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Abstract A multi-database model of distributed information retrieval is presented, in which 
people are assumed to have access to many searchable text databases. In such an 
environment, full-text information retrieval consists of discovering database con-
tents, ranking databases by their expected ability to satisfy the query, searching a 
small number of databases, and merging results returned by different databases. 
This paper presents algorithms for each task. It also discusses how to reorga-
nize conventional test collections into multi-database testbeds, and evaluation 
methodologies for multi-database experiments. A broad and diverse group of 
experimental results is presented to demonstrate that the algorithms are effective, 
efficient, robust, and scalable. 

1 INTRODUCTION 
Wide area networks, particularly the Internet, have transformed how people 

interact with information. Much of the routine information access by the gen-
eral public is now based on full-text information retrieval, as opposed to more 
traditional controlled vocabulary indexes. People have easy access to informa-
tion located around the world, and routinely encounter, consider, and accept or 
reject information of highly variable quality. 

Search engines for the Web and large corporate networks are usually based 
on a single database model of text retrieval, in which documents from around 
the network are copied to a centralized database, where it is indexed and made 
searchable. The single database model can be successful if most of the im-
portant or valuable information on a network can be copied easily. However, 
information that cannot be copied is not accessible under the single database 
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model. Information that is proprietary, that costs money, or that a publisher 
wishes to control carefully is essentially invisible to the single database model. 

The alternative to the single database model is a multi-database model, in 
which the existence of multiple text databases is modeled explicitly. A central 
site stores brief descriptions of each database, and a database selection service
uses these resource descriptions to identify the database(s) that are most likely 
to satisfy each information need. The multi-database model can be applied in 
environments where database contents are proprietary or carefully controlled, 
or where access is limited, because the central site does not require copies 
of the documents in each database. In principle, and usually in practice, the 
multi-database model also scales to large numbers of databases. 

The multi-database model of information retrieval reflects the distributed 
location and control of information in a wide area computer network. However, 
it is also more complex than the single database model of information retrieval, 
requiring that several additional problems be addressed: 

Resource description: The contents of each text database must be described; 

Resource selection: Given an information need and a set of resource descrip-

Results merging: Integrating the ranked lists returned by each database into a 

This set of problems has come to be known as Distributed Information Retrieval. 
One problem in evaluating a new research area such as distributed IR is 

that there may be no accepted experimental methodologies or standard datasets 
with which to evaluate competing hypotheses or techniques. The creation, 
development, and evaluation of experimental methodologies and datasets is as 
important a part of establishing a new research area as the development of new 
algorithms.

This paper presents the results of research conducted over a five year period 
that addresses many of the issues arising in distributed IR systems. The paper 
begins with a discussion of the multi-database datasets that were developed for 
testing research hypotheses. Section 3 addresses the problem of succinctly de-
scribing the contents of each available resource or database. Section 4 presents 
an algorithm for ranking databases by how well they are likely to satisfy an 
information need. Section 5 discusses the problem of merging results returned 
by several different search systems. Section 6 investigates how a distributed 
IR system acquires resource descriptions for each searchable text database in 
a multi-party environment. Finally, Section 7 summarizes and concludes. 

tions, a decision must be made about which database(s) to search; and 

single, coherent ranked list. 
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2 MULTI-DATABASE TESTBEDS 
Research on distributed IR can be traced back at least to Marcus, who in 

the early 1980’s addressed resource description and selection in the EXPERT 
CONIT system, using expert system technology (Marcus, 1983). However, 
neither Marcus nor the rest of the research community had access to a sufficiently 
large experimental testbed with which to study the issues that became important 
during the 1990’s: How to create solutions that would scale to large numbers 
of resources, distributed geographically, and managed by many parties. 

The creation of the TREC corpora removed this obstacle. The text collections 
created by the U.S. National Institute for Standards and Technology (NIST) for 
its TREC conferences (Harman, 1994; Harman, 1995) were sufficiently large 
and varied that they could be divided into smaller databases that were themselves 
of reasonable size and heterogeneity. NIST also provided relevance judgements 
based on the results of running dozens of IR systems on queries derived from 
well-specified information needs. 

