = \left(\sum_{z_1} p(z_1, w_1)\right) \left(\sum_{z_2} p(z_2, w_2)\right) \cdots \left(\sum_{z_N} p(z_N, wN)\right)$$

if we *did* observe *z*, estimating the probability parameters would be easy... but we don't! :(

if we *knew* the probability parameters then we could estimate *z* and evaluate likelihood... but we don't! :(

if we *knew* the probability parameters then we could estimate *z* and evaluate likelihood... but we don't! :(

if we *did* observe *z*, estimating the probability parameters would be easy... but we don't! :(

http://blog.innotas.com/wp-content/uploads/2015/08/chicken<u>-or-egg-cropped1.jpg</u>

Outline

Latent and probabilistic modeling Generative Modeling Example 1: A Model of Rolling a Die Example 2: A Model of Conditional Die Rolls

EM (Expectation Maximization) Basic idea Three coins example Why EM works

Expectation Maximization (EM)

0. Assume *some* value for your parameters

Two step, iterative algorithm

1. E-step: count under uncertainty (compute expectations)

2. M-step: maximize log-likelihood, assuming these uncertain counts

Expectation Maximization (EM): E-step

0. Assume *some* value for your parameters

Two step, iterative algorithm

1. E-step: count under uncertainty, assuming these parameters

2. M-step: maximize log-likelihood, assuming these uncertain counts

Expectation Maximization (EM): M-step

0. Assume *some* value for your parameters

Two step, iterative algorithm

1. E-step: count under uncertainty, assuming these parameters

2. M-step: maximize log-likelihood, assuming these uncertain counts $p^{(t+1)}(z)$

$$p^{(t)}(z)$$

the average log-likelihood of our Complete data (z, w), averaged across all z and according to how likely our *current* model thinks z is

maximize the average log-likelihood of our complete data (z, w), averaged across all z and according to how likely our *current* model thinks z is

$\max_{\theta} \mathbb{E}_{z \sim p_{\theta}(t)}(\cdot|w) [\log p_{\theta}(z,w)]$

maximize the average log-likelihood of our complete data (z, w), averaged across all z and according to how likely our *current* model thinks z is

$\max_{\theta} \mathbb{E}_{\boldsymbol{Z}} \sim p_{\theta}(t)(\cdot|w) [\log p_{\theta}(\boldsymbol{Z}, w)]$

maximize the average log-likelihood of our complete data (z, w), averaged across all z and according to how likely our *current* model thinks z is

 $\max_{\theta} \mathbb{E}_{Z} \sim p_{\theta}(t)(\cdot|w) \left[\log p_{\theta}(Z, w) \right]$ posterior distribution

maximize the average log-likelihood of our complete data (z, w), averaged across all z and according to how likely our *current* model thinks z is

 $\max_{\theta} \mathbb{E}_{Z} \sim p_{\theta}(t)(\cdot|w) \left[\log p_{\theta}(Z, w) \right]$

new parameters

posterior distribution

new parameters

maximize the average log-likelihood of our complete data (z, w), averaged across all z and according to how likely our *current* model thinks z is

 $\max_{\theta} \mathbb{E}_{Z} \sim p_{\theta}(t)(\cdot|w) \left[\log p_{\theta}(Z, w) \right]$ *new* parameters posterior distribution *new* parameters

E-step: count under uncertainty M-step: maximize log-likelihood

NO labeled data:

- human annotated
- relatively small/few examples

EM/generative models in this case can be seen as a type of clustering

- raw; not annotated
- plentiful

??? X ??? ??? ??? ??? ??? Х ??? <u>? ? ?</u>

labeled data:

- human annotated
- relatively small/few examples

- raw; not annotated
- plentiful

labeled data:

- human annotated
- relatively small/few examples

- raw; not annotated
- plentiful

labeled data:

- human annotated
- relatively small/few examples

- raw; not annotated
- plentiful

Outline

Latent and probabilistic modeling Generative Modeling Example 1: A Model of Rolling a Die Example 2: A Model of Conditional Die Rolls

EM (Expectation Maximization) Basic idea Three coins example Why EM works

Imagine three coins

Flip 1st coin (penny)

If heads: flip 2nd coin (dollar coin)

If tails: flip 3rd coin (dime)

Imagine three coins

Flip 1st coin (penny) <

If heads: flip 2nd coin (dollar coin) only observe these (record heads vs. tails outcome)

Imagine three coins

Flip 1st coin (penny) ← unobserved: part of speech? genre?

