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Searching online text collections can be both rewarding and frustrating. While valuable
information can be found, typically many irrelevant documents are also retrieved, while many
relevant ones are missed. Terminology mismatches between the user’s query and document
contents are a main cause of retrieval failures. Expanding a user’s query with related words
can improve search performance, but finding and using related words is an open problem. This
research uses corpus analysis techniques to automatically discover similar words directly from
the contents of the databases which are not tagged with part-of-speech labels. Using these
similarities, user queries are automatically expanded, resulting in conceptual retrieval rather
than requiring exact word matches between queries and documents. We are able to achieve a
7.6% improvement for TREC 5 queries and up to a 28.5% improvement on the narrow-domain
Cystic Fibrosis collection. This work has been extended to multidatabase collections where
each subdatabase has a collection-specific similarity matrix associated with it. If the best
matrix is selected, substantial search improvements are possible. Various techniques to select
the appropriate matrix for a particular query are analyzed, and a 4.8% improvement in the
results is validated.

Categories and Subject Descriptors: H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing—Linguistic processing; Thesauruses; H.3.3 [Information Storage
and Retrieval]: Information Search and Retrieval—Query formulation

General Terms: Algorithms, Experimentation

Additional Key Words and Phrases: Query expansion

1. INTRODUCTION

The goal of information retrieval is to identify documents which best match
users information needs. At first glance, this seems very simple—merely
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identify documents (efficiently) which contain the words which are also
contained in the user’s query. However, the average query submitted by
users to World Wide Web search engines is only two words long [Croft et al.
1995], which makes it difficult to identify relevant documents. There are
likely to be many relevant documents available which are missed because
they do not contain the exact words used in the query.

Automatically adding related words to a query can increase the number
of relevant documents identified by increasing the number of words which
are used for matching. This is one way to provide conceptual retrieval,
rather than pure string matching. The user’s initial query terms are taken
as representatives of the concepts in which they are interested. Then, query
expansion adds other terms related to the same concepts, providing a richer
representation of the user’s query. Our earlier work showed that an expert
system which automatically reformulated Boolean queries by including
terms from an online thesaurus was, indeed, able to improve search results
[Gauch and Smith 1993]. But, where are the expansion terms to come from?
There are three main sources for related words which vary in their level of
specificity: (1) query specific; (2) corpus specific; and (3) language specific.

Query-specific terms can be identified by locating new terms in a subset
of the documents retrieved by a specific query. This is the approach taken
by relevance feedback systems, where related terms come from the contents
of user-identified relevant documents. This has been shown to be quite
effective [Harman 1992], but it requires the users to indicate which
documents are relevant. More recently, search improvements are being
achieved [Xu and Croft 1996] without the need for user relevance judg-
ments. Local analysis of the top N retrieved documents, where N varies
from 20 to 100 based on the database being searched, has been found to
increase performance over 23% on the TREC 3 and TREC 4 corpora. The
main drawback to these approaches is that there is a reasonable amount of
computation that takes place after the user submits a query, which can be
a problem for interactive systems.

Corpus-specific terms are found by analyzing the contents of a particular
full-text database to identify terms used in similar ways. It may be
hand-built [Gauch and Smith 1991], a time-consuming and ad hoc process,
or created automatically. Traditional automatic thesaurus construction
techniques grouped words together based on their occurrence patterns at a
document level [Crouch and Yang 1992; Qiu and Frei 1993], i.e., words
which often occur together in documents are assumed to be similar. These
thesauri can then be used for automatic or manual query expansion. A
related approach, Latent Semantic Indexing [Deerwester et al. 1990], does
singluar value decomposition on the term-document occurrence patterns to
reduce the indexing space into a smaller number of “semantic” factors.
Documents, and queries, are then represented and matched based on these
factors.

Based on studies that show that the more often words can be substituted
into the same context, the more similar they are in meaning [Miller and
Charles 1991], other approaches look at word usage within documents.
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While within-document word usage is not a new idea [Sparck Jones 1971],
modern computers make this approach feasible. While some incorporate
syntactic analysis [Grefenstette 1992], most look for cooccurrence patterns
of words [Schiitze and Pedersen 1994] or noun phrases [Jing and Croft
1994] within windows of a fixed size (measured in terms of n words).
Varying search improvements have been achieved with these systems (7.8%
and 3.4% on TREC 3 and TREC 4 respectively [Xu and Croft 1996]; 5% on
TIPSTER Category B [Schiitze and Pedersen 1994]; 18—-30% on smaller
corpora [Qiu and Frei 1993]). These approaches are computationally inten-
sive, but the computations are done once per database. The only component
done on a per-query basis is the actual query expansion itself. Also, because
the information is built from the specific text collection, the related terms
are automatically tuned for the particular database being searched. One
weakness of corpus-specific approaches is that they cannot determine term
relationships which occur between words which are used in the corpus and
those which are used by a different community (e.g., the Congressional
Record uniformly uses the term “senior citizen” whereas users might use
the term “elderly” in their queries).

