
Information Retrieval, 8, 331–349, 2005
c© 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

Data Driven Similarity Measures for k-Means Like
Clustering Algorithms∗

JACOB KOGAN kogan@umbc.edu
Department of Mathematics and Statistics, UMBC, Baltimore, MD 21250

MARC TEBOULLE teboulle@post.tau.ac.il
School of Mathematical Sciences, Tel-Aviv University, Tel-Aviv, Israel

CHARLES NICHOLAS nicholas@umbc.edu
Department of Computer Science and Electrical Engineering, UMBC, Baltimore, MD 21250

Abstract. We present an optimization approach that generates k-means like clustering algorithms. The batch
k-means and the incremental k-means are two well known versions of the classical k-means clustering algorithm
(Duda et al. 2000). To benefit from the speed of the batch version and the accuracy of the incremental version we
combine the two in a “ping–pong” fashion. We use a distance-like function that combines the squared Euclidean
distance with relative entropy. In the extreme cases our algorithm recovers the classical k-means clustering al-
gorithm and generalizes the Divisive Information Theoretic clustering algorithm recently reported independently
by Berkhin and Becher (2002) and Dhillon1 et al. (2002). Results of numerical experiments that demonstrate the
viability of our approach are reported.

Keywords: clustering algorithms, optimization, entropy

1. Introduction

The classical k-means algorithm (Forgy 1965) is probably the most widely known and
used general clustering technique. A number of k-means like algorithms are available in
the literature (see e.g., Dhillon and Modha (2001), Berkhin and Becher (2002), Dhillon1
et al. (2002), Xu and Jordan (1995), Kogan1 et al. (2003), Kogan2 et al. (2003), and
Dempster et al. (1977) to name just a few). While each version of k-means is a two step
“expectation–maximization” procedure, different similarity measures distinguish between
various versions of the algorithm. We argue that the choice of a particular similarity measure
may improve clustering of a specific dataset. We call this choice the “data driven similarity
measure”. The main contribution of this paper is the description of an optimization based
machinery that generates a variety of k-means like algorithms via an appropriately chosen
similarity measure.

For the proposed specific choice of a similarity measure we generate a k-means like
algorithm that depends on two non-negative real parameters ν and µ. Accordingly we call

∗This research was supported in part by the US Department of Defense, the United States–Israel Binational Science
Foundation (BSF), and Northrop Grumman Mission Systems (NG/MS).

332 KOGAN, TEBOULLE AND NICHOLAS

this algorithm the (ν, µ) algorithm. When ν = 1 and µ = 0 the (ν, µ) algorithm becomes
the classical k-means algorithm, and when ν = 0 and µ = 1 the algorithm generalizes the
Divisive Information Theoretic clustering algorithm (see Berkhin and Becher (2002), and
Dhillon1 et al. (2002)). Intermediate values of the parameters regularize the logarithmic
similarity measure by the squared Euclidean distance.

The outline of the paper is the following. In Section 2 we present general batch and
incremental versions of the k-means like clustering algorithms, and provide a number of
examples. A clustering scheme that combines the two versions is also presented. The (ν, µ)
algorithm introduced in the paper is a specific example of the scheme. Section 3 describes an
optimization approach to the centroid update procedure essential to the family of k-means
like algorithms. The data set is presented and results of clustering experiments are collected
in Section 4. Brief conclusions and further research directions are outlined in Section 5.
Technical results concerning computational complexity of the algorithm are provided in an
Appendix.

2. k-means like algorithms

A variety of modifications of the classical k-means clustering algorithm (Forgy 1965) have
been introduced recently (see e.g., Dhillon and Modha (2001), Berkhin and Becher (2002),
Dhillon1 et al. (2002) and Kogan1 et al. (2003)). All these modifications, exactly like the
classical algorithm, are the gradient based Gauss-Seidel method (see e.g., Bertsekas and
Tsitsiklis (1989)). The main difference between the various modifications of the algorithm
is the choice of the “distance like” function d(·, ·) (for a partial list of specific examples
of “distance like” functions see Table 2). The following is a basic description of the batch
k-means type clustering algorithm:

Let {x1, . . . , xm} be a set of vectors in a subset X of the n-dimensional Euclidean space
Rn . Consider a partition � = {π1, . . . , πk} of the set, i.e.,

π1 ∪ . . . ∪ πk = {x1, . . . , xm}, and πi

⋂
π j = ∅ if i �= j.

Given a real valued function q whose domain is the set of subsets of {x1, . . . , xm} the
quality of the partition is given by Q(�) = q(π1) + · · · + q(πk). The problem is to identify
an optimal partition {πo

1 , . . . , πo
k }, i.e., one that optimizes q(π1) + · · · + q(πk). Often the

function q is associated with a “dissimilarity measure”, or a distance-like function d(x, y)
that satisfies the following basic properties:

d(x, y) ≥ 0, ∀(x, y) ∈ X and d(x, y) = 0 ⇔ x = y (1)

We call d(·, ·) a distance-like function, since we do not require d to be either symmetric or
to satisfy the triangle inequality. Furthermore, when d(x, y) = xT y and x and y are l2 unit
norm vectors one has d(x, y) = 1 ⇔ x = y.

