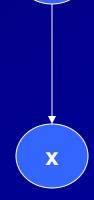
Linear Discriminant Analysis

- Learn P(x,y). This is sometimes called the generative approach, because we can think of P(x,y) as a model of how the data is generated.
 - For example, if we factor the joint distribution into the form
 P(x,y) = P(y) P(x | y)
 - we can think of P(y) as "generating" a value for y according to P(y). Then we can think of $P(\mathbf{x} \mid y)$ as generating a value for \mathbf{x} given the previously-generated value for y.
 - This can be described as a Bayesian network

Linear Discriminant Analysis (2)

- \blacksquare P(y) is a discrete multinomial distribution
 - example: P(y = 0) = 0.31, P(y = 1) = 0.69 will generate 31% negative examples and 69% positive examples
- For LDA, we assume that $P(\mathbf{x} \mid y)$ is a multivariate normal distribution with mean $\mu_{\mathbf{k}}$ and covariance matrix Σ



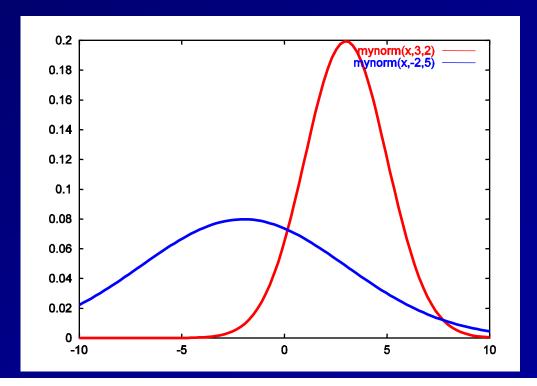
$$P(\mathbf{x}|y=k) = \frac{1}{(2\pi)^{n/2}|\mathbf{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}[\mathbf{x} - \mu_k]^T \mathbf{\Sigma}^{-1}[\mathbf{x} - \mu_k]\right)$$

Multivariate Normal Distributions: A tutorial

■ Recall that the univariate normal (Gaussian) distribution has the formula

$$p(x) = \frac{1}{(2\pi)^{1/2}\sigma} \exp\left[-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}\right]$$

- where μ is the mean and σ^2 is the variance
- Graphically, it looks like this:



The Multivariate Gaussian

A 2-dimensional Gaussian is defined by a mean vector μ = (μ₁,μ₂) and a covariance matrix

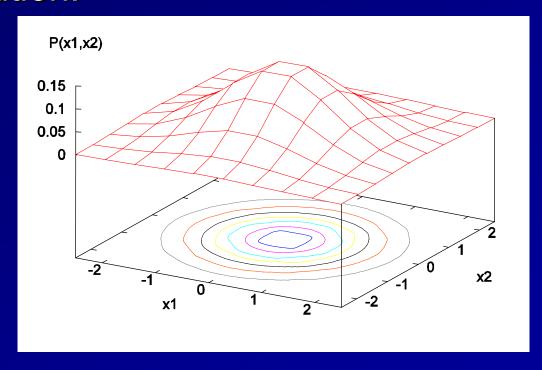
$$\Sigma = \begin{bmatrix} \sigma_{1,1}^2 & \sigma_{1,2}^2 \\ \sigma_{1,2}^2 & \sigma_{2,2}^2 \end{bmatrix}$$

where $\sigma_{i,j}^2 = E[(x_i - \mu_i)(x_j - \mu_j)]$ is the variance (if i = j) or co-variance (if $i \neq j$). Σ is symmetrical and positive-definite.

The Multivariate Gaussian (2)

If Σ is the identity matrix $\Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and

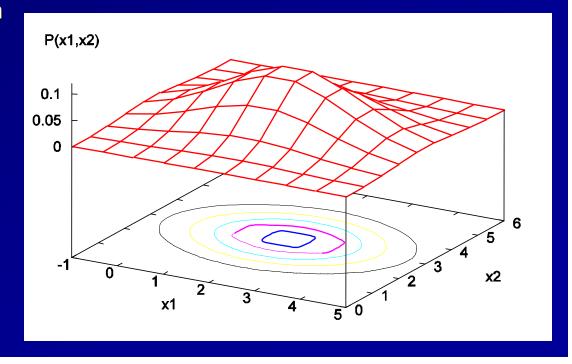
 $\mu = (0, 0)$, we get the standard normal distribution:



The Multivariate Gaussian (3)