If heads: flip 2nd coin (dollar coin)

If tails: flip 3rd coin (dime)

observed: *a*, *b*, *e*, etc. We run the code, vs. The *run* failed

Imagine three coins

Flip 1st coin (penny)

$$p(heads) = \lambda$$

 $p(\text{tails}) = 1 - \lambda$

If heads: flip 2^{nd} coin (dollar coin) $p(heads) = \gamma$ If tails: flip 3^{rd} coin (dime)

- $p(tails) = 1 \gamma$
- $p(\text{heads}) = \psi$ $p(\text{tails}) = 1 \psi$

Imagine three coins

 $p(\text{heads}) = \lambda$ $p(\text{heads}) = \gamma$ $p(\text{heads}) = \psi$ $p(\text{tails}) = 1 - \lambda$ $p(\text{tails}) = 1 - \gamma$ $p(\text{tails}) = 1 - \psi$

Three parameters to estimate: λ , γ , and ψ
$$\begin{array}{l} \textbf{Generative Story for Three Coins} \\ p(w_1, w_2, \dots, w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i) \\ & \bigcup_{i \in I} p(w_i) \\ & \bigcup_{i \in I} p(w_i) \\ p(z_1, w_1, z_2, w_2, \dots, z_N, w_N) = p(z_1)p(w_1|z_1) \cdots p(z_N)p(w_N|z_N) \\ & = \prod_i p(w_i|z_i) p(z_i) \\ \hline & & p(\text{heads}) = \lambda \\ p(\text{tails}) = 1 - \lambda \\ & & p(\text{heads}) = \gamma \\ p(\text{tails}) = 1 - \gamma \\ \hline & & p(\text{heads}) = 1 - \gamma \\ \hline & & p(\text{heads}) = \psi \\ p(\text{tails}) = 1 - \psi \\ \hline & & p(\text{heads}) = 1 - \psi \\ \hline & p(\text{hea$$

H H T H T H H T H T T T

If all flips were observed

 $p(heads) = \lambda$ $p(heads) = \gamma$ $p(heads) = \psi$ $p(tails) = 1 - \lambda$ $p(tails) = 1 - \gamma$ $p(tails) = 1 - \psi$

H H T H T H H T H T T T

If all flips were observed

$$p(heads) = \lambda$$
 $p(heads) = \gamma$ $p(heads) = \psi$ $p(tails) = 1 - \lambda$ $p(tails) = 1 - \gamma$ $p(tails) = 1 - \psi$

 $p(\text{heads}) = \frac{4}{6} \qquad p(\text{heads}) = \frac{1}{4} \qquad p(\text{heads}) = \frac{1}{2}$ $p(\text{tails}) = \frac{2}{6} \qquad p(\text{tails}) = \frac{3}{4} \qquad p(\text{tails}) = \frac{1}{2}$

H H T H T H H T H T T T

But not all flips are observed \rightarrow set parameter values

 $p(heads) = \lambda = .6$ p(heads) = .8p(heads) = .6p(tails) = .4p(tails) = .2p(tails) = .4

H H T H T H H T H T T T

But not all flips are observed \rightarrow set parameter values

 $p(\text{heads}) = \lambda = .6$ p(heads) = .8 p(heads) = .6p(tails) = .4 p(tails) = .2 p(tails) = .4

Use these values to compute posteriors $p(\text{heads} \mid \text{observed item H}) = \frac{p(\text{heads \& H})}{p(\text{H})}$ $p(\text{heads} \mid \text{observed item T}) = \frac{p(\text{heads \& T})}{p(\text{T})}$