The first testbed the UMass Center for Intelligent Information Retrieval 
(CIIR) produced for distributed IR research was created by dividing three 
gigabytes of TREC data (NIST CDs 1, 2, and 3) by source and publication 
date (Callan et al., 1995; Callan, 1999b). This first testbed contained 17 text 
databases that varied widely in size and characteristics (Table 5.1) (Callan, 
1999b). The testbed was convenient to assemble and was an important first 
step towards gaining experience with resource description and selection. How-
ever, it contained few databases, and several of the databases were considerably 
larger than the databases found in many “real world” environments. 

Table5.1 Summary statistics for three distributed IR testbeds. 

Number of Number of Documents Megabytes
Databases Source Min Avg Max Min Avg Max

17 TREC CDs 1,2,3 6,711 64,010 226,087 35 196 362
100 TREC CDs 1,2,3 752 10,782 39,723 28 33 42
921 TREC VLC 12 8,157 31,703 1 23 31

Several testbeds containing O( 100) smaller databases were created to study 
resource selection in environments containing many databases. All were created 
by dividing TREC corpora into smaller databases, based on source and publi-
cation date. One representative example was the testbed created for TREC-5
(Harman, 1997), in which data on TREC CDs 2 and 4 was partitioned into 98 
databases, each about 20 megabytes in size. Testbeds of about 100 databases 
each were also created based on TREC CD’s 1 and 2 (Xu and Callan, 1998), 
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TREC CD’s 2 and 3 (Lu et al., 1996a; Xu and Callan, 1998), and TREC CD’s 
1, 2, and 3 (French et al., 1999; Callan, 1999a). 

A testbed of 921 databases was created by dividing the 20 gigabyte TREC 
Very Large Corpus (VLC) data into smaller databases (Callan, 1999c; French 
et al., 1999). Each database contained about 23 megabytes of documents from
a single source (Table 5.1), and the ordering of documents within each database 
was consistent with the original ordering of documents in the TREC VLC 
corpus. This testbed differed from other, smaller testbeds not only in size, but 
in composition. 25% of the testbed (5 gigabytes) was traditional TREC data, but 
the other 75% (15 gigabytes) consisted of Web pages collected by the Internet 
Archive project in 1997 (Hawking and Thistlewaite, 1999). The relevance 
judgements were based on a much smaller pool of documents retrieved by a 
much smaller group of IR systems, thus results on that data must be viewed 
more cautiously. 

Although there are many differences among the testbeds, they share impor-
tant characteristics. Within a testbed, database sizes vary, whether measured 
by number of documents, number of words, or number of bytes. Databases in a 
testbed are more homogeneous than the testbed as a whole, which causes some 
corpus statistics, forexample, inverse document frequency (idf), to vary signifi-
cantly among databases. Databases also retain a certain degree of heterogeneity, 
to make it more difficult to distinguish among them. These characteristics are 
intentional; they are intended to reduce the risk of accidental development of 
algorithms that are sensitive to the quirks of a particular testbed. As a group, 
this set of distributed IR testbeds enabled an unusually thorough investigation 
of distributed IR over a five year period. 

Others have also created resource selection testbeds by dividing the TREC 
data into multiple databases, usually also partitioning the data along source and 
publication date criteria, for example (Voorhees et al., 1995; Viles and French, 
1995; Hawking and Thistlewaite, 1999; French et al., 1998). Indeed, there are 
few widely available alternative sources of data for creating resource selection 
testbeds. The alternative data used most widely, created at Stanford as part of 
research on the GlOSS and gGlOSS resource selection algorithms (Gravano 
et al., 1994; Gravano and Garcia-Molina, 1995), is large and realistic, but does 
not provide the same breadth of relevance judgements. 

3 RESOURCE DESCRIPTION 
The first tasks in an environment containing many databases is to discover and 

represent what each database contains. Discovery and representation are closely 
related tasks, because the method of discovery plays a major role in determining 
what can be represented. Historically representation was addressed first, based 
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on a principle of deciding first what is desirable to represent, and worrying later 
about how to acquire that information. 

Resource descriptions vary in their complexity and in the effort required 
to create them. CIIR research was oriented towards environments contain-
ing many databases with heterogeneous content. Environments containing 
many databases, and in which database contents may change often, encour-
age the use of resource descriptions that can be created automatically. Re-
source descriptions that must be created and updated manually (e.g., Marcus, 
1983; Chakravarthy and Haase, 1995) or that are learned from manual rele-
vance judgements (e.g., Voorhees et al., 1995a) might be difficult or expensive 
to apply in such environments. 