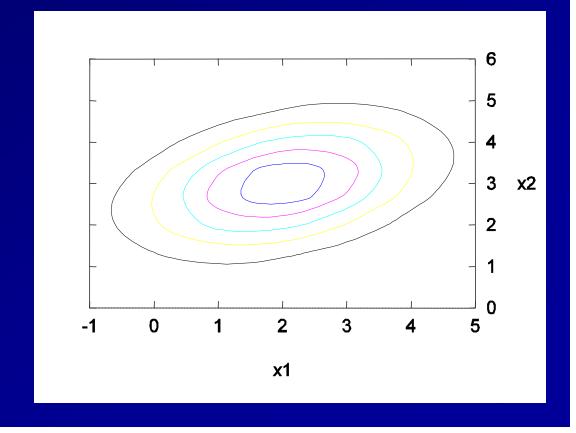
If Σ is a diagonal matrix, then x_1 , and x_2 are independent random variables, and lines of equal probability are ellipses parallel to the coordinate axes. For example, when

$$\Sigma = \left[egin{array}{cc} 2 & 0 \ 0 & 1 \end{array}
ight]$$
 and $\mu = (2,3)$ we obtain



The Multivariate Gaussian (4)

■ Finally, if Σ is an arbitrary matrix, then x_1 and x_2 are dependent, and lines of equal probability are ellipses tilted relative to the coordinate axes. For example, when



Estimating a Multivariate Gaussian

■ Given a set of N data points {x₁, ..., x_N}, we can compute the maximum likelihood estimate for the multivariate Gaussian distribution as follows:

$$\widehat{\mu} = \frac{1}{N} \sum_{i} \mathbf{x}_{i}$$

$$\widehat{\Sigma} = \frac{1}{N} \sum_{i} (\mathbf{x}_{i} - \widehat{\mu}) \cdot (\mathbf{x}_{i} - \widehat{\mu})^{T}$$

Note that the dot product in the second equation is an outer product. The outer product of two vectors is a matrix:

$$\mathbf{x} \cdot \mathbf{y}^T = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \cdot [y_1 \ y_2 \ y_3] = \begin{bmatrix} x_1 y_1 & x_1 y_2 & x_1 y_3 \\ x_2 y_1 & x_2 y_2 & x_2 y_3 \\ x_3 y_1 & x_3 y_2 & x_3 y_3 \end{bmatrix}$$

For comparison, the usual dot product is written as $\mathbf{x}^{\mathsf{T}_{\cdot}}$ y

The LDA Model

Linear discriminant analysis assumes that the joint distribution has the form

$$P(\mathbf{x}, y) = P(y) \frac{1}{(2\pi)^{n/2} |\mathbf{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2} [\mathbf{x} - \mu_y]^T \mathbf{\Sigma}^{-1} [\mathbf{x} - \mu_y]\right)$$

where each μ_y is the mean of a multivariate Gaussian for examples belonging to class y and Σ is a single covariance matrix shared by all classes.

Fitting the LDA Model

- It is easy to learn the LDA model in a single pass through the data:
 - Let $\hat{\pi}_k$ be our estimate of P(y = k)
 - Let N_k be the number of training examples belonging to class k.

$$\hat{\pi}_k = \frac{N_k}{N}$$

$$\hat{\mu}_k = \frac{1}{N_k} \sum_{\{i: y_i = k\}} \mathbf{x}_i$$

$$\hat{\Sigma} = \frac{1}{N} \sum_{i} (\mathbf{x}_i - \hat{\mu}_{y_i}) \cdot (\mathbf{x}_i - \hat{\mu}_{y_i})^T$$

Note that each \mathbf{x}_i is subtracted from its corresponding $\widehat{\mu}y_i$ prior to taking the outer product. This gives us the "pooled" estimate of Σ

LDA learns an LTU

Consider the 2-class case with a 0/1 loss function. Recall that

$$P(y = 0|\mathbf{x}) = \frac{P(\mathbf{x}, y = 0)}{P(\mathbf{x}, y = 0) + P(\mathbf{x}, y = 1)}$$

$$P(y = 1|\mathbf{x}) = \frac{P(\mathbf{x}, y = 1)}{P(\mathbf{x}, y = 0) + P(\mathbf{x}, y = 1)}$$

Also recall from our derivation of the Logistic Regression classifier that we should classify into class ŷ = 1 if

$$\log \frac{P(y=1|\mathbf{x})}{P(y=0|\mathbf{x})} > 0$$

■ Hence, for LDA, we should classify into ŷ = 1 if

$$\log \frac{P(\mathbf{x}, y = 1)}{P(\mathbf{x}, y = 0)} > 0$$

because the denominators cancel

LDA learns an LTU (2)

$$P(\mathbf{x}, y) = P(y) \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2} [\mathbf{x} - \mu_y]^T \Sigma^{-1} [\mathbf{x} - \mu_y]\right)$$

$$\frac{P(\mathbf{x}, y = 1)}{P(\mathbf{x}, y = 0)} = \frac{P(y = 1) \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2} [\mathbf{x} - \mu_1]^T \Sigma^{-1} [\mathbf{x} - \mu_1]\right)}{P(y = 0) \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2} [\mathbf{x} - \mu_0]^T \Sigma^{-1} [\mathbf{x} - \mu_0]\right)}$$