HHTHTH HTHTT

But not all flips are observed \rightarrow set parameter values

 $p(\text{heads}) = \lambda = .6$ p(heads) = .8 p(heads) = .6p(tails) = .4 p(tails) = .2 p(tails) = .4

Use these values to compute posteriors

 $p(\text{heads} \mid \text{observed item H}) = \frac{p(H \mid \text{heads})p(\text{heads})}{p(H)}$ marginal likelihood

H H T H T H H T H T T T

But not all flips are observed \rightarrow set parameter values

 $p(heads) = \lambda = .6$ p(heads) = .8p(heads) = .6p(tails) = .4p(tails) = .2p(tails) = .4

Use these values to compute posteriors

$$p(\text{heads} \mid \text{observed item H}) = \frac{p(H \mid \text{heads})p(\text{heads})}{p(H)}$$

p(H | heads) = .8 p(T | heads) = .2

H H T H T H H T H T T T

But not all flips are observed \rightarrow set parameter values

 $p(heads) = \lambda = .6$ p(heads) = .8p(heads) = .6p(tails) = .4p(tails) = .2p(tails) = .4

Use these values to compute posteriors

$$p(\text{heads} \mid \text{observed item H}) = \frac{p(H \mid \text{heads})p(\text{heads})}{p(H)}$$

p(H | heads) = .8 p(T | heads) = .2

p(H) = p(H | heads) * p(heads) + p(H | tails) * p(tails)= .8 * .6 + .6 * .4

HHTHTH HTHTT

Use posteriors to update parameters

 $p(\text{heads} \mid \text{obs. H}) = \frac{p(\text{H} \mid \text{heads})p(\text{heads})}{p(\text{H})}$ $= \frac{.8 * .6}{.8 * .6 + .6 * .4} \approx 0.667$ $p(\text{heads} \mid \text{obs. T}) = \frac{p(\text{T} \mid \text{heads})p(\text{heads})}{p(\text{T})}$ $= \frac{.2 * .6}{.2 * .6 + .6 * .4} \approx 0.334$

Q: Is p(heads | obs. H) + p(heads | obs. T) = 1?

HHTHTH HTHTT

Use posteriors to update parameters

 $p(\text{heads} \mid \text{obs. H}) = \frac{p(\text{H} \mid \text{heads})p(\text{heads})}{p(\text{H})}$ $= \frac{.8 * .6}{.8 * .6 + .6 * .4} \approx 0.667$ $p(\text{heads} \mid \text{obs. T}) = \frac{p(\text{T} \mid \text{heads})p(\text{heads})}{p(\text{T})}$ $= \frac{.2 * .6}{.2 * .6 + .6 * .4} \approx 0.334$

Q: Is p(heads | obs. H) + p(heads | obs. T) = 1?

A: No.

HHTHTH HTHTT

Use posteriors to update parameters

 $p(\text{heads} \mid \text{obs. H}) = \frac{p(\text{H} \mid \text{heads})p(\text{heads})}{p(\text{H})}$ $= \frac{.8 * .6}{.8 * .6 + .6 * .4} \approx 0.667$ $p(\text{heads} \mid \text{obs. T}) = \frac{p(\text{T} \mid \text{heads})p(\text{heads})}{p(\text{T})}$ $= \frac{.2 * .6}{.2 * .6 + .6 * .4} \approx 0.334$

(in general, p(heads | obs. H) and p(heads | obs. T) do NOT sum to 1)

fully observed setting $p(\text{heads}) = \frac{\# \text{ heads from penny}}{\# \text{ total flips of penny}}$

our setting: partially-observed

$$p(heads) = \frac{\# expected heads}{\# total flips of penny}$$

HHTHTH HTHTT

Use posteriors to update parameters

 $p(\text{heads} \mid \text{obs. H}) = \frac{p(\text{H} \mid \text{heads})p(\text{heads})}{p(\text{H})}$ $= \frac{.8 * .6}{.8 * .6 + .6 * .4} \approx 0.667$ $p(\text{heads} \mid \text{obs. T}) = \frac{p(\text{T} \mid \text{heads})p(\text{heads})}{p(\text{T})}$ $= \frac{.2 * .6}{.2 * .6 + .6 * .4} \approx 0.334$

$$p^{(t+1)}(\text{heads}) = \frac{\# \text{ expected heads from penny}}{\# \text{ total flips of penny}}$$
$$= \frac{\mathbb{E}_{p^{(t)}}[\# \text{ expected heads from penny}]}{\# \text{ total flips of penny}}$$