Environments containing heterogeneous databases also favor detailed re-
source descriptions. For example, to describe the Wall Street Journal as a 
publication of financial and business information ignores the large amount of 
information it contains about U.S. politics, international affairs, wine, and other 
information of general interest. 

A simple and robust solution is to to represent each database by a description 
consisting of the words that occur in the database, and their frequencies of 
occurrence (Gravano et al., 1994; Gravano and Garcia-Molina, 1995; Callan 
et al., 1995) or statistics derived from frequencies of occurrence (Voorhees 
et al., 1995a). We call this type of representation a unigram language model. 
Unigram language models are compact and can be obtained automatically by 
examining the documents in a database or the document indexes. They also can 
can be extended easily to include phrases, proper names, and other text features 
that occur in the database. 

Resource descriptions based on terms and their frequencies are generally a 
small fraction of the size of the original text database. The size is proportional 
to the number of unique terms in the database. Zipf’s law indicates that the 
rate of vocabulary growth decreases as database size increases (Zipf, 1949), 
hence the resource descriptions for large databases are a smaller fraction of the 
database size than the resource descriptions for small databases. 

4 RESOURCE SELECTION 
Given an information need and a set of resource descriptions, how is the 

system to select which resources to search? The major part of this resource
selection problem is ranking resources by how likely they are to satisfy the 
information need. Our approach is to apply the techniques of document ranking 
to the problem of resource ranking, using variants of tf.idf approaches (Callan 
et al., 1995; Lu et al., 1996a). One advantage is that the same query can be used 
to rank resources and to rank documents. 
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Figure 5.1 A simple resource selection inference network. 

The Bayesian Inference Network model of Information Retrieval can be 
applied to the process of ranking resources, as illustrated by Figure 5.1. Each 
resource Ri is represented by a set of representation nodes (indexing terms) 
rj. An information need is represented by one or more queries (q), which are
composed of query concepts (ck) and query operators (not shown in this simple
example).

The belief P(q|Ri) that the information need represented by query q is sat-
isfied by searching resource Ri is determined by instantiating node & and 
propagating beliefs through the network towards node q. The belief P(q|Ri)
that the representation concept rj is observed given resource Ri is estimated by 
a variation of tf.idf formulas, shown below. 

(5.1)

(5.2)

(5.3)

where:
df
cw
avg-cw
C
cf
b

is the number of documents in Ri containing rk,
is the number of indexing terms in resource Ri,
is the average number of indexing terms in each resource, 
is the number of resources, 
is the number of resources containing term rk, and
is the minimum belief component (usually 0.4). 

Equation 5.1 is a variation of Robertson’s term frequency (tf) weight (Robert-
son and Walker, 1994), in which term frequency (tf) is replaced by document



Distributed Information Retrieval 133

frequency (df), and the constants are scaled by a factor of 100 to accommodate
the larger df values (Callan et al., 1995). Equation 5.2 is a variation ofTurtle’s
scaled idf formula (Turtle, 1990; Turtle and Croft, 1991), in which number of 
documents is replaced by number of resources (C).

Equations 5.1-5.3 have come to be known as the CORI algorithm for ranking 
databases (French et al., 1998; French et al., 1999; Callan et al., 1999b), although 
the name CORI was originally intended to apply more broadly, to any use of 
inference networks for ranking databases (Callan et al., 1995).

The scores p(rj |Ri) accruing from different terms rj are combined according
to probabilistic operators modeled in the Bayesian inference network model. 
INQUERY operators are discussed in detail elsewhere (Turtle, 1990; Turtle and 
Croft, 1991), so only a few common operators are presented here. The belief 
P(rj|Ri) is abbreviated pj for readability.

belsum (Q) = (5.4)

belwsum (Q) = (5.5)

belnot(Q) = 1 – p1 (5.6)

belor(Q) = 1 – (1 – p1). ....(1 – pn) (5.7)

beland(Q) = p1 . p2 . . . . . pn (5.8)

Most INQUERY query operators can be used, without change, for ranking both 
databases and documents. The exceptions are proximity, passage, and synonym 
operators (Callan et al., 1995), all of which rely on knowing the locations
of each index term in each document. Such information is not included in 
database resource descriptions due to its size, so these operators are all coerced 
automatically to a Boolean AND operator. Boolean AND is a weaker constraint 
than proximity, passage, and synonym operators, but it is the strongest constraint 
that can be enforced with the information available. 