Language-specific terms may be found from generally available online
thesauri which are not tailored for any particular text collection. Liddy and
Myaeng [1993] use the Longman’s Dictionary of Contemporary English, a
semantically coded dictionary. Voorhees [1994] used WordNet [Miller and
Charles 1991], a manually constructed network of lexical relationships.
Because of ambiguity, this type of thesaurus is difficult to use because it
includes multiple meanings for most words. Selecting the correct meaning
for expansion can be difficult. Small improvements (1% [Voorhees 1994])
are possible with longer queries which provide clues for which word senses
are involved, but expanding shorter queries actually degraded perfor-
mance. In addition, a general thesaurus may not be applicable for more
specialized collections which may have their own distinct sublanguages.

We have adopted a corpus-specific approach for locating related terms.
We are particularly interested in these techniques because the main
calculations are done a priori, before the user queries arrive. Similar to
Schiitze and Pedersen [1994] and Jing and Croft [1994], we use fine-
grained information about word contexts to create an association thesau-
rus. In contrast, our windows are an order of magnitude smaller, and we
consider the order of occurrence of the words within the window (see
Section 2). Using this approach, we are able to achieve a 7.6% improvement
for TREC 5 queries and up to a 28.5% improvement on the narrow-domain
Cystic Fibrosis collection (see Section 4). Section 5 considers the extension
of this approach to multiple databases.

2. CORPUS ANALYSIS TECHNIQUE

We have modified a corpus linguistics approach [Finch and Chater 1992]
that creates a matrix of term-term similarities. For words to be considered
similar, they need not actually cooccur; however, they must occur in similar
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contexts. For example, we could deduce that “color” and “colour” were
highly similar words because they are used in similar contexts, even
though they are not likely to both appear in the same document. This
approach is similar to others in that word usage within a given window is
recorded. However, our window size is much smaller because we take into
account the position of the words within the window, not just the words
themselves. In addition, we use the highest-frequency words as context
words, which are generally removed as stopwords by other approaches.
These words occur most frequently, and thus provide more statistical
information in smaller samples. In addition, they provide ad hoc part-of-
speech information. The fact that the word “the” appears immediately prior
to a word w carries much more information about w (i.e., it is a noun or an
adjective) than just the fact that the word “the” appears within a seven-
word window of w. Thus, although we do not do explicit parsing of the text,
we do get a quasi-syntactic categorization.

2.1 Similarity Calculation

The first step is to identify a set of words, the target words, whose pairwise
similarities are to be calculated. Then, for each target word, we construct a
context vector which summarizes information about word occurrences
around the target word. This context vector is a concatenation of subvec-
tors, one position vector for each position in the window (called the context
positions). For example, in a window of size 5, there are 4 context positions:
—2 (2 positions before the target word), —1 (immediately before the target
word), +1 (immediately after the target word), and +2 (2 positions after
the target word). Each position vector has one element for each context
word, the words whose appearance in the window surrounding the target
words is recorded. Generally, the context words are the most frequent
words in the database.

Initially, the counts from all instances of a word form w; are summed so
that the entry in the corresponding context word position in the vector is
the sum of the occurrences of that context word in that position for the
corresponding target word form; it is the joint frequency of the context
word. Consider an example in which there are only five context words, {“a”,
“black”, “dog”, “the”, “very”}, and two sentences containing the target word
“dog”; and we only observe the preceding two positions and the following
two positions:

(1) The black dog barked very loudly.

(2) A brown dog barked very loudly.

As shown in Table I, the context vector for “dog” in sentence (1) is formed
by concatenating the context subvectors for each of the four context
positions:

(0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1)
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Table I. The Context Subvectors for Each of the Four Context Positions Around the
Occurrence of the Target Word “dog” in Sentence (1)

Word’s Position

Observed in Context
Sentence Context Position Word Vector Context Subvector
1 -2 “The” 4 (0,0,0,1, 0
-1 “black” 2 0,1,0,0,0
+1 “barked” N/A (0,0,0,0,0)
+2 “very” 5 (0,0,0,0,1)

Similarly, the context vector for “dog” in sentence (2) would be
(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1)

And the combined vector for the word “dog” would be formed by adding the
context vectors for all occurrences together to the following form:

(1,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,2)

After the context vectors for each target word are created, the raw occur-
rence numbers are replaced by mutual information values [Church and
Hanks 1990] as follows:

MI(cw) = log2<}few + 1)

clw

MI(cw) expresses the mutual information value for the context word ¢
appearing with the target word w. The mutual information is large
whenever a context word appears at a much higher frequency, fow, in the
neighborhood of a target word than would be predicted from the overall
frequencies in the corpus of the context word and the target word, f, and fy
respectively. The formula adds 1 to the frequency ratio, so that a 0 (zero)
occurrence corresponds to 0 mutual information. When the mutual infor-
mation vectors are computed for a number of words, they can be compared
to see which words have similar contexts. The comparison we chose is the
normalized inner product, or cosine measure, which can vary between —1.0
and +1.0 [Myaeng and Li 1992].

Finally, to make the identification of the most highly similar terms to a
given term more efficient, an auxiliary file is produced from the similarity
matrix. It stores, for each target word, a list of words and their similarity
values for all words with similarity above a given threshold. This similarity
list is sorted in decreasing order by similarity value.

2.2 Efficiency Concerns

The time efficiency of building the context vectors is O(N,) where N, is the
number of word instances in the sample. However, computation time is

ACM Transactions on Information Systems, Vol. 17, No. 3, July 1999.