HHTHTH HTHTT

Use posteriors to update parameters

 $p(\text{heads} \mid \text{obs. H}) = \frac{p(\text{H} \mid \text{heads})p(\text{heads})}{p(\text{H})}$ $p(\text{heads} \mid \text{obs. T}) = \frac{p(\text{T} \mid \text{heads})p(\text{heads})}{p(\text{T})}$ $= \frac{.8 * .6}{.8 * .6 + .6 * .4} \approx 0.667$ $p(\text{heads} \mid \text{obs. T}) = \frac{p(\text{T} \mid \text{heads})p(\text{heads})}{p(\text{T})}$ $= \frac{.2 * .6}{.2 * .6 + .6 * .4} \approx 0.334$

our setting: partiallyobserved

$$p^{(t+1)}(\text{heads}) = \frac{\# \text{ expected heads from penny}}{\# \text{ total flips of penny}}$$
$$= \frac{\mathbb{E}_{p^{(t)}}[\# \text{ expected heads from penny}]}{\# \text{ total flips of penny}}$$
$$= \frac{2 * p(\text{heads} \mid \text{obs. H}) + 4 * p(\text{heads} \mid \text{obs. T})}{6}$$
$$\approx 0.444$$

Expectation Maximization (EM)

0. Assume *some* value for your parameters

Two step, iterative algorithm:

1. E-step: count under uncertainty (compute expectations)

2. M-step: maximize log-likelihood, assuming these uncertain counts

Outline

Latent and probabilistic modeling Generative Modeling Example 1: A Model of Rolling a Die Example 2: A Model of Conditional Die Rolls

EM (Expectation Maximization) Basic idea Three coins example Why EM works

X: observed dataY: unobserved data $\mathcal{M}(\theta) = \max$ is a log-likelihood of observed data X

 $C(\theta) =$ log-likelihood of complete data (X,Y)

 $\mathcal{P}(\theta) = \text{posterior log-likelihood of}$ incomplete data Y

what do $\mathcal{C}, \mathcal{M}, \mathcal{P}$ look like?

X: observed dataY: unobserved data $\mathcal{M}(\theta) = \text{marginal log-likelihood of observed data X}$

 $C(\theta) =$ log-likelihood of complete data (X,Y)

$$\mathcal{C}(\theta) = \sum_{i} \log p(x_i, y_i)$$

X: observed dataY: unobserved data $\mathcal{M}(\theta) =$ marginal log-likelihood of
observed data X

 $C(\theta) =$ log-likelihood of complete data (X,Y)

$$\mathcal{C}(\theta) = \sum_{i} \log p(x_i, y_i)$$

$$\mathcal{M}(\theta) = \sum_{i} \log p(x_i) = \sum_{i} \log \sum_{k} p(x_i, y = k)$$

X: observed dataY: unobserved data $\mathcal{M}(\theta) = \text{marginal log-likelihood of observed data X}$

 $C(\theta) =$ log-likelihood of complete data (X,Y)

$$\mathcal{C}(\theta) = \sum_{i} \log p(x_i, y_i)$$

$$\mathcal{M}(\theta) = \sum_{i} \log p(x_i) = \sum_{i} \log \sum_{k} p(x_i, y = k)$$

$$\mathcal{P}(\theta) = \sum_{i} \log p(y_i | x_i)$$

X: observed dataY: unobserved data $\mathcal{M}(\theta) = \max$ marginal log-likelihood of
observed data X