The effectiveness of a resource ranking algorithm can be measured with 
R(n), a metric intended to be analogous to the recall metric for document 
ranking. R( n) compares a given database ranking at rank n to a desired database 
ranking at rank n. The desired database ranking is one in which databases are
ordered by the number of relevant documents they contain for a query (Gravano 
and Garcia-Molina, 1995; Lu et al., 1996b; French et al., 1998). R(n) is defined
for a query as follows. 

R(n) =

rgi : number of relevant documents in the i’th-ranked database
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Figure5.2 Effectiveness of the resource ranking algorithm on testbeds with differing numbers
of resources. 

under the given ranking

rdi : number of relevant documents in the i’th-ranked database
under a desired ranking in which documents are ordered by 
the number of relevant documents they contain

R(n) measures how well an algorithm ranks databases containing many relevant
documents ahead of databases containing few relevant documents. 

The CORI database ranking algorithm was tested in a series of experiments
on testbeds ranging in size from O( 100) to O( 1,000) databases. Two of the 
testbeds were developed at the University of Massachusetts (Callan, 1999a; 
Callan, 1999c); one was developed at the University of Virginia (French et al., 
1998). Results were measured using R(n).

Figure 5.2 shows the effectiveness of the resource ranking algorithm with 
differing numbers of resources (French et al., 1999). The horizontal axis in 
these graphs is the percentage of the databases in the testbed that are examined 
or considered. For example, for all testbeds, the top 10% of the databases 
contain about 60% as many relevant documents as the top 10% of the databases 
in the desired ranking (a ranking in which databases are ordered by the number 
of relevant documents they contain). 

The accuracy of the resource rankings was remarkably consistent across all 
three testbeds when 8–100% of the databases are to be searched. The algorithm 
was most effective on the testbed of 236 databases, but the differences due 
to testbed size were small. Greater variability was apparent when 0–8% of 
the databases are to be searched. In this test, accuracy on the testbed of 921 
databases was significantly lower than the accuracy on the other databases. It is 
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unclear whether this difference at low recall (searching 0-8% of the databases) is 
due to testbed size (100 databases vs 921 databases) or testbed content (produced 
professionally vs Web pages). 

One issue in scaling-up this research is that as more databases become avail-
able, a smaller percentage of the available data is typically searched for each 
query. Consequently, as the number of available databases increases, the ac-
curacy of the ranking algorithm must also increase, or else recall will decrease 
significantly. Some loss of recall is inevitable when many resources contain 
relevant documents but only a few resources are searched. 

Once a set of resources is ranked, resource selection is relatively simple. One 
can choose to search the top n databases, all databases with a score above some 
threshold value, or a set of databases satisfying some cost metric (e.g., Fuhr, 
1999).

5 MERGING DOCUMENT RANKINGS 
After a set of databases is searched, the ranked results from each database 

must be merged into a single ranking. This task can be difficult because the doc-
ument rankings and scores produced by each database are based on different 
corpus statistics and possibly different representations and/or retrieval algo-
rithms; they usually cannot be compared directly. Solutions include computing 
normalized scores (Kwok et al., 1995; Viles and French, 1995; Kirsch, 1997; Xu 
and Callan, 1998), estimating normalized scores (Callan et al., 1995; Lu et al., 
1996a), and merging based on unnormalized scores (Dumais, 1994). 

The most accurate solution is to normalize the scores of documents from 
different databases, either by using global corpus statistics (e.g., Kwok et al., 
1995; Viles and French, 1995; Xu and Callan, 1998) or by recomputing docu-
ment scores at the search client (Kirsch, 1997). However, this solution requires 
that search systems cooperate, for example by exchanging corpus statistics, or 
that the search client rerank the documents prior to their display. 

Our goal was a solution that required no specific cooperation from search 
engines, and that imposed few requirements on the search client. Our solution 
was to estimate normalized document scores, using only information that a 
resource selection service could observe directly. 

Several estimation heuristics were investigated. All were based on a combi-
nation of the score of the database and the score of the document. All of our 
heuristics favor documents from databases with high scores, but also enable 
high-scoring documents from low-scoring databases to be ranked highly. The 
first heuristic, which was used only briefly (Callan et al., 1995; Allan et al., 
1996), is shown in Equation 5.10. 