Automatic Query Expansion and Its Extension to Multiple Databases . 255

dominated by building the similarity matrix from the context vectors which
is O(N,?), where N, is the number of target words. The space needed to
store the context vectors is O(N, * N,), where N, is the number of context
words, which is independent of the sample size.

3. EVALUATION

To incorporate the results of the corpus analysis into an existing retrieval
engine, SMART Buckley 1985 was modified to allow it to expand queries
based on the similarity matrices, search the database with the expanded
queries, and return the top 1000 documents for each query. The retrieval
runs used normalized term weights for document terms (Inc) and the
unnormalized weights for the query terms (ltc). We experimented with
different databases, different similarity calculation parameters, and differ-
ent expansion techniques.

3.1 Collections and Query Sets

Experiments are carried out on three collections: (1) TREC 4 Category B
(0.38GBs) which is comprised of The Wall Street Journal (WSJ) and the
San Jose Mercury (SJM) with 48 queries; (2) WSJ (0.25GBs) with 45 short,
ad hoc queries from TREC 4 and 45 short, ad hoc queries from TREC 5; and
(3) the Cystic Fibrosis database (4.9MB), a collection of 1,239 cystic-
fibrosis-related papers from MEDLINE with 100 associated queries [Shaw
et al. 1991].

3.2 Similarity Matrix Calculation Experiments with the TREC 4 Category B
Corpus

3.2.1 Tuning the Parameters. The goal of the first set of experiments
was to tune the similarity calculation algorithm. There are four main
parameters to evaluate: (1) the number of context words; (2) the number of
context positions (i.e., the window size); (3) the amount of the corpus to
process (i.e., the sample size); and (4) the number (and location) of the
target words. Using a fixed target list, we initially did a series of experi-
ments studying the number of context words, the window size, and the
sample database size [Gauch and Wang 1996]. We expanded each query
with all words above a fixed similarity threshold. For each combination of
the three factors, we evaluated a range of different similarity thresholds,
and Table II reports the best performing threshold and the associated
11-point average. These tests were carried out on the TREC 4 category B
collection using all 48 queries.

As we expected, adjusting the parameters one by one produced only
modest improvements, if any. However, analyzing the parameter settings
individually was the first step toward finding a combination of the param-
eters that work well. From these experiments, we concluded that a window
size of 7,200 context words and a sample size of 20% (76MB) provided the
best fixed point in a highly multidimensional space with respect to results
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Table II. Experimental Results for Context Words, Window Size, and Sample Size on the
TREC 4 Category B Collection (baseline: unexpanded queries yield an 11-point average of
0.1791)

Sample Size 10% (38MB)
Window Size 5 7 9
Context Words

150 (0.39, 0.1823) (0.37, 0.1834) (0.30, 0.1830)
200 (0.39, 0.1825) (0.34, 0.1831) (0.27, 0.1815)
250 (0.37, 0.1850) (0.30, 0.1830) (0.27, 0.1826)

Sample size 20% (76 MB)

Window Size 5 7 9
Context Words

150 (0.50, 0.1813) (0.45, 0.1840) (0.40, 0.1860)
200 (0.45, 0.1834) (0.38, 0.1887) (0.34, 0.1873)
250 (0.45, 0.1811) (0.38, 0.1852) (0.32, 0.1861)

Sample size 30% (114MB)

Window Size

Context Words

5

7

150
200
250

(0.80, 0.1791)
(0.70, 0.1791)
(0.60, 0.1799)

(0.70, 0.1791)
(0.60, 0.1796)
(0.45, 0.1795)

(0.60, 0.1792)
(0.40, 0.1804)
(0.45, 0.1799)

and efficiency. We were surprised to note that the larger 30% (114MB)
actually degraded performance. We are not sure what causes this effect;
however, larger samples may be more susceptible to the effects of ambigu-
ity, since they are more likely to include rare uses for a particular target
word as well as the common uses, degrading the context vectors.

3.2.2 Other Factors. We also ran a few small tests to check on the
effectiveness of adding stemming and to confirm our belief that the posi-
tional information captured in the context vectors contributes to the quality
of the results.

From Table III, we see that stemming the corpus before calculating the
word (or, in this case, stem) similarities has a slight negative effect on the
result, so we chose not to stem. If we ignore the positional information and
create one 200-element context vector for the target word which records
word occurrences anywhere in the window (rather than using the position
vectors which record occurrences separately for each context position), we
get a marked decrease in performance. To make a stronger case for the
worth of the positional information we capture, if we use a context vector of
length 1200 (which is the size of the six 200-element position vectors
concatenated) we still see a decrease in the retrieval results, albeit not as
dramatic.

ACM Transactions on Information Systems, Vol. 17, No. 3, July 1999.



