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Linear Discriminant AnalysisLinear Discriminant Analysis

Learn P(Learn P(xx,,yy).  This is sometimes ).  This is sometimes 
called the called the generativegenerative approach, approach, 
because we can think of P(because we can think of P(xx,,yy) as a ) as a 
model of how the data is generated.model of how the data is generated.

@@ For example, if we factor the joint For example, if we factor the joint 
distribution into the formdistribution into the form

P(P(xx,,yy) = P() = P(yy) P() P(xx | | yy))

@@ we can think of P(we can think of P(yy) as ) as ddgeneratinggeneratingee a a 
value for value for yy according to P(according to P(yy).  Then we ).  Then we 
can think of P(can think of P(xx | | yy) as generating a value ) as generating a value 
for for xx given the previouslygiven the previously--generated generated 
value for value for yy..

@@ This can be described as a Bayesian This can be described as a Bayesian 
networknetwork
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Linear Discriminant Analysis (2)Linear Discriminant Analysis (2)

P(P(yy) is a discrete multinomial distribution) is a discrete multinomial distribution

@@ example: P(example: P(yy = 0) = 0.31, P(= 0) = 0.31, P(yy = 1) = 0.69 will = 1) = 0.69 will 

generate 31% negative examples and 69% generate 31% negative examples and 69% 

positive examplespositive examples

For LDA, we assume that P(For LDA, we assume that P(xx | | yy) is a ) is a 

multivariate normal distribution with multivariate normal distribution with 

mean mean ��kk and covariance matrix and covariance matrix ��
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Multivariate Normal Distributions:Multivariate Normal Distributions:

A tutorialA tutorial
Recall that the univariate normal (Gaussian) distribution has thRecall that the univariate normal (Gaussian) distribution has the formulae formula

where where �� is the mean and is the mean and ��22 is the varianceis the variance

Graphically, it looks like this:Graphically, it looks like this:
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The Multivariate GaussianThe Multivariate Gaussian

A 2A 2--dimensional Gaussian is defined by a dimensional Gaussian is defined by a 

mean vector mean vector �� = (= (��11,,��22) and a covariance ) and a covariance 

matrix matrix 

where where ��22
i,ji,j = E[(x= E[(x

ii @@ ��ii)(x)(x
jj -- ��jj)] is the )] is the 

variance (if variance (if i = ji = j) or co) or co--variance (if variance (if ii �� j).  j).  ��
is symmetrical and positiveis symmetrical and positive--definite.definite.
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The Multivariate Gaussian (2)The Multivariate Gaussian (2)

If If �� is the identity matrix                         and is the identity matrix                         and 

�� = (0, 0), we get the standard normal = (0, 0), we get the standard normal 

distribution:distribution:
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The Multivariate Gaussian (3)The Multivariate Gaussian (3)

If If �� is a diagonal matrix, then is a diagonal matrix, then xx11, and , and xx22 are independent random are independent random 

variables, and lines of equal probability are ellipses parallel variables, and lines of equal probability are ellipses parallel to the to the 

coordinate axes.  For example, when coordinate axes.  For example, when 

andand

we obtainwe obtain
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The Multivariate Gaussian (4)The Multivariate Gaussian (4)

Finally, if Finally, if �� is an arbitrary matrix, then xis an arbitrary matrix, then x
11 and xand x

22 are are 
dependent, and lines of equal probability are ellipses dependent, and lines of equal probability are ellipses 
tilted relative to the coordinate axes.  For example, whentilted relative to the coordinate axes.  For example, when

andand

we obtainwe obtainµ � �
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Estimating a Multivariate GaussianEstimating a Multivariate Gaussian

Given a set of N data points {Given a set of N data points {xx11, , `̀, , xxNN}, we can compute }, we can compute 
the maximum likelihood estimate for the multivariate the maximum likelihood estimate for the multivariate 
Gaussian distribution as follows:Gaussian distribution as follows:
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Note that the dot product in the second equation is an Note that the dot product in the second equation is an 

outer productouter product.  The outer product of two vectors is a .  The outer product of two vectors is a 

matrix:matrix:
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For comparison, the usual dot product is written as For comparison, the usual dot product is written as xxTT·· yy
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The LDA ModelThe LDA Model

Linear discriminant analysis assumes that the Linear discriminant analysis assumes that the 
joint distribution has the formjoint distribution has the form

P �x, y� � P�y�
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where each where each ��yy is the mean of a multivariate is the mean of a multivariate 

Gaussian for examples belonging to class Gaussian for examples belonging to class yy and and 

�� is a single covariance matrix is a single covariance matrix shared by all shared by all 

classesclasses..
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Fitting the LDA ModelFitting the LDA Model

It is easy to learn the LDA model in a single pass It is easy to learn the LDA model in a single pass 

through the data:through the data:

@@ Let         be our estimate of P(Let         be our estimate of P(yy = = kk))

@@ Let NLet N
kk be the number of training examples belonging to class be the number of training examples belonging to class kk..