(5.10)
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N : Number of resources searched 

The normalized document score D" is the product of the unnormalized docu-
ment score D and a database weight that is based on how the database score Ri

compares to the average database score Avg_R.
This heuristic was effective with a few databases, but is flawed by its use 

of the number of databases N and the average database score Avg_R. If 100 
low-scoring databases with no relevant documents are added to a testbed, N is
increased and Avg_R is decreased, which can dramatically change the merged 
document rankings. 

A second heuristic for normalizing database scores was based on the obser-
vation that the query constrains the range of scores that the resource ranking 
algorithm can produce. If T in Equation 5.1 is set to 1 .0 for each query term, 
a score Rmax can be computed for each query. If T is set to 0.0 for each query 
term, a score Rmin can be computed for each query. These are the highest and 
lowest scores that the resource ranking algorithm could potentially assign to a 
database. In practice, the minimum is exact, and the maximum is an overesti-
mate.

Rmin and Rmax enable database scores to be normalized with respect to 
the query instead of with respect to the other databases, as shown in Equation 
5.11. This type of normalization produces more stable behavior, because adding 
databases to a testbed or deleting databases from a testbed does not change the 
scores of other databases in the testbed. However, it does require a slight 
modification to the way in which database scores and document scores are 
combined (Equation 5.12). 

(5.11)

(5.12)

Equations 5.1 1 and 5.12 were the core of the INQUERY distributed IR system 
from 1995-1998. They produced very stable results for most CIIR distributed 
IR testbeds. However, research projects on language modeling and U.S. Patent 
data identified an important weakness. Databases that are organized by subject, 
for example by placing all of the documents about computers in one database, 
all of the documents about health care in another, etc, produce idf scores, and 
hence document scores, that are very highly skewed. Documents from databases 
where a query term is common (probably a good database for the query) tend 
to have low scores, due to low idf values. Documents from databases where a 
query term is rare (probably a poor database for the query) tend to have high 
scores, due to high idf values. When idf statistics are very highly skewed, the 
normalization provided by Equations 5.11 and 5.12 is insufficient. 
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Equations 5.14 and 5.15 solve the problem of highly skewed document scores 
by normalizing a document’s score by the maximum and minimum document 
scores that could possibly be produced for the query using the corpus statistics 
in its database. 

(5.13)
(5.14)

(5.15)

In INQUERY, Dmax, for database Ri is calculated by setting the tf component
of the tf.idf algorithm to its maximum value (1.0) for each query term; Dmin,
for database Ri is calculated by setting the tf component of the tf.idf algorithm
to its minimum value (0.0) for each query term. Hence Dmaxi and Dmini are 
estimates of the maximum and minimum scores any document in database Ri

could be assigned for the given query. 
Equation 5.14 solves the problem of highly skewed idf scores, because it is

effective on testbeds with and without highly skewed idf scores. However, it 
requires cooperation among search engines, because Dmaxi and Dmini must be
provided by the search engine when it returns document rankings. An inde-
pendent resource ranking service cannot calculate those values itself (although 
it could perhaps estimate them, based on observation over time). It is our goal 
not to rely upon cooperation among search engines, because cooperation can 
be unreliable in multi-party environments. Thus, although this variant of the 
result-merging algorithm is effective, equally effective algorithms that do not 
require cooperation remain a research goal. 

The two variants of the result-merging algorithm are suitable for different 
environments. The first variant, expressed in Equations 5.1 1-5.12, requires no 
cooperation from resource providers, and is effective when corpus statistics 
are either homogeneous or moderately skewed among databases. The second 
variant, expressed in Equations 5.13-5.14, is effective when corpus statistics are 
homogeneous, moderately skewed, and extremely skewed among databases, but 
it requires resource providers to cooperate by providing Dmaxi and Dmini. The 
first variant might be appropriate on a wide area network, where cooperation 
cannot be enforced. The second variant might be appropriate on a local area 
network within a single organization. 