DATA DRIVEN SIMILARITY MEASURES 333

To describe the relation between q and d we define a centroid c of a cluster π by

c = c(π) = arg opt

{ ∑
x∈π

d(y, x), y ∈ X

}
, (2)

where by arg opt f (x) we denote a point x0 where the function f is optimized. Depending
on the choice of d , “opt” is either “min” or “max.” Indeed, to define a centroid one would
like to minimize (2) with d(x, y) = ‖x−y‖2. On the other hand one would like to maximize
the same expression when d(x, y) = xT y, and all the vectors are normalized. To simplify
the exposition in what follows we shall primarily address the case “opt= min” keeping
in mind that the inequalities should be reversed in the other case. If q(π) is defined as∑

x∈π d(c(π), x), then centroids and partitions are associated as follows:

1. For a set of k centroids {c1, . . . , ck} one can define a partition {π1, . . . , πk} of the set
{x1, . . . , xm} by:

πi = {x j : d(ci , x j) ≤ d(cl , x j) for each l �= i} (3)

(we break ties arbitrarily).
2. Given a partition {π1, . . . , πk} of the set {x1, . . . , xm } one can define the corresponding

centroids {c1, . . . , ck } by:

ci = arg min

{ ∑
x∈πi

d(y, x), y ∈ X

}
, (4)

Batch k-means type algorithm
Given a user supplied tolerance tol > 0 do the following:

1. Set t = 0.
2. Start with an initial partitioning �(t) = {π (t)

1 , . . . , π
(t)
k }

3. Apply (4) to recompute centroids.
4. Apply (3) to compute the partition �(t+1) = {π (t+1)

1 , . . . , π
(t+1)
k }.

5. If Q(�(t)) − Q(�(t+1)) > tol{
set t = t + 1
go to Step 3

.

6. Stop.

We now analyze a batch k-means type algorithm: We shall denote by nextKM(�) a partition
�′ generated by a single iteration of the batch k-means algorithm from a partition �.

334 KOGAN, TEBOULLE AND NICHOLAS

Table 1. classical batch k-means trapped at a local minimum.

The algorithm may get trapped at a local minimum even for a very simple one dimensional
dataset (see e.g., Duda et al. (2000), Dhillon2 et al. (2002), Dhillon et al. (2003), Dhillon1
et al. (2002), Kogan2 et al. (2003)). This remark is illustrated by the following example.

Example 2.1. Consider the distance like function d(c, x) = ‖c−x‖2, the data set {.x1 = 0,
x2 = 2

3 , x3 = 1} and the initial partition �(0) with π
(0)
1 = {x1, x2}, π (0)

2 = {x3} and Q(�(0)) =
2
9 (see Table 1). Note that an application of the batch k-means algorithm does not change the
initial partition �(0). At the same time it is clear that the partition �′ = {π ′

1, π
′
2} (π ′

1 = {x1},
π ′

2 = {x2, x3}) with Q(�′) = 2
36 is superior to the initial partition.

A different version of the k-means algorithm, incremental k-means clustering, remedies
the problem presented by Example 2.1. We now briefly discuss the incremental k-means
clustering. The decision whether a vector x ∈ πi should be moved from cluster πi to cluster
π j is made by the batch k-means algorithm based on the sign of

� = −‖x − c(πi)‖2 + ‖x − c(π j)‖2. (5)

The quantity � disregards dislocations of the centroids c(πi) and c(π j) due to possible
reassignment of x. This in turn sometimes causes the batch k-means algorithm to miss a
better partition. To avoid this deficiency we seek a single vector x whose reassignment
leads to the sharpest decrease of the objective function. Once the vector is identified, the

DATA DRIVEN SIMILARITY MEASURES 335

reassignment is performed. To formally present the procedure described above we need
additional definitions.

Definition 2.1. A first variation of a partition � = {π1, . . . , πk} is a partition �′ =
{π ′

1, . . . , π
′
k} obtained from � by removing a single vector x from a cluster πi of � and

assigning this vector to an existing cluster π j of �.

Note that the partition � is a first variation of itself. Next we look for the “steepest descent”
first variation, i.e., a first variation that leads to the maximal decrease of the objective
function.

Definition 2.2. The partition nextFV (�) is a first variation of � so that for each first
variation �′ one has

Q(nextFV(�)) ≤ Q(�′). (6)

A straightforward computation shows that for the scalars x1, x2, x3 given in Example 2.1
the partition �′ = nextFV(�0), where the initial partition �0 = {{x1, x2}, {x3}}, and
�′ = {{x1}, {x2, x3}}.

To escape the local minimum trap we augment iterations of the batch k-means by an
iteration of incremental version of the algorithm. The algoritm described below is a simpli-
fied version of the means clustering algorithm suggested in Kogan (2001) for a Euclidean
squared distance like function.

k-means type clustering algorithm
For user supplied tolerances tol1 > 0 and tol2 > 0 do the following:

1. Start with an arbitrary partitioning �(0) = {π (0)
1 , . . . , π

(0)
k }. Set the index of

iteration t = 0.
2. Generate the partition nextKM(�(t)).

if [Q(�(t)) − Q(nextKM(�(t))) > tol1]


set �(t+1) = nextKM(�(t))
increment t by 1
go to 2

3. Generate the partition nextFV(�(t)).
if [Q(�(t)) − Q(nextFV(�(t))) > tol2]


set �(t+1) = nextFV(�(t))
increment t by 1
go to 2

4. Stop.

Due to the additional Step 3 Algorithm 2 always outperforms batch k-means in cluster
quality. While execution of Step 3 requires computation of all conceivable first variations of
�(t) in some cases it comes at virtually zero additional computational cost (see Appendix).