Automatic Query Expansion and Its Extension to Multiple Databases . 257

Table III. The Average 11-point average for Different Matrix Calculation Techniques
(TREC 4 Category B collection: 20% sample, window size 7, 200 context words, 4000 target
words, expansion threshold of 0.38; baseline: 0.1791)

Calculation No Position No Position
Method As Described With Stemming Vectors (200) Vectors (1200)
11-point average 0.1887 (+5.4) 0.1880 (-5.0) 0.1382 (-22.8) 0.1727 (-3.6)

Table IV. The 11-point averages for different sample sizes (3 samples per size) from the
WSJ database. Baseline: 0.1884

Sample Size 5% (12.5MB) 10% (25MB) 20% (50MB) 30% (75MB)
First run 0.1938 0.2007 0.2020 0.1989
Second run 0.1885 0.2002 0.1982 0.2015
Third run 0.2005 (0.1944 0.2010 0.2035
Average 0.1943 (+3.1) 0.1984 (+5.3) 0.2004 (+6.3) 0.2013 (+6.8)
Std. Dev. 0.0049 0.0029 0.0016 0.0018

3.3 Similarity Matrix Calculation Experiments with The Wall Street Journal
Corpus

The TREC 4 Category B corpus consists of two subcollections: The Wall
Street Journal (WSJ) and San Jose Mercury News (SJM). To avoid possible
confusion in the similarity matrix due to differing word usage in the
subcollections, we conducted further experiments on the WSJ subcollection
alone. In particular, we reexamined the effect of sample size and extended
our analysis to consider the number and location of the selected target
words. Based on the results in Section 3.2, a window size of 7 and context
word size of 200 are used in all of the following experiments. A more
complete description of the experimental results appears in Gauch and
Wang [1997].

3.3.1 Sample Selection. In Table IV, the average of 11-point averages
for different size of sample databases is presented. The trend seems to be
that the performance is better as the size of sample database increases. The
11-point average tends to be stable when the size of the sample database is
above 20%.

The 20% (50MB) sample performs almost as well as the 30% (75MB)
sample, so it is used in subsequent tests. In addition, by selecting different
samples of the same size, we were able to gauge the sensitivity of the
results to the particular sample chosen. The 20% sample size seems to be
the least sensitive to the actual sample chosen, as measured by the
standard deviation.

3.3.2 Target Word Selection. Having fixed the sample size, the last
parameter in the calculation algorithm is the target word lists. This is
perhaps the most crucial decision, since if a word is not in the target list it
cannot be expanded if it appears in a query. Also, if the word is not in the
target list, it cannot be added as a result of expanding a query. Fixing the
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Table V. Eleven-Point Average for Different Target Word Frequency List Location for
4000+ Target Words (WSJ database)

Offset 0 2000 4000 6000 8000
11-point average 0.2003 (+6.3) 0.1885 (+0) 0.1916 (+1.6) 0.1946 (+3.2) 0.1901 (+0.8)

number of target words at 4,000, we experimented with the selection of the
target words based on their frequency. Consider a frequency-ordered list
for the sample. Words 1 through 200 would be the context words, and, for
offset 0, words 201 through 4,200 would be the target words. Other offsets
slid the target words down the frequency list, selecting 4,000 words whose
frequency in the sample decreased as the offset increased. In all cases, the
4,000 target words selected from the frequency list were augmented with
any missing, nonstopped query words. This was done to ensure that all
important query words would be in the target word list.

From Table V, we see that offset 0 provided the best performance.
Intuitively, the benefit of using relatively frequent nonstopwords as possi-
ble expansion terms can be explained because adding a common synonym
for a query term is likely to be of more benefit than adding a rare synonym
for a query term.

After we found the optimal target word location, we wanted to know how
many target words are enough. Table VI shows the average of the 11-point
average for different numbers of target words (all using offset 0). Surpris-
ingly, 4000+ target words give the best performance, with the added
benefit of dramatically lower computation demands. We interpret this
result to mean that adding lower-frequency words to the target list adds
more noise than value, possibly because we have insufficient information
about the lower-frequency words to produce accurate context vectors.

3.3.3 Representative Results. To give a feel for the types of similarity
information generated by this approach, we will present some representa-
tive results. Some similarities seem intuitively correct, others less so.
However, the proof of the validity of this approach is not a qualitative
examination of the similarity matrix, but rather the quantitative search
improvements presented in the next section.

accord agreement (0.553) pact (0.509) arrangement (0.424) treaty
(0.383) talks (0.348) merger (0.346) settlement (0.333) transaction (0.331)
bill (0.322)...

acquire sell (0.459) buy (0.435) provide (0.380) eliminate (0.374) convert
(0.373) acquired (0.368) build (0.361) purchase (0.357) receive (0.350)...

acquiring acquire (0.335) buying (0.2799) joining (0.277) expanding
(0.273) issuing (0.2731) making (0.2703 selling (0.2556) using (0.250) sell
(0.234)...
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Eleven—Point Average for Different Sizes of Target Word Lists (WSJ database)

Target Words

4000+

6000+

8000+

First run
Second run
Third run

Average

0.2049 (+8.7)
0.1952 (+3.6)
0.2015 (+6.9)
0.2005 (+6.4)

0.2006 (+6.4)
0.1957 (+3.8)
0.1988 (+5.5)
0.1984 (+5.2)

0.1993 (+5.7)
0.1935 (+2.7)
0.2017 (+7.0)
0.1982 (+5.1)

analyst economist (0.568) trader (0.501) strategist (0.460) consultant
(0.428) official (0.391) spokesman (0.354) specialist (0.352) adviser
(0.348)...

The above excerpts illustrate, that, due to the influence of positional
information in the similarity calculation, words tend to group along parts of
speech. For example, the similarity list for acquire contains the “buy” and
“sell” whereas the similarity list for acquiring contains “buying” and
“selling.” In addition, various forms of the same word appear together, e.g.,
“acquire” and “acquiring,” which may explain why stemming provided no
improvement in Section 3.2.2. We get a partial stemming effect automati-
cally.