6 ACQUIRING RESOURCE DESCRIPTIONS 
Acquiring resource descriptions can be a difficult problem, especially in a 

wide-area nework containing resources controlled by many parties. One so-
lution is for each resource provider to cooperate by publishing resource de-
scriptions for its document databases. The STARTS protocol, for example, 
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is a standard format for communicating resource descriptions (Gravano et al., 
1996). Solutions that require cooperation are appropriate in controlled en-
vironments, such as a single organization, but face problems in multi-party
environments such as the Internet. If a resource provider can’t cooperate, or 
refuses to cooperate, or is deceptive, the cooperative approach fails. 

Even when providers intend to cooperate, different systems, different as-
sumptions, and different choices (e.g., how to stem words) make resource de-
scriptions produced by different parties incomparable. For example, which 
database is best for the query ‘Apple’: A database that contains 2,000 oc-
currences of ‘appl’, a database that contains 500 occurrences of ‘apple’, or a 
database that contains 50 occurrences of ‘Apple’? The answer requires detailed 
knowledge about the tokenizing, stopword, stemming, case conversion, and 
proper name handling performed by each database. Such detail is impractical 
to communicate, thus cooperative solutions are most appropriate in environ-
ments where all parties use the same software and the same parameter settings. 

An alternative solution is for the resource selection service to learn what
each resource contains by submitting queries and observing the documents that 
are returned. This technique is called query-based sampling (Du and Callan, 
1998; Callan et al., 1999a; Callan and Connell, 1999; Callan et al., 1999b). 
It is based on the hypothesis that a resource description created from a small 
sample of text is sufficiently similar to a complete resource description. Query-
based sampling requires minimal cooperation (only the ability to run queries 
and retrieve documents), and it makes no assumptions about how each system 
operates internally. It also allows different resource selection services to make 
different decisions about how to represent resources, encouraging development 
of competing approaches to resource description and selection. 

Query-based sampling was tested with experiments that investigate it from 
several different perspectives: Accuracy of learned language models, accuracy 
of database rankings, and accuracy of document rankings. These experiments 
are discussed below. 

6.1 ACCURACY OF UNIGRAM LANGUAGE 
MODELS

The first tests of query-based sampling studied how well the learned language
models matched the actual orcomplete language model of a database. A learned
language model is one created from documents that were obtained by query-
based sampling. The actual or complete language model is one created by 
examining every document in the database. 

Three text databases were used: CACM, 1988 Wall Street Journal, and the 
TREC-123 databases. CACM is a small, homogeneous database of scientific 
abstracts. The 1988 Wall Street Journal is a larger, heterogeneous database of 
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Table 5.2 Test corpora for query-based sampling experiments. 

Size, Size, Size, Size, 

Name bytes documents terms terms Variety
CACM 2MB 3,204 6,468 117,473 homogeneous
WSJ88 104MB 39,904 122,807 9,723,528 heterogeneous
TREC-123 3.2GB 1,078,166 1,134,099 274,198,901 very heterogenenous 

in in in unique in total 

American newspaper articles (Harman, 1994). The TREC-123 database is a 
large, very heterogeneous database of documents from a variety of different 
sources and timespans (Harman, 1994; Harman, 1995). Their characteristics 
are summarized in Table 5.2. All three are standard IR test databases. 

Unigram language models consist of a vocabulary and term frequency in-
formation. The ctf ratio measures how well the learned vocabulary matches 
the actual vocuabulary. The Spearman Rank Correlation Coefficient measures 
how well the learned term frequencies indicates the frequency of each term in 
the database. 

Ctf ratio is the proportion of term occurrences in the database that are covered 
by terms in the learned resource description. For a learned vocabulary V' and
an actual vocabulary V, ctf ratio is: 

(5.16)

where ctfi is the number of times term i occurs in the database (database term 
frequency, or ctf). A ctf ratio of 80% means that the learned resource description 
contains the terms that account for 80% of the term occurrences in the database. 

The Spearman Rank Correlation Coefficient is an accepted metric for com-
paring two orderings, in this case an ordering of terms by frequency. The 
Spearman Rank Correlation Coefficient is defined (Press et al., 1992) as: 

(5.17)

where di is the rank difference of common term i, n is the number of terms, fk

is the number of ties in the kth group of ties in the learned resource description, 
and gm is the number of ties in the mth group of ties in the actual resource
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Number of documents examined Number of documents examined 

(a) (b) 

Figure 5.3 Measures of how well a learned resource description matches the actual resource 
description of a full-text database. (a) Percentage of database word occurrences covered by
terms in the learned resource description. (b) Spearman rank correlation coefficient between the
term rankings in the learned resource description and the database. (Four documents examined 
per query.) 

description.1 Two orderings are identical when the rank correlation coefficient 
is 1. They are uncorrelated when the coefficient is 0, and they are in reverse 
order when the coefficient is – 1. 