$$\frac{P(\mathbf{x}, y = 1)}{P(\mathbf{x}, y = 0)} = \frac{P(y = 1) \exp\left(-\frac{1}{2} [\mathbf{x} - \mu_1]^T \Sigma^{-1} [\mathbf{x} - \mu_1]\right)}{P(y = 0) \exp\left(-\frac{1}{2} [\mathbf{x} - \mu_0]^T \Sigma^{-1} [\mathbf{x} - \mu_0]\right)}$$

$$\log \frac{P(\mathbf{x}, y = 1)}{P(\mathbf{x}, y = 0)} = \log \frac{P(y = 1)}{P(y = 0)} - \frac{1}{2} \left([\mathbf{x} - \mu_1]^T \Sigma^{-1} [\mathbf{x} - \mu_1] - [\mathbf{x} - \mu_0]^T \Sigma^{-1} [\mathbf{x} - \mu_0] \right)$$

LDA learns an LTU (3)

Let's focus on the term in brackets:

$$\left([\mathbf{x} - \mu_1]^T \mathbf{\Sigma}^{-1} [\mathbf{x} - \mu_1] - [\mathbf{x} - \mu_0]^T \mathbf{\Sigma}^{-1} [\mathbf{x} - \mu_0] \right)$$

Expand the quadratic forms as follows:

$$[\mathbf{x} - \mu_1]^T \mathbf{\Sigma}^{-1} [\mathbf{x} - \mu_1] = \mathbf{x}^T \mathbf{\Sigma}^{-1} \mathbf{x} - \mathbf{x}^T \mathbf{\Sigma}^{-1} \mu_1 - \mu_1^T \mathbf{\Sigma}^{-1} \mathbf{x} + \mu_1^T \mathbf{\Sigma}^{-1} \mu_1$$
$$[\mathbf{x} - \mu_0]^T \mathbf{\Sigma}^{-1} [\mathbf{x} - \mu_0] = \mathbf{x}^T \mathbf{\Sigma}^{-1} \mathbf{x} - \mathbf{x}^T \mathbf{\Sigma}^{-1} \mu_0 - \mu_0^T \mathbf{\Sigma}^{-1} \mathbf{x} + \mu_0^T \mathbf{\Sigma}^{-1} \mu_0$$

Subtract the lower from the upper line and collect similar terms. Note that the quadratic terms cancel! This leaves only terms linear in x.

$$\mathbf{x}^{T} \mathbf{\Sigma}^{-1} (\mu_{0} - \mu_{1}) + (\mu_{0} - \mu_{1}) \mathbf{\Sigma}^{-1} \mathbf{x} + \mu_{1}^{T} \mathbf{\Sigma}^{-1} \mu_{1} - \mu_{0}^{T} \mathbf{\Sigma}^{-1} \mu_{0}$$

LDA learns an LTU (4)

$$\mathbf{x}^{T} \mathbf{\Sigma}^{-1} (\mu_{0} - \mu_{1}) + (\mu_{0} - \mu_{1}) \mathbf{\Sigma}^{-1} \mathbf{x} + \mu_{1}^{T} \mathbf{\Sigma}^{-1} \mu_{1} - \mu_{0}^{T} \mathbf{\Sigma}^{-1} \mu_{0}$$

Note that since Σ^{-1} is symmetric $\mathbf{a}^T \Sigma^{-1} \mathbf{b} = \mathbf{b}^T \Sigma^{-1} \mathbf{a}$ for any two vectors \mathbf{a} and \mathbf{b} . Hence, the first two terms can be combined to give

$$2\mathbf{x}^T \mathbf{\Sigma}^{-1} (\mu_0 - \mu_1) + \mu_1^T \mathbf{\Sigma}^{-1} \mu_1 - \mu_0^T \mathbf{\Sigma}^{-1} \mu_0.$$

Now plug this back in...

$$\log \frac{P(\mathbf{x}, y = 1)}{P(\mathbf{x}, y = 0)} = \log \frac{P(y = 1)}{P(y = 0)} - \frac{1}{2} \left[2\mathbf{x}^T \mathbf{\Sigma}^{-1} (\mu_0 - \mu_1) + \mu_1^T \mathbf{\Sigma}^{-1} \mu_1 - \mu_0^T \mathbf{\Sigma}^{-1} \mu_0 \right]$$

$$\log \frac{P(\mathbf{x}, y = 1)}{P(\mathbf{x}, y = 0)} = \log \frac{P(y = 1)}{P(y = 0)} + \mathbf{x}^T \mathbf{\Sigma}^{-1} (\mu_1 - \mu_0) - \frac{1}{2} \mu_1^T \mathbf{\Sigma}^{-1} \mu_1 + \frac{1}{2} \mu_0^T \mathbf{\Sigma}^{-1} \mu_0$$