3.4 Query Expansion Experiments with The Wall Street Journal Corpus

3.4.1 Query Expansion Technique. Having tuned the similarity calcula-
tion parameters, we then investigated how to best make use of the
information in the similarity lists for query expansion. In early work
[Gauch and Chong 1995], expanding using a similarity threshold alone
seems very sensitive to the threshold chosen. Slight changes in the thresh-
old could dramatically affect the number of words used to expand a given
query word. We therefore experimented with expansion techniques which
capped the number of words used to expand a given word alone and in
combination with thresholds [Gauch and Wang 1997]. In all, we tested four
different query expansion methods:

(1) for each query word which appears in the target list, add all words in
the similarity list above some threshold.

(2) for each query word which appears in the target list, add a fixed
number of words from the similarity list. (If there are fewer than that
number in the similarity list, add as many as there are.)

(3) add a threshold to Method (2), i.e., add at most the fixed number of
words, but only add those words which are above some threshold.

(4) add a higher threshold to Method (3), i.e., add all words above a high
threshold, but at most a fixed number of words above a lower threshold.

We found that Method (4) (with a lower threshold of 0.24 and a higher
threshold of 0.46) provided the best performance. It also makes intuitive
sense: all words which are clearly similar to the query word (i.e., above the
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Table VII. Eleven-Point Average for Different Query Expansion Methods (WSJ database)

Method One Two Three Four

11-point average 0.1895 (+0.5) 0.2003 (+6.3) 0.2020 (+7.2) 0.2049 (+8.7)
(normalized)

11-point average 0.1877 (-0.4) 0.1905 (+1.1) 0.1917 (+1.7)  0.1828 (-3.0)

(not normalized)

higher threshold) are added. However, at most a small number of words
(three, to be exact) which are somewhat similar (i.e., above the lower
threshold but not above the higher one) are added.

3.4.2 Effect of Normalization. The experiments in the previous section
dealt with different methods of identifying the expansion words for each
query term. However, once the words have been chosen by one of the four
methods discussed, the weights on the expansion words (and adjustments,
if any, to the weight of the original query term) have yet to be determined.
Our initial approach was to treat the original query term as a concept
which had a weight of 1.0. Then, when expansion words were added to the
concept, they were given a weight equal to their value in the similarity list
for the query word. All the weights for that concept (i.e., the original query
term plus all expansion words) were then renormalized to sum to 1.0. This
was done so that the query would not be rebalanced to give more weight to
a concept merely because it had many synonyms. To verify that normaliza-
tion was necessary, we expanded queries with each of the four methods and
reran the queries without normalizing the weights. Table VII shows that
normalization is extremely important for all of the expansion methods.

Consider Topic 203 in TREC 4. Expansion without normalization, yields
the following:

“what is the economic 1.000 {political 0.5660} {military 0.4851} impact 1.000
{effect 0.52324) {role 0.3981) of recycling 1.000 {food 0.2403} {machinery 0.2254}
tires 1.000 {cars 0.2783} {gas 0.2283}2”

However, with normalization we get something else:

“what is the economic 0.4875 {political 0.2759} {military 0.2365} impact 0.5180
{effect 0.2758} {role 0.2062)} of recycling 0.6823 {food 0.1639} {machinery 0.1538}
tires 0.6637 {cars 0.1847} {gas 0.1515}?”

Because of the high similarity values of the words added by expansion,
the “economic” and “impact” concepts get much higher weights without
normalization relative to the more important concepts of “recycling” and
“tires.”

4. VALIDATING THE RESULTS

We performed two types of validation experiments. In the first, we used the
most promising similarity matrix calculations and query expansion tech-
niques for The Wall Street Journal corpus using 45 new queries from TREC
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Table VIII. Eleven-Point Average for Different Cumulative Relevance Scores (Cystic
Fibrosis collection)

Relevance Score >=1 >= 2 >=3 >=4 >=5 6

11-point average 0.2905 0.3130 0.3313 0.3373 0.3252 0.2834
(no exp)

11-point average 0.3732 0.4000 0.4161 0.4205 0.3784 0.3023
(expand) (+28.5) (+27.8) (+25.6) (+24.7) (+16.4) (+6.7)

5. This resulted in an overall 11-point average of 0.1325 compared to a
baseline of 0.1231, an improvement of 7.6%.

The TIPSTER collections tend to contain diverse papers which are
written in general English. Our second validation experiment used an
entirely different type of corpus to show that the results were applicable
across a broad range of collections. We believe that this approach is likely
to be of most benefit to corpora within specialized subdomains. The word
usage in such subdomains tends to have specialized words and specialized
word usages which our technique can exploit. To confirm that this approach
is particularly well suited to smaller, more specialized corpora which are by
and large written in their own sublanguages, we tested our approach on the
Cystic Fibrosis database [Shaw et al. 1991], a collection of all papers
(1,239) indexed by the term CYSTIC FIBROSIS in MEDLINE (1974-1979).
Running the similarity calculation as determined in Section 2, and Method
(4) for query expansion (higher threshold 0.7; lower threshold 0.5) yielded
the following results:

The Cystic Fibrosis file has relevance scores of 0 (not relevant), 1
(somewhat relevant), or 2 (highly relevant) from each of three judges. The
relevance scores in Table VIII represent the sums of the scores of all three
judges. The first column of the table (>= 1) shows the results if we consider
documents with a cumulative score of 1 or more to be relevant, etc. We see
a monotonically decreasing improvement in retrieval (from a 28.5% gain to
a 6.7% gain) as we narrow our interpretation of relevance by requiring
documents to have a higher cumulative score. This makes intuitive sense—
expanding the queries is likely to find a broad selection of somewhat
relevant documents. Still, with an average improvement of 21.6% across all
relevance judgment values, this method seems to work extremely well in a
small, specialized corpus.

