Linear Discriminant Analysis

1 Learn P(x,y). This is sometimes
called the generative approach,
because we can think of P(x,y) as a
model of how the data is generated.

— For example, if we factor the joint

distribution into the form
P(x,y) = P(y) P(x | y)

— we can think of P(y) as “generating” a
value for y according to P(y). Then we
can think of P(x | y) as generating a value
for x given the previously-generated
value for y.

— This can be described as a Bayesian
network




Linear Discriminant Analysis (2)

1 P(y) is a discrete multinomial distribution
— example: P(y = 0)=0.31, P(y = 1) = 0.69 will
generate 31% negative examples and 69%
positive examples
1 For LDA, we assume that P(x | y) is a
multivariate normal distribution with
mean , and covariance matrix X
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Multivariate Normal Distributions:
A tutorial

1 Recall that the univariate normal (Gaussian) distribution has the formula
1 1(x—p)?
oxp | L& = 1) ]
(27)1/ 24

p(z) = 5 2

1 where pu is the mean and o2 is the variance
1 Graphically, it looks like this:




The Multivariate Gaussian

1 A 2-dimensional Gaussian is defined by a
mean vector u = (u4,l,) and a covariance
matrix
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variance (if / =) or co-variance (if i #j). X
IS symmetrical and positive-definite.




The Multivariate Gaussian (2)
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1 If X is the identity matrix >~ = {

u = (0, 0), we get the standard norma
distribution:




The Multivariate Gaussian (3)

1 If X is a diagonal matrix, then x,, and x, are independent random
variables, and lines of equal probability are ellipses parallel to the
coordinate axes. For example, when

Z:[Q O} and

O 1
u = (2, 3) we obtain

P(x1,x2)




The Multivariate Gaussian (4)

1 Finally, if Z is an arbitrary matrix, then x, and x, are
dependent, and lines of equal probability are eﬁipses

tilted relative to the coordinate axes. For example, when

z:[ 2 0.5] and

0.5 1
1= (2,3) we obtain




Estimating a Multivariate Gaussian

1 Given a set of N data points {x,, ... we can compute

, XN )
the maximum likelihood estimate for tHe multivariate
Gaussian distribution as follows:
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1 Note that the dot product in the second equation is an
outer product. The outer product of two vectors is a
matrix:

- [wﬂ [w1y1 T1Y2 ww:—;]
Xy = { o J ly1 yo y3] = [ ToY1 T2Y2 T2Y3 J
T3 T3Y1 T3Y2 T3Y3

1 For comparison, the usual dot product is written as x'- y
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The LDA Model

1 Linear discriminant analysis assumes that the
joint distribution has the form

1
(2m)n/2|x|1/2

exp <—%[X — P = x - Hy])

P(x,y) = P(y)

where each p, is the mean of a multivariate
Gaussian for examples belonging to class y and
2. IS a single covariance matrix shared by all
classes.




Fitting the LDA Model

1 |t is easy to learn the LDA model in a single pass
through the data:
— Let 71, be our estimate of P(y = k)
— Let N, be the number of training examples belonging to class k.
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1 Note that each x; is subtracted from its corresponding Ly,
prior to taking the outer product. This gives us the
“‘pooled” estimate of X




LDA learns an LTU

1 Consider the 2-class case with a 0/1 loss function. Recall that
P(x,y = 0)

P(x,y=0)4+ P(x,y = 1)
P(x,y=1)

P(x,y=0)+ P(x,y = 1)

1 Also recall from our derivation of the Logistic Regression classifier
that we should classify into class y = 1 if

P(y=0x) =

Ply=1[x) =

|OgP(y=1IX) - 0
P(y = 0|x)

1 Hence, for LDA, we should classify intoy = 1 if
P(x,y=1)

log > 0

because the denominators cancel




LDA learns an LTU (2)

1
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P(xy) = P@) exp (=5 bx — il 7= — ]

Pxy=1) FPW= 1)(2ﬂ)n/§|z|1/2 exp (—5[x — p1] "= x — pq))

P(x,y =0) Py = o)(%)n/gml/2 exp (—3[x — po) T 1 x — po))

Px,y=1)  Ply=1) exp(—3[x — p1]"<1x — p])
P(x,y=0)  P(y=0) exp (—3[x — po] "=~ 1[x — po])

Px,y=1) _ _ P(y=1)
SPry=0 ~ 9PE=0)

a % (Ix — pa] "= x — pa] — [x — pol "= x — pol)

lO




LDA learns an LTU (3)

1 |et's focus on the term in brackets:
(x = pa] =7 o — pg] = [x — pol " = Hx — pgl)

1 Expand the quadratic forms as follows:
x—pi ' x -] = T x—xIs Ty i x  pf

x—pol' = x—pol = X x—xIE g — pd T x b= o
1 Subtract the lower from the upper line and collect similar

terms. Note that the quadratic terms cancel! This
leaves only terms linear in Xx.

x? = (po—p1)+(po—p1)Z x4 pd T —pd = Huo




LDA learns an LTU (4)

x? = (po—p1)+(po—p1)Z x4 pd T —pd = tuo

1 Note that since X1 is symmetric aZs>—1b = b3 1a
for any two vectors a and b. Hence, the first two terms
can be combined to give

2x'E " (po — p1) + i = g — b= po
1 Now plug this back in...
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LDA learns an LTU (5)

P(x,y=1) P(y = ) !

Ie — lo xIs =Ly — _ iy I's—1
gP(X7y —0) gp(y — O) (1 — po) i R uo 10
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|0 — —uq 2 >
gp(y —0) SH1 u1 i u uo

we will classify into classy =1 if

w-X+c > 0.
Thisis an LTU.




Two Geometric Views of LDA
View 1: Mahalanobis Distance

1 The quantity D (X, u?=(x—u)l=1(x —u) is known as
the (squared) Mahalanobis distance between x and u. We can think
of the matrix X-' as a linear distortion of the coordinate system that
converts the standard Euclidean distance into the Mahalanobis
distance

Note that
1

09 P(xly = k) oc logm — S[(x — )" £ (x — pup)]

1
log P(x|ly = k) oc logmg — EDM(X,M@)Q

1 Therefore, we can view LDA as computing

- DM(Xa :UJO)Q clle DM<X7 Ml)z
and then classifying x according to which mean p, or ., is closest in
Mahalanobis distance (corrected by log m,)
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View 2: Most Informative Low-
Dimensional Projection

1 LDA can also be viewed as finding a hyperplane of
dimension K — 1 such that x and the {, } are projected
down into this hyperplane and then x is classified to the
nearest p, using Euclidean distance inside this
hyperplane




Generalizations of LDA

1 General Gaussian Classifier

— Instead of assuming that all classes share the same
2, we can allow each class k to have its own %,. In
this case, the resulting classifier will be a quadratic
threshold unit (instead of an LTU)

1 Nalve Gaussian Classifier

— Allow each class to have its own %,, but require that
each X, be diagonal. This means that within each
class, any pair of features x;; and x;, will be assumed
to be statistically independent. The resulting classifier
Is still a quadratic threshold unit (but with a restricted
form)




Summary of
Linear Discriminant Analysis

Learns the joint probability distribution P(x, y).

Direct Computation. The maximum likelihood estimate
of P(x,y) can be computed from the data without search.
However, inverting the X matrix requires O(n3) time.

Eager. The classifier is constructed from the training

examples. The examples can then be discarded.

Batch. Only a batch algorithm is available. An online
algorithm could be constructed if there is an online
algorithm for incrementally updated X-'. [This is easy for
the case where X is diagonal.]