LDA learns an LTU (5)

$$\log \frac{P(\mathbf{x}, y = 1)}{P(\mathbf{x}, y = 0)} = \log \frac{P(y = 1)}{P(y = 0)} + \mathbf{x}^T \mathbf{\Sigma}^{-1} (\mu_1 - \mu_0) - \frac{1}{2} \mu_1^T \mathbf{\Sigma}^{-1} \mu_1 + \frac{1}{2} \mu_0^T \mathbf{\Sigma}^{-1} \mu_0$$

Let

$$\mathbf{w} = \Sigma^{-1}(\mu_1 - \mu_0)$$

$$c = \log \frac{P(y=1)}{P(y=0)} - \frac{1}{2}\mu_1^T \Sigma^{-1} \mu_1 + \frac{1}{2}\mu_0^T \Sigma^{-1} \mu_0$$

Then we will classify into class $\hat{y} = 1$ if

$$\mathbf{w} \cdot \mathbf{x} + c > 0$$
.

This is an LTU.

Two Geometric Views of LDA View 1: Mahalanobis Distance

- The quantity $D_M(\mathbf{x}, \mathbf{u})^2 = (\mathbf{x} \mathbf{u})^T \mathbf{\Sigma}^{-1} (\mathbf{x} \mathbf{u})$ is known as the (squared) Mahalanobis distance between \mathbf{x} and \mathbf{u} . We can think of the matrix $\mathbf{\Sigma}^{-1}$ as a linear distortion of the coordinate system that converts the standard Euclidean distance into the Mahalanobis distance
- Note that

$$\log P(\mathbf{x}|y=k) \propto \log \pi_k - \frac{1}{2}[(\mathbf{x} - \mu_k)^T \mathbf{\Sigma}^{-1} (\mathbf{x} - \mu_k)]$$

$$\log P(\mathbf{x}|y=k) \propto \log \pi_k - \frac{1}{2}D_M(\mathbf{x}, \mu_k)^2$$

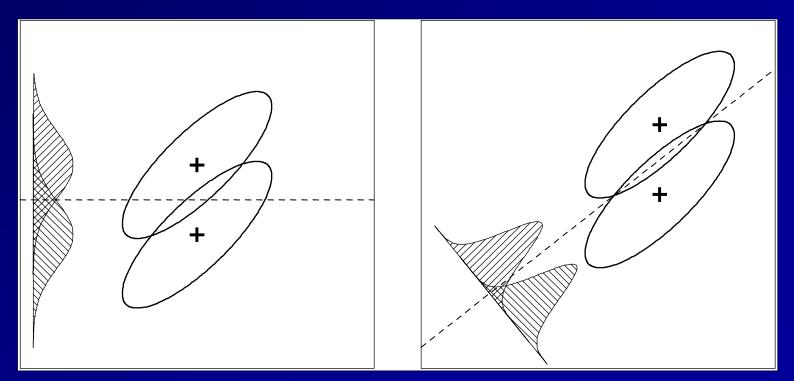
Therefore, we can view LDA as computing

-
$$D_M(\mathbf{x},\mu_0)^2$$
 and $D_M(\mathbf{x},\mu_1)^2$

and then classifying **x** according to which mean μ_0 or μ_1 is closest in Mahalanobis distance (corrected by log π_k)

View 2: Most Informative Low-Dimensional Projection

■ LDA can also be viewed as finding a hyperplane of dimension K-1 such that \mathbf{x} and the $\{\mu_k\}$ are projected down into this hyperplane and then \mathbf{x} is classified to the nearest μ_k using Euclidean distance inside this hyperplane



Generalizations of LDA

General Gaussian Classifier

– Instead of assuming that all classes share the same Σ , we can allow each class k to have its own Σ_k . In this case, the resulting classifier will be a quadratic threshold unit (instead of an LTU)

Naïve Gaussian Classifier

– Allow each class to have its own Σ_k , but require that each Σ_k be diagonal. This means that within each class, any pair of features x_{j1} and x_{j2} will be assumed to be statistically independent. The resulting classifier is still a quadratic threshold unit (but with a restricted form)

Summary of Linear Discriminant Analysis

- Learns the joint probability distribution $P(\mathbf{x}, y)$.
- Direct Computation. The maximum likelihood estimate of $P(\mathbf{x}, y)$ can be computed from the data without search. However, inverting the Σ matrix requires $O(n^3)$ time.
- Eager. The classifier is constructed from the training examples. The examples can then be discarded.
- Batch. Only a batch algorithm is available. An online algorithm could be constructed if there is an online algorithm for incrementally updated Σ^{-1} . [This is easy for the case where Σ is diagonal.]