5. APPLYING THE APPROACH TO MULTIPLE DATABASES

5.1 Effect of Multidatabases

In a multidatabase environment, each of the databases may have a differ-
ent domain of interests, resulting in different word usage and different
word similarities. This means that it is critical to choose the similarity
matrix which provides the most appropriate query expansion words. In this
section, we summarize a series of experiments aimed at improving search
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Table IX. Eleven-Point Average for Different Similarity Matrices (TREC 5 Category A
collection; note that the best and worst matrices were manually selected after the queries
were run; baseline: 0.1069)

Matrix Selected Single Matrix Best Average Worst
11-point average 0.1009 (-5.6)  0.1365 (+27.7) 0.1020 (-4.6) 0.0716 (-33.0)
Average rank N/A 0.0 3.0 6.0

quality by automatically selecting an appropriate matrix where several
different candidates exist.

Our experiments for TREC 4 [Gauch and Chong 1995] showed that
analyzing the two databases in Category B separately performed better
than treating the corpus as one large database. To extend that work, we
created a similarity matrix for each of the seven databases in the TREC 5
Category A collection (AP, CR, FR88, FR94, FT, WSJ, and ZIFF). For
comparison, we created a single similarity matrix from a sample taken
across all the seven databases. We expanded each query by each of the
seven matrices, in turn, and submitted the resulting queries to the entire
collection. Table IX summarizes the results.

Examining the results, we rank ordered the matrices for each query
based on the 11-point average produced for the expanded query it created.
When the best matrix is used to expand each query, performance increases
dramatically (27.7%). However, when the worst matrix is used, perfor-
mance decreases just as dramatically (—=33%). Clearly, selecting the correct
matrix in a multidatabase collection is of crucial importance. However,
avoiding the issue by creating one matrix for the entire collection is not
viable. The differing word usages cloud the issue, and the resulting matrix
causes a slight degradation (—5.6%).

5.2 Automatically Selecting the Similarity Matrix

We next turned our attention to the issue of automatically selecting an
appropriate matrix to expand a query. There are essentially three types of
information available on which to base the similarity matrix selection:

(1) Examination of the result set returned by running the query on the
collection of all databases, paying attention to the contributions of the
various component databases in the composite retrieval set.

(2) Usage of word frequency information obtained directly from each of the
databases.

(3) Examination of the contents of the similarity matrices themselves.

Different algorithms based on the above three categories are explored
singly and in combination.

5.2.1 Experimental Technique. The following experiments were con-
ducted using TREC queries 251-275. The most promising method was then
validated using TREC queries 276—-300. To evaluate the performance of a
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particular selection technique, we precalculated, for each of the 25 test
queries, the 11-point average obtained when the query was expanded with
each of the seven candidate matrices in turn. Based on those results, we
then assigned, for each query, a rank order to each similarity matrix from
0..6 where 0 is the best matrix, 6 the worst matrix. For each technique
evaluated, we examined the rank order of the similarity matrix chosen by
that technique and averaged the rank orders over all queries. This value is
called the DataBase Selection Average (DBSA). An optimal algorithm
would select the best matrix in all cases and produce an average rank over
all queries (i.e., DBSA) of 0.0. Randomness would select an average matrix
overall, with a rank order of 3.0. The goal of our experiments is to find a
technique which produces the lowest DBSA. These experiments are dis-
cussed in more detail in Gauch and Rachakonda [1997].

5.2.1 Experiments Based on Examination of the Retrieval Set. The
initial queries are sent directly without any modifications/expansion to the
collection of all the seven databases under consideration. The result set
contains a rank-ordered list of the identifiers of the best-matching docu-
ments from which the corresponding subdatabase can be determined. In
each case, the similarity matrix derived from the database which contrib-
uted the most to the retrieval set was selected. Several methods were
evaluated, each with a variety of normalization factors. All the four
methods were evaluated with a limit on how many documents from the
result set were considered. Results from the following methods are summa-
rized in Table X:

—[Method 1.1] Number of documents returned.

—[Method 1.4] Number of documents normalized by number of documents
in the database.

—[Method 1.5] Average rank of documents returned.

—[Method 1.8] Average rank of documents normalized by number of
documents in the database.
It appears that normalization does not help, which is not surprising. We
are interested in getting the largest amount of relevant information
regardless of the size of the database that contains it.