336 KOGAN, TEBOULLE AND NICHOLAS

Table 2. k-means like algorithms.

Algorithm 2
d(y, x) X constraint “opt” becomes c(π)

‖x − y‖2 Rn none min classical m(π)
batch k-means

Forgy, 1965

xT y Sn−1
2

⋂
Rn+ ‖x‖2 = 1 max spherical m(π)

‖m(π)‖2

and batch k-means
x[i] ≥ 0 Dhillon and Modha, 2001∑n

i=1 x[i] log x[i]
y[i] Sn−1

1

⋂
Rn+ ‖x‖1 = 1 min batch DIT clustering m(π)

and Dhillon et al. 2002
x[i] ≥ 0

We conclude the section with examples of distance-like functions d(x, y), data domains
X, norm constraints imposed on the data, k-means like algorithms, and centroid formulas
(see Table 2). For a set of l vectors π = {y1, . . . , yl} we denote the mean of the set by m(π),
i.e., m. (π) = y1+···+yl

l . We denote by Sn−1
p the l p unit sphere in Rn , i.e.,

Sn−1
p = {x : x ∈ Rn, |x[1]|p + · · · + |x[n]|p = 1},

(here x = (x[1], . . . , x[n])T ∈ Rn).
Computation of a centroid c for a given cluster π as described by Eq. (4) is an optimization

problem. The ability to carry out a fast and efficient computation of centroids is key to
successful implementation of k-means like algorithms. In the next section we introduce a
family of distance-like functions and an optimization technique that solves (4).

3. Optimization approach

In this section we present centroid computations for the (ν, µ) algorithm. Motivated by Text
Mining applications we are targeting the data domain X = Rn

+ (i.e., we are interested in
vectors with non-negative coordinates). An optimization formalism introduced next leads
to a simple solution of the centroid computation problem.

For a set of vectors {x1, . . . , xm} ⊂ Rn
+ and a set of centroids {c1, . . . , ck} ⊂ Rn

+ we
define m vectors

di (c1, . . . , ck) = (d(c1, xi), . . . , d(ck, xi))
T ∈ Rk .

The support function σ� of a simplex � ⊂ Rk provides a convenient way to cast the
clustering problem as an optimization problem. The support function σS of a closed convex

DATA DRIVEN SIMILARITY MEASURES 337

set S ∈ Rn is defined by (see e.g., (Rockafellar 1970)):

σS(v) = sup{sT v : s ∈ S},

and a simplex � ⊂ Rk is

� = {w : w ∈ Rk, wT e = 1, w[i] ≥ 0, i = 1, . . . , k},

where e = (1, . . . , 1)T is a vector of ones. For a set of centroids {.c
′
l}k

l=1 and a vector xi we
identify a vector wi ∈ � so that wi [l] = 1 if c′

l is the centroid nearest xi , and wi [l] = 0
otherwise. Keeping in mind infx f (x) = − supx {− f (x)} we get

wi = arg max σ�(−di (c′
1, . . . , c′

k)) = arg min
w∈�

wT di (c′
1, . . . , c′

k). (7)

For the sets of vectors {x1, . . . , xm} and {w1, . . . , wm} we define “updated centroids”
{c′′

1, . . . , c′′
k } as follows:

(c′′
1, . . . , c′′

k) = arg min
c1,...,ck

m∑
i=1

wT
i di (c1, . . . , ck)

= arg min
c1,...,ck

tr (W T D(c1, . . . , ck)) (8)

where W is the k × m matrix whose columns are wi , i = 1, . . . , m, and D(c1, . . . , ck) = D
is the k ×m matrix with Di j = d(c j , xi). Unlike (4) Eq. (8) provides a formula for k updated
centroids at once.

We shall denote the vector of partial derivatives of the function d(c, x) with respect to
the first n variables by ∇cd(c, x). Analogously, for the function ψ(c1, . . . , ck) = tr(W T D
(c1, . . . , ck)) the vector of n partial derivatives with respect to the n coordinates c j [1], . . . ,
c j [n] is denoted by ∇c j ψ(c1, . . . , ck). If c′′

j belongs to the interior of the domain X, then
due to (8) one has

∇c j ψ(c′′
1, . . . , c′′

k) = 0. (9)

Furthermore, a straightforward computation shows that

∇c j ψ(c′′
1, . . . , c′′

k) =
m∑

i=1

wi [j]∇cd(c′′
j , xi). (10)

Next we use (9) and (10) to provide analytic expressions for c′′
j , j = 1, . . . , k through

{.x1, . . . , xm} and {.w1, . . . , wm}. We shall consider a specific “distance–like” function de-
fined through the kernel

φ(t) =
{− ln t + t − 1 if t > 0

+∞ otherwise

338 KOGAN, TEBOULLE AND NICHOLAS

and non-negative scalars ν and µ:

d(c, x) = ν

2
‖c − x‖2 + µ

n∑
j=1

x[j]φ

(
c[j]

x[j]

)
. (11)

In what follows, motivated by continuity arguments, we define 0 log 0
a = 0 log a

0 = 0 for
each a ≥ 0. It is easy to verify that d(c, x) satisfies the required distance-like properties (1).