 $C(\theta) =$ log-likelihood of complete data (X,Y) $\mathcal{P}(\theta) =$ posterior log-likelihood of incomplete data Y

 $p_{\theta}(X) = \frac{p_{\theta}(X, Y)}{p_{\theta}(Y \mid X)}$

definition of conditional probability

X: observed dataY: unobserved data $\mathcal{M}(\theta) = \max$ in al log-likelihood of
observed data X

 $C(\theta) =$ log-likelihood of complete data (X,Y) $\mathcal{P}(\theta) =$ posterior log-likelihood of incomplete data Y

$$p_{\theta}(Y \mid X) = \frac{p_{\theta}(X, Y)}{p_{\theta}(X)} \quad \Longrightarrow \quad p_{\theta}(X) = \frac{p_{\theta}(X, Y)}{p_{\theta}(Y \mid X)}$$

 $\mathcal{M}(\theta) = \mathcal{C}(\theta) - \mathcal{P}(\theta)$

 $\mathbb{E}_{Y \sim \theta^{(t)}}[\mathcal{M}(\theta)|X] = \mathbb{E}_{Y \sim \theta^{(t)}}[\mathcal{C}(\theta)|X] - \mathbb{E}_{Y \sim \theta^{(t)}}[\mathcal{P}(\theta)|X]$

take a conditional expectation (why? we'll cover this more in variational inference)

X: observed dataY: unobserved dataC $\mathcal{M}(\theta) = \max$ in al log-likelihood of
observed data X $\mathcal{M}(\theta) = \max$

 $C(\theta) =$ log-likelihood of complete data (X,Y) $\mathcal{P}(\theta) =$ posterior log-likelihood of incomplete data Y

$$p_{\theta}(Y \mid X) = \frac{p_{\theta}(X, Y)}{p_{\theta}(X)} \qquad \Longrightarrow \qquad p_{\theta}(X) = \frac{p_{\theta}(X, Y)}{p_{\theta}(Y \mid X)}$$

 $\mathcal{M}(\theta) = \mathcal{C}(\theta) - \mathcal{P}(\theta)$ $\mathbb{E}_{Y \sim \theta}(t) [\mathcal{M}(\theta) | X] = \mathbb{E}_{Y \sim \theta}(t) [\mathcal{C}(\theta) | X] - \mathbb{E}_{Y \sim \theta}(t) [\mathcal{P}(\theta) | X]$ $\mathcal{M}(\theta) = \mathbb{E}_{Y \sim \theta}(t) [\mathcal{C}(\theta) | X] - \mathbb{E}_{Y \sim \theta}(t) [\mathcal{P}(\theta) | X]$ $\overset{\mathcal{M}(\theta)}{\text{sums over } Y} \qquad \mathcal{M}(\theta) = \sum_{i} \log p(x_i) = \sum_{i} \log \sum_{k} p(x_i, y = k)$

X: observed dataY: unobserved data $\mathcal{M}(\theta) = \text{marginal log-likelihood of observed data X}$

 $C(\theta) =$ log-likelihood of complete data (X,Y)

$$\mathcal{M}(\theta) = \mathbb{E}_{Y \sim \theta^{(t)}} [\mathcal{C}(\theta) | X] - \mathbb{E}_{Y \sim \theta^{(t)}} [\mathcal{P}(\theta) | X]$$

$$\mathbb{E}_{Y \sim \theta^{(t)}}[\mathcal{C}(\theta)|X] = \sum_{i} \sum_{k} p_{\theta^{(t)}}(y = k | x_i) \log p(x_i, y = k)$$

X: observed dataY: unobserved data $\mathcal{M}(\theta) = \text{marginal log-likelihood of observed data X}$

 $C(\theta) =$ log-likelihood of complete data (X,Y) $\mathcal{P}(\theta) =$ posterior log-likelihood of

incomplete data Y

$$\mathcal{M}(\theta) = \mathbb{E}_{Y \sim \theta^{(t)}} [\mathcal{C}(\theta) | X] - \mathbb{E}_{Y \sim \theta^{(t)}} [\mathcal{P}(\theta) | X]$$
$$Q(\theta, \theta^{(t)}) \qquad R(\theta, \theta^{(t)})$$