—[Method 1.9] Combination of number of documents with average rank of
documents normalized. Finally, we evaluated a method that combined
the number of documents with the an average rank as follows:

volume 1 )
Score = (m X +|p X
( 1000 ) ( rank

The influence of each factor was varied by varying the values for m and
p. However, m + p always totaled 100%. The number of documents, n, is
normalized by the total size of the retrieval set to produce a number
between 0 and 1. Results are presented in Table XI.
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Table X. Database Selection Average (DBSA) for Methods Based on Examination of the
Retrieval Set

Number Average Rank
Maximum Number of Normalized by  Average Rank of Normalized by
Retrieval Set Documents Number of Documents Number of
Rank Considered Returned Documents in DB Returned Documents in DB
10 2.88 3.02 2.76 2.92
20 2.84 2.76 2.68 2.88
30 2.72 2.76 2.68 2.88
40 2.64 2.60 2.68 2.54
50 2.64 2.62 2.36 2.72
100 2.64 2.44 2.32 2.62
150 2.44 2.48 2.36 2.58
200 2.32 2.54 2.60 2.62
500 2.76 2.68 2.78 2.80
1000 2.80 2.88 2.96 2.88

This produces the best results so far, consistently selecting, on average, a
matrix for expansion that is one better than randomness would predict.
However, there is a serious drawback to this technique in that queries
must be run twice: the original query must be submitted to generate a
result set used to identify a promising similarity matrix, and then the
expanded query is submitted.

5.2.2 Experiments Based on Word Frequency Information. The tech-
niques in this section revolve around using information about the fre-
quency of the query words in the different component databases. The
selection methods evaluated are described below. In each case, the similar-
ity matrix derived from the database with the maximum score is selected.
The results are summarized in Table XII.

—[Method 2.1] Absolute sum of query word frequencies in the database.

—[Method 2.2] Sum of query word frequencies normalized by the frequency
of the most frequent word in the database.

—[Method 2.3] Sum of query word frequencies each normalized to its own
total frequency in all databases. This method allows each query word an
equal weight in the database selection process. This corrects a problem
with Methods 2.1 and 2.2 in which rare words contribute only slightly to
the database selection process.

—[Method 2.5] Absolute sum of query word frequencies multiplied by IDF.

We see the most promising result so far, Method 2.3, which normalizes
the individual query words so that each contributes equally to the database
selection algorithm. However, this method is not practical in general, since
it relies on knowledge of the frequencies of the query words in each of the
component databases, information that is usually not available.
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Table XI. Database Selection Average (DBSA) for Method 1.9 Combining Number of
Retrieved Documents with Average Rank

m—p n =50 n = 100 n = 150

0%-100% 2.36 2.32 2.36
20%- 80% 2.32 2.28 2.32
40%- 60% 2.28 2.28 2.36
50%- 50% 2.36 2.32 2.36
60%- 40% 2.44 2.36 2.42
80%- 20% 2.62 2.44 2.42
100%- 0% 2.64 2.64 2.44

Table XII. Database Selection Average (DBSA) for Methods Based on Word Frequencies

Method DBSA
[2.1] Sum of query word frequencies (absolute). 2.52
[2.2] Sum of query word frequencies normalized to maximum 3.16
word frequency in DB.
[2.3] Sum of query word frequencies with each word normalized 2.19
to its sum of individual frequencies over all DBs.
[2.5] Sum of query word frequencies weighed by IDF. 2.32

5.2.3 Experiments Based on Similarity Matrix Contents. The final
source of information upon which to base the similarity matrix selection is
not information about the database itself (via retrieval sets as in Section
5.2.1 or frequency lists as in Section 5.2.2) but rather through use of the
information contained in the similarity matrices themselves. A wide vari-
ety of algorithms was evaluated in this category, among them the following:

—[Method 3.1] Number of words above a high threshold. For each query
word, add the number of all words in the similarity matrix above a given
threshold. A fairly high threshold is needed to avoid being overly influ-
enced by one query word with many slightly similar words. Best results
(DBSA = 2.06) are found with a higher threshold near 0.46 [Gauch and
Rachakonda 1997].

—[Method 3.2] Maximum number of words above a lower threshold. By
adding a cap on the maximum number of words a single query word can
add, a lower threshold may be used successfully. Best results are ob-
tained with a threshold of 0.35 and maximum of 3-5 words [Gauch and
Rachakonda 1997].

—[Method 3.3] Combination of all words above a higher threshold with a
maximum number above a lower threshold. Following the promising
results of using the higher threshold and lower thresholds independently,
we combined them. We achieved the first DBSA below 2.0 (1.96) which
occurred at a higher threshold of 0.50, a lower threshold of 0.32, and
maximum number of words of 4. These results are presented in Table
XIII.
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Table XIII. Database Selection Average (DBSA) for Method 3.3 Based on Adding All Words
above a Higher Threshold and a Maximum Number above a Lower Threshold

High = 0.46 High = 0.48 High = 0.50
Low m=3 m=4 m=5 m=3 m=4 m=5 m=3 m=4 m=5
0.32 2.12 2.12 2.12 2.32 2.12 2.08 2.08 1.96 2.08
0.35 2.12 2.08 2.08 2.12 2.08 2.08 2.08 2.08 2.08
0.37 2.14 2.14 2.14 2.12 2.08 2.12 2.12 2.24 2.24

This method turns out to be the best that we have been able to find. We
analyzed the experimental data more (in order to determine parameter
settings for future use) to determine the effect of individual factors. The
data are summarized in Table XIV.

Thus, the best setting of parameters for this method so far are a higher
threshold of 0.50, a lower threshold of 0.35, and a maximum words of 4.