Note that when ν = 0 and µ = 1, the second term in (11)

n∑
j=1

x[j]φ

(
c[j]

x[j]

)
=

n∑
j=1

x[j] ln
x[j]

c[j]
+

n∑
j=1

c[j] −
n∑

j=1

x[j]. (12)

Under the assumption ‖x‖1 = ‖c‖1 = 1 (i.e.,
∑n

j=1 x[j] = ∑n
j=1 c[j] = 1) the right hand

side of (12) reduces to

d1(c, x) =
n∑

j=1

x[j] ln
x[j]

c[j]
. (13)

This is the Kullback-Leibler relative entropy, which is used here to measure the distance
between two unit l1 vectors in Rn

+, see e.g., (Teboulle 1992) and references therein. The
Divisive Information Theoretic clustering algorithm proposed in Dhillon et al. (2002) is
the batch version of the classical k-means algorithm with the squared Euclidean distance
substituted by the distance d1, and the algorithm proposed in Berkhin and Becher (2002)
is its incremental counterpart. With the distance d1 the resulting centroid c(π) of a cluster
π is the arithmetic mean of the vectors in the cluster (see e.g., (Dhillon et al. 2002)), and
this result justifies the assumption ‖c‖1 = 1. In this section we show that the stringent
unit simplex constraint can be avoided and replaced by the larger non-negative orthant, by
simply using the normalized entropy φ(t) = − log t + t − 1, and replacing (13), with the
resulting (12).

The choice of the distance (11) which combines a squared Euclidean distance with the
relative entropy is motivated by the following rationale: on one hand to keep the standard
features of the k-means algorithm (through the squared distance), while on the other, to
handle nonnegative data. This idea has been recently proposed and successfully used in the
development of various optimization algorithms, see (Auslender et al. 1999).

To justify the application of the gradient equation (9), we consider the two cases:

1. ν > 0, µ = 0.
In this case one can use (9) to solve (8) over Rn . It is well known that a centroid c′′ of
a cluster π in the case of squared Euclidean distance is given by the arithmetic mean
m(π). Due to convexity of X the same result holds when the cluster belongs to X. For
this reason in Section 3.1 below we shall compute centroids for the case µ > 0 only.

DATA DRIVEN SIMILARITY MEASURES 339

2. µ > 0.
Consider

∑m
i=1 wi [j]d(c j , xi), the contribution due to centroid c j into the expression

(8). The expression to be minimized with respect to c j is just

∑
x∈π j

[
ν

2
‖c j − x‖2 + µ

n∑
l=1

x[l]φ

(
c j [l]

x[l]

)]
. (14)

We consider the contribution of each coordinate to (14). The contribution of coordinate
l is

∑
x∈π j

ν

2
|c j [l] − x[l]|2 + µ

∑
x∈π j

x[l]φ

(
c j [l]

x[l]

)
. (15)

If there is an index l such that x[l] = 0 for each x ∈ π j , then (15) becomes∑
x∈π j

ν

2
(c j [l])

2 + µ
∑
x∈π j

c j [l]. (16)

Since c j [l] must be non-negative, expression (16) is minimized when c j [l] = 0.
On the other hand, if there is some x ∈ π j so that x[l] > 0, then the lth coordinate of
c′′

j should be positive (recall that here φ′(t) = − 1
t + 1 → −∞ as t → 0+), and one can

apply the gradient Eq. (9) to find c′′
j [l].

Next we provide a formula for c j [l] when µ > 0 and x[l] > 0 for at least one x ∈ π j .

3.1. Centroid computation

A detailed solution to problem (4) with d given by (11), and ν > 0, µ > 0 is presented in
this subsection (the solution for the limit case ν = 0, µ > 0 is also obtained as a special
case). We assume that x[l] > 0 for at least one x ∈ π j and compute the lth coordinate of
the vector ∇c j ψ(c′′

1, . . . , c′′
k).

A straightforward computation (see (10)) leads to the following:

c′′
j [l] · ν

m∑
i=1

wi [j] +
(

µ

m∑
i=1

wi [j]ν
m∑

i=1

wi [j]xi [l]

)
− 1

c′′
j [l]

· µ

m∑
i=1

wi [j]xi [l] = 0.

(17)

To simplify the above equation, define (for convenience we omit the indices):

α =
m∑

i=1

wi [j], β =
m∑

i=1

wi [j]xi [l], (18)

340 KOGAN, TEBOULLE AND NICHOLAS

then Eq. (17) becomes a (ν, µ) family of quadratic equations with respect to c′′
j [l]

να · (c′′
j [l])

2 − (νβ − µα)c′′
j [l] − µβ = 0. (19)

We remind the reader (see (7)) of the following:

wi [j] = 1 if c j is the centroid nearest xi , and wi [j] = 0 otherwise.

