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Classification Evaluation:

Accuracy, Precision, and Recall
Accuracy: % of items correct
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TP + FP + FN + TN
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Precision and Recall Present a Tradeoff
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: *

model
precision

model

Remember those
hyperparameters: Each
point is a differently
trained/tuned model

recall



Precision and Recall Present a Tradeoff

precision

Improve overal
model: push the
curve that way

recall



precision

Measure this Tradeoff:
Area Under the Curve (AUC)
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Measure this Tradeoff:
Area Under the Curve (AUC)

AUC measures the area under this
tradeoff curve

*

1. Computing the curve

You need true labels & predicted labels
with some score/confidence estimate

Threshold the scores and for each
threshold compute precision and recall

2. Finding the area
How to implement: trapezoidal rule (&

others)

Improve overall
model: push the
curve that way

recall 1

_ : In practice: external library like the
Min AUC: 0 & sklearn.metrics module
Max AUC: 1 @




True positive rate

Measure A Slightly Different Tradeofft:
ROC-AUC

AUC measures the area under this tradeoff curve

1. Computing the curve

You need true labels & predicted labels with some
score/confidence estimate

Threshold the scores and for each threshold compute
metrics

2.  Finding the area
How to implement: trapezoidal rule (& others)

Improve overall
model: push the
curve that way

In practice: external library like the
sklearn.metrics module

Main variant: ROC-AUC

0 False positive rate 1 Same idea as before but with some
flipped metrics

Min ROC-AUC: 0.5 @

Max ROC-AUC: 1 @




A combined measure: F

Weighted (harmonic) average of Precision & Recall
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A combined measure: F

Weighted (harmonic) average of Precision & Recall

F_(1+,82) *xP xR
- (B*xP)+R

Balanced F1 measure: f=1
r 2 *P xR
'~ P+R




P/R/F in a Multi-class Setting:
Micro- vs. Macro-Averaging

If we have more than one class, how do we combine
multiple performance measures into one quantity?

Macroaveraging: Compute performance for each class,
then average.

Microaveraging: Collect decisions for all classes,
compute contingency table, evaluate.