—[Method 3.5] Sum of similarities for all words above a high threshold.
Rather than just count the number of words above a given threshold, the
similarity values themselves are summed. The best results (2.24) were
obtained with a threshold of 0.50 [Gauch and Rachakonda 1997].

—[Method 3.6] Sum of similarities for a maximum number of words above a
low threshold. The best results (2.24) were obtained with a threshold of
0.30, and a maximum number of words of 3 or 4 [Gauch and Rachakonda
1997].

—[Method 3.7] Combination of the sums of similarities for all words above
a higher threshold and a maximum number of words above a lower
threshold. The best results (2.08) occurred at a higher threshold of 0.50, a
lower threshold of 0.30 and maximum number of words of 4. These
results are presented in Table XV.

5.2.4 Consolidated Results. Finally, we summarize the results for all
methods discussed in this section in Table XVI. For methods with multiple
parameters, we present the results achieved by the best parameter set-
tings.

5.2.5 Validation of Results. The best method discovered through our
series of experiments was method 3.3 which uses a combination of higher
and lower thresholds. It produced a DBSA of 1.96 which resulted in a solid
11.88% improvement over the baseline matrix which is created by sampling
all databases at 20% and creating a single matrix. We validated our results
by applying this technique to a different collection of queries, TREC queries
276-300 (baseline: 0.1089). A DBSA of 1.92 was achieved which translated
into an increase of 4.78% was achieved. While the 11-point average
improvement found was not as strong as in the training set, the DBSA was
comparable or slightly better. It seems that the similarity selection algo-
rithm was working at least as well, but that the queries in the testing set
were perhaps less amenable to improvement by expansion.
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Table XIV. Effect of Higher and Lower Thresholds and Number or Words on DBSA

Effect of Higher Similarity Threshold on DBSA

Higher Threshold Value 0.46 0.48 0.50
Average DBSA 2.1288 2.1244 2.1067
Effect of Lower Similarity Threshold on DBSA
Lower Threshold Value 0.32 0.35 0.37
Average DBSA 2.1111 2.0889 2.1489

Effect of Number of Words Added on DBSA

Number of Words Added 3 4 5
Average DBSA 2.1356 2.1000 2.1133

Table XV. DBSA for Method 3.7 Based on a Combination of Higher and Lower Similarity

Thresholds
High = 0.48 High = 0.50 High = 0.52
Low m=3 m=4 m=5 m=3 m=4 m=5 m=3 m=4 m=25
0.25 2.24 2.26 2.24 2.28 2.42 2.36 2.28 2.32  2.32
0.30 2.12 2.12 2.14 2.12 2.08 2.10 2.12 2.14 214
0.35 2.18 2.18 2.22 2.24 2.24 2.24 2.28 242 2.42

6. CONCLUSIONS AND FUTURE WORK

Our goal is to develop automatic query expansion in order to provide
conceptual retrieval. We have implemented an analysis technique which
takes word order into account to automatically identify similar words from
an untagged corpus. We extensively tested and tuned this technique on
databases from the TIPSTER collection. Then, we investigated how to best
make use of the similarity information during query expansion in a single
database, coming up with a two-tiered approach which adds all highly
similar words and up to a small, fixed number of somewhat similar words.
This approach was able to improve the query results on both the large,
broad Wall Street Journal corpus (7.6%) and the small, specialized Cystic
Fibrosis corpus (6.7-28.5%). This work has been extended to multidatabase
collections, specifically the seven databases that comprise the TREC 5
Category A collection. Our results show that creating a similarity matrix
for each of the subcollections can improve performance (5—10%) when the
similarity matrix for expanding each query is automatically selected.
Techniques which examine the similarity matrices themselves work as well
or better than other techniques and have the benefit of not requiring
queries to be run twice or having access to information about word
frequencies in possibly remote databases.

In future, we wish to investigate the scope of the applicability of the
similarity matrices. In particular, we need to investigate when a similarity
matrix produced from one corpus be used to expand queries sent to a
related corpus. Also, we need to consider the applicability of this approach
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Table XVI. Consolidation of the Best Results for Methods 1.1-3.7

Percentage
Improvement over

Method Used DBSA 11-Point Average Baseline
Baseline: Unexpanded N/A 0.1069 N/A
Single Matrix N/A 0.1009 -5.61
Worst Matrix 6.00 0.0716 -33.02
Average Matrix 3.00 0.1020 -4.58
Best Matrix 0.00 0.1365 +27.69
Method 1.1 2.32 0.1084 +14.03
Method 1.4 2.44 0.1045 -2.25
Method 1.5 2.32 0.1099 +2.81
Method 1.8 2.54 0.0994 -7.02
Method 1.9 2.28 0.1107 +3.55
Method 2.1 2.52 0.1006 -5.89
Method 2.2 3.16 0.0789 -26.19
Method 2.3 2.19 0.1132 +5.89
Method 2.5 2.32 0.1101 +2.99
Method 3.1 2.06 0.1136 +5.90
Method 3.2 2.08 0.1121 +4.86
Method 3.3 1.96 0.1196 +11.88
Method 3.5 2.32 0.1097 +2.62
Method 3.6 2.24 0.1114 +4.21
Method 3.7 2.08 0.1128 +5.5.2

to dynamic collections. We expect that the amount of data added will not
affect performance (we only sample a small percentage of the larger
collections as it is), but the ability to efficiently add information about new,
important terms and new relationships between terms over time requires
study.
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