Hence
∑m

i=1 wi [j] is the number of vectors in cluster π j (and
∑m

i=1 wi [j]xi [l] = ∑
x∈π j

x[l]). In particular when
∑m

i=1 wi [j] = 0, cluster c j is not the nearest centroid for all
the vectors. In the rare (but possible) case cluster π j should become empty, the number
of clusters should be decreased, and c j should not be recomputed. We now assume that∑m

i=1 wi [j] > 0. Recalling that να is positive, see (18), and since X = Rn
+ we are interested

in the non-negative solution of quadratic Eq. (19)

c′′
j [l] = (νβ − µα) +

√
(νβ − µα)2 + 4νµαβ

2να

= νβ − µα + |νβ + µα|
2να

= β

α
,

which after substitution of the expressions (α, β) given in (18) leads to the following simple
formula:

c′′
j [l] =

∑m
i=1 wi [j]xi [l]∑m

i=1 wi [j]
=

∑
x∈π j

x[l]

|π j | (20)

where |π j | denotes the number of vectors in cluster π j . Note that (20) is just the lth
coordinate of the cluster’s arithmetic mean m(π j), and the derived centroid is independent
of the parameters (ν, µ). In addition we note that the above derivation also recovers the
solution for the limit case ν = 0, µ > 0 (when the quadratic Eq. (19) becomes a linear one)
and gives through (20), the centroid c′′

j = m(π j).

4. Experimental results

In this section we report results of numerical experiments. To compare our results with those
already available in the literature we focus on a specific text data set recently examined by
Dhillon and Modha (2001). In one of the experiments of Dhillon and Modha (2001) the
spherical k-means algorithm was applied to a data set containing 3893 documents. This
data set contains the following three document collections (available from
ftp://ftp.cs.cornell.edu/pub/smart):

– Medlars Collection (1033 medical abstracts),
– CISI Collection (1460 information science abstracts),
– Cranfield Collection (1400 aerodynamics abstracts).

DATA DRIVEN SIMILARITY MEASURES 341

Table 3. spherical k-means generated “confu-
sion” matrix with 69 “misclassified” documents us-
ing 4,099 words.

Medlars CISI Cranfield

Cluster 0 1004 5 4

Cluster 1 18 1440 16

Cluster 2 11 15 1380

Partitioning the entire collection into 3 clusters generates the “confusion” matrix given by
Table 3 and reported in Dhillon and Modha (2001) (here the entry i j is the number of doc-
uments that belong to cluster i and document collection j). The “confusion” matrix shows
that only 69 documents (i.e., less that 2% of the entire collection) have been “misclassified”
by the algorithm. After removing stopwords (Dhillon and Modha 2001) reported 24,574
unique words, and after eliminating low-frequency and high-frequency words they selected
4,099 words to construct the vector space model (Berry and Browne 1999).

Our data set is a merger of the three document collections (available from http://www.
cs.utk.edu/~lsi/):

– DC0 (Medlars Collection 1033 medical abstracts)
– DC1 (CISI Collection 1460 information science abstracts)
– DC2 (Cranfield Collection 1398 aerodynamics abstracts)

The Cranfield collection tackled by Dhillon and Modha contained two empty documents.
These two documents have been removed from DC2. The other document collections are
identical.

We select 600 “best” terms and build vectors of dimension 600 for each document
(see (Dhillon et al. 2003) for details). A two step clustering procedure is applied to the
document vectors. The first step of the procedure is the Spherical Principal Directions
Divisive Partitioning (sPDDP) clustering algorithm recently reported by (Dhillon et al.
2003). The Singular Value Decomposition based algorithm is applied to unit l2 document
vectors and the clustering results are reported in Table 4. When the number of terms is
relatively small, some documents may contain no selected terms, and their corresponding
vectors are zeros (see Table 8). We always remove these vectors ahead of clustering and
assign the “empty” documents into a special cluster. This cluster is the last row in the
“confusion” matrix (and is empty in the experiment reported in Tables 4–7). Note that the
clustering procedures produce “confusion” matrices with a single “dominant” entry in each
row. We regard the document collection corresponding to the “dominant” column as the
one represented by the cluster. The other row entries are counted as misclassifications.

The final partition generated by sPDDP is an input for the (ν, µ) clustering algorithm, i.e.,
the k-means like algorithm with the distance function (11). When the outcome of sPDDP
is available the document vectors are re-normalized in l1 norm, and the (ν, µ) algorithm is

342 KOGAN, TEBOULLE AND NICHOLAS

Table 4. sPDDP generated initial “confusion” ma-
trix with 68 “misclassified” documents using best 600
terms.

DC0 DC1 DC2

Cluster 0 1000 3 1

Cluster 1 8 10 1376

Cluster 2 25 1447 21

“empty” documents

Cluster 3 0 0 0

Table 5. ν = 0, µ = 1 generated final “confusion”
matrix with 44 “misclassified” documents.

DC0 DC1 DC2

Cluster 0 1010 6 0

Cluster 1 2 4 1387

Cluster 2 21 1450 11

“empty” documents

Cluster 3 0 0 0

Table 6. ν = 100, µ = 1 generated final “confu-
sion” matrix with 48 “misclassified” documents using
best 600 terms.