��k

Note that each Note that each xxii is subtracted from its corresponding    is subtracted from its corresponding    

prior to taking the outer product.  This gives us the prior to taking the outer product.  This gives us the 

ddpooledpooledee estimate of estimate of ��
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LDA learns an LTULDA learns an LTU

Consider the 2Consider the 2--class case with a 0/1 loss function.  Recall thatclass case with a 0/1 loss function.  Recall that

Also recall from our derivation of the Logistic Regression classAlso recall from our derivation of the Logistic Regression classifier ifier 

that we should classify into class that we should classify into class �� = 1 if= 1 if

Hence, for LDA, we should classify into Hence, for LDA, we should classify into �� = 1 if= 1 if

because the denominators cancelbecause the denominators cancel
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LDA learns an LTU (2)LDA learns an LTU (2)

P�x, y� � P �y�
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LDA learns an LTU (3)LDA learns an LTU (3)

LetLetggs focus on the term in brackets:s focus on the term in brackets:³
�x� µ	�

T0�	�x� µ	� � �x� µ��
T0�	�x� µ��

´

Expand the quadratic forms as follows:Expand the quadratic forms as follows:

�x� µ	�T0�	�x� µ	� � xT0�	x� xT0�	µ	 � µT	0
�	x� µT	0

�	µ	

�x� µ��T0�	�x� µ�� � xT0�	x� xT0�	µ� � µT�0
�	x� µT�0

�	µ�

Subtract the lower from the upper line and collect similar Subtract the lower from the upper line and collect similar 

terms.  Note that the quadratic terms cancel!  This terms.  Note that the quadratic terms cancel!  This 

leaves only terms linear in leaves only terms linear in xx..
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LDA learns an LTU (4)LDA learns an LTU (4)

xT0�	�µ��µ	���µ��µ	�0�	x�µT	0
�	µ	�µT�0

�	µ�

Note that since Note that since ��--11 is symmetric                                      is symmetric                                      

for any two vectors for any two vectors aa and and bb.  Hence, the first two terms .  Hence, the first two terms 

can be combined to givecan be combined to give

aT0�	b � bT0�	a
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Now plug this back inNow plug this back in`̀
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LDA learns an LTU (5)LDA learns an LTU (5)
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The quantity                                                    The quantity                                                    is known as is known as 

the (squared) Mahalanobis distance between the (squared) Mahalanobis distance between xx and and uu.  We can think .  We can think 

of the matrix of the matrix ��--11 as a linear distortion of the coordinate system that as a linear distortion of the coordinate system that 

converts the standard Euclidean distance into the Mahalanobis converts the standard Euclidean distance into the Mahalanobis 

distancedistance

Note thatNote that

Therefore, we can view LDA as computingTherefore, we can view LDA as computing

@@ and and 

and then classifying and then classifying xx according to which mean according to which mean ��00 or or ��11 is closest in is closest in 

Mahalanobis distance (corrected by log Mahalanobis distance (corrected by log ��kk))

Two Geometric Views of LDATwo Geometric Views of LDA

View 1: Mahalanobis DistanceView 1: Mahalanobis Distance
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View 2: Most Informative LowView 2: Most Informative Low--

Dimensional ProjectionDimensional Projection

LDA can also be viewed as finding a hyperplane of LDA can also be viewed as finding a hyperplane of 
dimension K dimension K @@ 1 such that 1 such that xx and the {and the {��kk} are projected } are projected 
down into this hyperplane and then down into this hyperplane and then xx is classified to the is classified to the 
nearest nearest ��kk using Euclidean distance inside this using Euclidean distance inside this 
hyperplanehyperplane
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Generalizations of LDAGeneralizations of LDA

General Gaussian ClassifierGeneral Gaussian Classifier

@@ Instead of assuming that all classes share the same Instead of assuming that all classes share the same 

��, we can allow each class , we can allow each class kk to have its own to have its own ��kk.  In .  In 

this case, the resulting classifier will be a quadratic this case, the resulting classifier will be a quadratic 

threshold unit (instead of an LTU)threshold unit (instead of an LTU)

NaNaïïve Gaussian Classifierve Gaussian Classifier

@@ Allow each class to have its own Allow each class to have its own ��kk, but require that , but require that 

each each ��kk be diagonal.  This means that be diagonal.  This means that withinwithin each each 

class, any pair of features xclass, any pair of features x
j1j1 and xand x

j2j2 will be assumed will be assumed 

to be statistically independent.  The resulting classifier to be statistically independent.  The resulting classifier 

is still a quadratic threshold unit (but with a restricted is still a quadratic threshold unit (but with a restricted 

form)form)



7676

Summary of Summary of 

Linear Discriminant AnalysisLinear Discriminant Analysis

Learns the joint probability distribution P(Learns the joint probability distribution P(xx, , yy). ). 

Direct Computation.  The maximum likelihood estimate Direct Computation.  The maximum likelihood estimate 

of P(of P(xx,,yy) can be computed from the data without search.  ) can be computed from the data without search.  

However, inverting the However, inverting the �� matrix requires O(nmatrix requires O(n33) time.) time.

Eager.  The classifier is constructed from the training Eager.  The classifier is constructed from the training 

examples.  The examples can then be discarded.examples.  The examples can then be discarded.

Batch.  Only a batch algorithm is available.  An online Batch.  Only a batch algorithm is available.  An online 

algorithm could be constructed if there is an online algorithm could be constructed if there is an online 

algorithm for incrementally updated algorithm for incrementally updated ��--11.  [This is easy for .  [This is easy for 

the case where the case where �� is diagonal.] is diagonal.] 