Let θ^* be the value that maximizes $Q(\theta, \theta^{(t)})$

X: observed dataY: unobserved data $\mathcal{M}(\theta) = \text{marginal log-likelihood of observed data X}$

 $C(\theta) =$ log-likelihood of complete data (X,Y) $\mathcal{P}(\theta) =$ posterior log-likelihood of

incomplete data Y

$$\mathcal{M}(\theta) = \mathbb{E}_{Y \sim \theta^{(t)}} [\mathcal{C}(\theta) | X] - \mathbb{E}_{Y \sim \theta^{(t)}} [\mathcal{P}(\theta) | X]$$
$$Q(\theta, \theta^{(t)}) \qquad R(\theta, \theta^{(t)})$$

Let θ^* be the value that maximizes $Q(\theta, \theta^{(t)})$

$$\mathcal{M}(\theta^*) - \mathcal{M}\left(\theta^{(t)}\right) = \left(Q\left(\theta^*, \theta^{(t)}\right) - Q(\theta^{(t)}, \theta^{(t)})\right) - \left(R\left(\theta^*, \theta^{(t)}\right) - R(\theta^{(t)}, \theta^{(t)})\right)$$

X: observed dataY: unobserved data $\mathcal{M}(\theta) = \text{marginal log-likelihood of observed data X}$

 $C(\theta) =$ log-likelihood of complete data (X,Y) $\mathcal{P}(\theta) =$ posterior log-likelihood of

incomplete data Y

Let θ^* be the value that maximizes $Q(\theta, \theta^{(t)})$

$$\mathcal{M}(\theta^*) - \mathcal{M}(\theta^{(t)}) = \left(Q(\theta^*, \theta^{(t)}) - Q(\theta^{(t)}, \theta^{(t)})\right) - \left(R(\theta^*, \theta^{(t)}) - R(\theta^{(t)}, \theta^{(t)})\right)$$
$$\geq 0 \qquad \leq 0 \text{ (we'll see why with Jensen's inequality, in variational inference)}$$

X: observed dataY: unobserved data $\mathcal{M}(\theta) = \text{marginal log-likelihood of observed data X}$

 $C(\theta) =$ log-likelihood of complete data (X,Y) $\mathcal{P}(\theta) =$ posterior log-likelihood of

incomplete data Y

$$\mathcal{M}(\theta) = \mathbb{E}_{Y \sim \theta^{(t)}} [\mathcal{C}(\theta) | X] - \mathbb{E}_{Y \sim \theta^{(t)}} [\mathcal{P}(\theta) | X]$$
$$Q(\theta, \theta^{(t)}) \qquad R(\theta, \theta^{(t)})$$

Let θ^* be the value that maximizes $Q(\theta, \theta^{(t)})$

 $\mathcal{M}(\theta^*) - \mathcal{M}\left(\theta^{(t)}\right) = \left(Q\left(\theta^*, \theta^{(t)}\right) - Q(\theta^{(t)}, \theta^{(t)})\right) - \left(R\left(\theta^*, \theta^{(t)}\right) - R(\theta^{(t)}, \theta^{(t)})\right)$

$$\mathcal{M}(\theta^*) - \mathcal{M}(\theta^{(t)}) \ge 0$$

EM does not decrease the marginal log-likelihood

Generalized EM

Partial M step: find a θ that simply increases, rather than *maximizes*, Q

Partial E step: only consider *some* of the variables (an online learning algorithm)

EM has its pitfalls

Objective is not convex → converge to a bad local optimum

Computing expectations can be hard: the E-step could require clever algorithms

How well does log-likelihood correlate with an end task?

A Maximization-Maximization Procedure

we'll see this again with variational inference

Outline

Latent and probabilistic modeling Generative Modeling Example 1: A Model of Rolling a Die Example 2: A Model of Conditional Die Rolls

EM (Expectation Maximization) Basic idea Three coins example Why EM works