DC0 DC1 DC2

Cluster 0 1010 5 1

Cluster 1 3 6 1384

Cluster 2 20 1449 13

“empty” documents

Cluster 3 0 0 0

Table 7. ν = 1, µ = 0 generated final “confusion”
matrix with 52 “misclassified” documents using best
600 terms.

DC0 DC1 DC2

Cluster 0 1011 6 2

Cluster 1 8 12 1386

Cluster 2 14 1442 10

“empty” documents

Cluster 3 0 0 0

DATA DRIVEN SIMILARITY MEASURES 343

applied to the partition generated by sPDDP. The final partitions for three selected values of
the (ν, µ) pair are reported in Tables 5–7 respectively. We display results for the “extreme”
values (0, 1), (1, 0), and an intermediate value of (ν, µ). Since (0, 1) objective function
value of the initial partition is about 100 times more than the (1, 0) objective function value
of the same partition we have decided to choose the intermediate value (100, 1) to balance
the “extreme” values of the objective functions.

While the number of selected terms is only 600 (i.e., only about 15% of the number of
terms reported in Dhillon and Modha (2001)) the quality of the sPDDP generated confusion
matrix is comparable with that of the confusion matrix generated by the spherical k-means

Table 8. Number of documents “misclassified” by sPDDP, and “sPDDP + (ν, µ)”
algorithms.

Documents misclassified by sPDDP

of terms Zero vectors Alone +(1, 0) +(100, 1) +(0, 1)

100 12 383 499 269 166

200 3 277 223 129 112

300 0 228 124 80 68

400 0 88 68 58 56

500 0 76 63 40 41

600 0 68 52 48 44

344 KOGAN, TEBOULLE AND NICHOLAS

Table 9. Number of unit l2 document vectors “misclassified” by “sPDDP+k–means”,
and “sPDDP+spherical k-means”.

Documents misclassified by

of terms Zero vectors sPDDP +k–means sPDDP+spherical k-means

100 12 258 229

200 3 133 143

300 0 100 104

400 0 80 78

500 0 62 57

600 0 62 54

algorithm (see Table 3). A subsequent application of the (ν, µ) algorithm to the partition
generated by sPDDP further improves the confusion matrix (see Tables 5–7).
We pause briefly to discuss some properties of the (ν, µ) algorithm.

1. Unlike the DIT clustering algorithm (Dhillon et al. 2002), (Berkhin and Becher 2002)
the data domain X for the (ν, µ) algorithm is not restricted to l1 unit norm vectors in Rn

+
(and the (ν, µ) algorithm does not require l1 normalization of the data).

2. In the extreme case ν = 1, µ = 0 the classical k-means algorithm is recovered.
3. When ν = 0, µ = 1 and the document vectors are normalized in l1 norm the (ν, µ)

algorithm becomes the combination of the algorithms reported in Dhillon1 et al. (2002)
and Berkhin and Becher (2002).

Table 8 summarizes clustering results for the sPDDP algorithm and the combinations of
“sPDDP + (ν, µ)” algorithm for the three selected values for (ν, µ) and different choices of
index terms. Note that zero document vectors are created when the number of selected terms
is less than 300. Table 8 indicates consistent superiority of the “sPDDP + (0, 1)” algorithm.
We next show by an example that this indication is not necessarily always correct. The
graph below shows the number of misclassified documents for 600 selected terms and 25
values of the (ν, µ) pair. While µ is kept 1, ν varies from 100 to 2500 with step 100.

The graph indicates the best performance for ν
µ

= 500, 600, 700, 1000, and 1100.
We complete the section with clustering results generated by the “sPDDP + k–means” and

“sPDDP+spherical k-means”. The algorithms are applied to the three document collections
DC0, DC1, and DC2. We use the same vector space construction as for the “sPDDP+(ν, µ)”
algorithm, but do not change the document vectors unit l2 norm at the second stage of the
clustering scheme. The results of the experiment are summarized in Table 9 for different
choices of index terms.

5. Concluding remarks and future work

Optimization tools have been applied to a specific “distance–like” function to generate a
two parameter family of k-means like clustering algorithms, and preliminary experimental

DATA DRIVEN SIMILARITY MEASURES 345

results based on the proposed approach have been described. The “extreme” members of the
family recover the classical k-means algorithm (Forgy 1965), and the Divisive Information
Theoretic clustering algorithm (Dhillon et al. 2002), (Berkhin and Becher 2002). The results
of numerical experiments indicate, however, that the best clustering results can be obtained
with “intermediate” parameter values.

Overall complexity of large data sets motivates application of a sequence of algorithms
for clustering a single data set (see e.g., Dhillon et al. (2003)). The output of algorithm
i becomes the input of algorithm i + 1, and the final partition is generated by the last
algorithm. We call a sequence of two (or more) clustering algorithms applied to a data set
a hybrid scheme. The results presented in the paper have been generated using a hybrid
scheme consisting of two algorithms: the SVD-based sPDDP, and the k-means like (ν, µ)
algorithm. We plan to focus on the following problems:

1. While the first step of the sequence is the SVD-based sPDDP algorithm that deals with
unit l2 vectors, the experiments indicate that l1 unit vectors may better fit text mining
applications. The sPDDP algorithm is an optimization procedure that approximates a
set of unit l2 vectors by a circle on the l2 sphere in Rn . We hope the optimization tools
will be useful for solving the corresponding approximation problem when the data set
resides on the l1 sphere in Rn .

2. The experiments presented in Section 4 show that the best clustering results can be
achieved at an intermediate value of (ν, µ). We plan to investigate the dependence of the
final partition quality on the parameter values (ν, µ).

3. Motivated by success of the (ν, µ) algorithm we plan to investigate additional classes
of ϕ-divergence measures which are a generalization of relative entropy and have been
successfully used in various optimization algorithms (see e.g., Teboulle (1999) and
Auslender et al. (1999) and references therein).

4. We plan to run the experiments on a variety of large document collections.

Appendix

In this section we briefly analyze the computational complexity of the incremental step
of the (ν, µ) algorithm. To simplify the exposition we carry out the computations for the
special case ‖xi‖1 = 1, i = 1, . . . , m only.

For two clusters πi with centroids ci = c(πi) and |πi | vectors each, i = 1, 2 and a vector
x ∈ π1 we denote by

1. π−
1 a cluster obtained from the cluster π1 be removing x from π1,

2. π+
2 a cluster obtained from the cluster π2 by assigning x to π2.

Our goal is to evaluate

Q{π1, π2} − Q{π−
1 , π+

2 } = [q(π1) − q(π−
1)] + [q(π2) − q(π+

2)] (21)

for two extreme cases of the (ν, µ) algorithm described below.

346 KOGAN, TEBOULLE AND NICHOLAS

Squared euclidean norm (µ = 0)

The expression for (21) is given, for example, in Duda et al. (2000) and Kogan (2000) as
follows:

Q{π1, π2} − Q{π−
1 , π+

2 } = |π1|
|π1| − 1

‖x − c(π1)‖2

− |π2|
|π2| + 1

‖x − c(π2)‖2. (22)

Evaluation of ‖x − c(π)‖ for each vector xi and centroid c j is carried out by step 2 of
Algorithm 2. Contribution of the Euclidean part of the objective function for incremental
iteration of the algorithm comes, therefore, at virtually no additional computational expense.

Information–theoretical distance (ν = 0)

The computational complexity of the incremental version of the Divisive Information Theo-
retic clustering algorithm is discussed in Berkhin and Becher (2002). Detailed computations
provided below lead us to believe that computational cost associated with the incremental
step may in fact be much lower than the cost reported in Berkhin and Becher (2002).

First we consider cases of vector “removal” and “addition” separately.

– π = {x1, . . . , xp−1, x} with c = c(π), and π− = {x1, . . . , xp−1} with c− = c(π−).
Since (p − 1)c− = pc − x one gets the following:

q(π) − q(π−) =
p−1∑
i=1

n∑
j=1

(
xi [j] log

xi [j]

c[j]
+ c[j] − xi [j]

)

+
n∑

j=1

(
x[j] log

x[j]

c[j]
+ c[j] − x[j]

)

−
p−1∑
i=1

n∑
j=1

(
xi [j] log

xi [j]

c−[j]
+ c−[j] − xi [j]

)

=
p−1∑
i=1

n∑
j=1

(
xi [j] log

c−[j]

c[j]

)
+

n∑
j=1

x[j] log
x[j]

c[j]

=
n∑

j=1

(pc[j] − x[j]) log

(
p

p − 1
c[j] − 1

p − 1
x[j]

)

+
n∑

j=1

x[j] log
x[j]

c[j]
.

DATA DRIVEN SIMILARITY MEASURES 347

Finally,

q(π) − q(π−) =
n∑

j=1

(pc[j] − x[j]) log

(
p

p − 1
c[j] − 1

p − 1
x[j]

)

+
n∑

j=1

x[j] log
x[j]

c[j]
. (23)

– π = {x1, . . . , xp} with c = c(π), and π+ = {x1, . . . , xp, x} with c+ = c(π+).
We use the identity (p + 1)c+ = pc + x to obtain:

q(π) − q(π+) =
p∑

i=1

n∑
j=1

(
xi [j] log

xi [j]

c[j]
+ c[j] − xi [j]

)

−
p∑

i=1

n∑
j=1

(
xi [j] log

xi [j]

c+[j]
+ c+[j] − xi [j]

)

−
n∑

j=1

(
x[j] log

x[j]

c[j]
+ c+[j] − x[j]

)

=
p∑

i=1

n∑
j=1

(
xi [j] log

c+[j]

c[j]

)
+

n∑
j=1

x[j] log
c+[j]

x[j]

= p
n∑

j=1

c[j] log

(
p

p + 1
+ 1

p + 1

x[j]

c[j]

)

+
n∑

j=1

x[j] log

(
p

p + 1

c[j]

x[j]
+ 1

p + 1

)
,

and q(π) − q(π+) is given by

p
n∑

j=1

c[j] log

(
p

p + 1
+ 1

p + 1

x[j]

c[j]

)
+

n∑
j=1

x[j] log

(
p

p + 1

c[j]

x[j]
+ 1

p + 1

)
. (24)

The expression for

Q{π1, π2} − Q{π−
1 , π+

2 } = [q(π1) − q(π−
1)] + [q(π2) − q(π+

2)]

348 KOGAN, TEBOULLE AND NICHOLAS

follows in a straightforward manner from (23) and (24):

n∑
j=1

(|π1|c1[j] − x[j]) log

(|π1|
|π1| − 1

c1[j] − 1

|π1| − 1
x[j]

)
+

n∑
j=1

x[j] log
x[j]

c1[j]

+ |π2|
n∑

j=1

c2[j] log

(|π2|
|π2| + 1

+ 1

|π2| + 1

x[j]

c2[j]

)

+
n∑

j=1

x[j] log

(|π2|
|π2| + 1

c2[j]

x[j]
+ 1

|π2| + 1

)
.

The computational complexity associated with evaluation of the above four term expression
is about the same as that of (22). Indeed,

1. Provided |π1|c1 − x is a dense vector of dimension n the number of operation required
to compute

n∑
j=1

(|π1|c1[j] − x[j]) log

(|π1|
|π1| − 1

c1[j] − 1

|π1| − 1
x[j]

)

is O(n).
2. The term

∑n
j=1 x[j] log x[j]

c[j] has been already computed by step 3 of Algorithm 2, and
comes for “free”.

3. Provided c2 is a dense vector of dimension n the number of operation required to compute
|π2|

∑n
j=1 c2[j] log

(|π2|
|π2|+1 + 1

|π2|+1
x[j]
c2[j]

)
is O(n).

4. The document vector x is always sparse, hence the number of operation required to
compute

∑n
j=1 x[j] log

(|π2|
|π2|+1

c2[j]
x[j] + 1

|π2|+1

)
is much smaller than O(n).

Our numerical experiments indicate that (perhaps because of logarithmic function sensitivity
to low frequencies) the (ν, µ) algorithm with nontrivial information component (i.e., µ > 0)
collects documents containing same words together. In such a case it is reasonable to expect
to obtain sparse centroid vectors, and this would significantly reduce computational effort
associated with steps 1 and 3 above.

Acknowledgments

The authors thank anonymous reviewers for valuable suggestions that improved exposition
of the results.

References

Auslender A, Teboulle M and Ben–Tiba S (1999) Interior proximal amd multiplier methods based on second order
homogeneous kernels. Mathematics of Operations Research, 24:645–668.

DATA DRIVEN SIMILARITY MEASURES 349

Berkhin P and Becher JD (2002) Learning simple relations: Theory and applications. In: Proceedings of the Second
SIAM International Conference on Data Mining.

Berry M and Browne M (1999) Understanding Search Engines. SIAM.
Bertsekas DP and Tsitsiklis JN (1989) Parallel and Distributed Computation: Numerical Methods. Prentice-Hall,

New Jersey.
Dempster A, Laird N and Rubin D (1977) Maximum likelihood from incomplete data via the EM algorithm.

Journal of the Royal Statistical Society, 39.
Dhillon IS, Guan Y and Kogan J (2002) Refining clusters in high-dimensional text data. In: Proceedings of the

Workshop on Clustering High Dimensional Data and its Applications (held in conjunction with the Second
SIAM International Conference on Data Mining).

Dhillon, IS, Kogan J and Nicholas C (2003) Feature selection and document clustering, In Berry MW Ed. A
Comprehensive Survey of Text Mining, pp. 73–100.

Dhillon IS and Modha DS (2001) Concept decompositions for large sparse text data using clustering. Machine
Learning, 42(1):143–175.

Duda RO, Hart PE and Stork DG (2000) Pattern Classification. John Wiley & Sons.
Forgy E (1965) Cluster analysis of multivariate Data: Efficiency vs. interpretability of classifications. Biometrics,

21(3):768.
Inderjit S. Dhillon Subramanyam Mallela and Rahul Kumar (2002) Enhanced word clustering for hierarchical text

classification. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining(KDD-2002), pp. 191–200.

Kogan J (2001) Clustering large unstructured document sets. In: Berry MW Ed. Computational Information
Retrieval, pp. 107–117.

Kogan J (2001) Means clustering for text data. In: Proceedings of the Workshop on Text Mining at the First SIAM
International Conference on Data Mining, pp. 47–54.

Kogan J, Teboulle M and Nicholas C (2003) Optimization approach to generating families of k-means like
algorithms. In: Proceedings of the Workshop on Clustering High Dimensional Data and its Applications (held
in conjunction with the Third SIAM International Conference on Data Mining).

Kogan J, Teboulle M and Nicholas C (2003) The entropic geometric means algorithm: An approach for building
small clusters for large text datasets. In: Proceedings of the Workshop on Clustering Large Data Sets (held in
conjunction with the Third IEEE International Conference on Data Mining), pp. 63–71.

Lei Xu and Michael I. Jordan (1995) On convergence properties of the EM Algorithm for Gaussian Mixtures.
MIT A.I. Memo No. 1520, C.B.C.L. paper No. 111.

Rockafellar RT (1970) Convex Analysis Princeton University Press, Princeton, NJ.
Teboulle M (1992) On ϕ-divergence and its applications. In: Phillips FY and Rousseau J Eds. Systems and

Management Science by Extremal Methods–Research Honoring Abraham Charnes at Age 70, Kluwer Academic
Publishers, pp. 255–273.

Teboulle M (1997) Convergence of proximal-like algorithms. SIAM J. of Optimization, 7:1069-1083.