Prior to comparison with ctf ratio and Spearman Rank Correlation metrics, 
identical stopword lists and stemming algorithms were applied to the learned 
and actual language models. ctf ratios would have been significantly higher if 
stopwords were retained in the language models. 

Query-based sampling supports different sampling strategies, depending 
upon how query terms are chosen, how many documents are examined from 
each query, and how often the learned language model is updated with new infor-
mation. The baseline experiment presented here was based on selecting query 
terms randomly from the learned language model, examining four documents 
per query, and updating language models immediately with new information. 
The initial query term was selected randomly from another convenient resource, 
in this case, the TREC-123 database. 

The choice of the initial query term was a source of bias in these experiments. 
However, preliminary experiments showed that as long as the initial query term 
returned at least one document, the choice of the initial query term had little 
effect on the quality of the language model learned. 

1Simpler versions of the Spearman Rank Correlation Coefficient are more common (e.g., (Moroney, 1951 )). 
However, simpler versions assume that two elements cannot share the same ranking. Term rankings have 
many terms with identical frequencies, and hence identical rankings. 
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Experimental results are summarized in Figure 5.3. Figure 5.3a shows that 
the sampling method quickly identifies the vocabulary that represents 80% of 
the non-stopword term occurrences in each database. Figure 5.3b shows that the 
sampling method also quickly learns the relative frequencies of terms in each 
database. The rate at which resource descriptions converged was independent 
of database size and heterogeneity. 

The results shown here are based on examining the top 4 documents retrieved 
for each query, but similar results are obtained when 1, 2, 4, 6, 8, and 10 doc-
uments are examined per query (Callan et al., 1999a). Smaller samples, for 
example 1 or 2 documents per query, produced slightly more accurate language 
models for heterogeneous databases. Larger samples, for example, 4 or 6 docu-
ments per query, produced slightly faster learning for homogeneous databases. 
The differences were consistent, but not significant. When nothing is known 
about the contents of a database, the best strategy is to take small samples, 
trading off speed for guaranteed accuracy. 

Several different approaches to query term selection were tested, including 
selecting terms from the learned language model using frequency criteria, and 
selecting terms that appear important in other, presumably similar language 
models (Callan et al., 1999a; Callan and Connell, 1999). Frequency-based se-
lection was rarely a good choice. Selecting query terms from another language 
model was only a good choice when that other language model was very sim-
ilar to the database being sampled; in other words, if one has a good guess 
about what a database contains, the database can be sampled more efficiently; 
otherwise, random sampling is best. 

The language models for all three databases required about the same number 
of documents to converge. Database size and heterogeneity had little effect 
on the rate of convergence. This characteristic is consistent with Zipf’s “law” 
(Zipf, 1949), which states that the rate at which new terms are found decreases 
with the number of documents examined. Zipf’s law places no constraints on 
the order in which documents in a database are examined. Whether documents 
are selected sequentially or by query-based sampling, only a relatively small 
number of documents is required to identify most of the vocabulary in a database 
of documents. 

6.2 ACCURACY OF RESOURCE RANKINGS 
One might expect relatively accurate language models to produce relatively 

accurate resource rankings. However, no prior research indicated how much 
inaccuracy in a language model could be tolerated before resource ranking 
accuracy deteriorated. A set of experiments was designed to study this issue. 

Resource ranking accuracy was studied using the testbed of 100 databases 
created from TREC CDs 1, 2, and 3 (Section 2). 100 complete resource descrip-
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(a) (b) 
Figure 5.4 Measures of database ranking accuracy using resource descriptions of varying ac-
curacy. (a) Topics 51-100 (TREC query set INQ026). (b) Topics 101-150 (TREC query set
INQ001). (4 documents examined per query. TREC volumes 1, 2, and 3.) 

tions were created (one per database). 100 learned resource descriptions were
also created (one per database). The learned resource descriptions were cre-
ated using query-based sampling, with query terms selected randomly from the 
learned language model, and 4 documents examined per query. Each databases 
was sampled with enough queries to yield a specified number of unique docu-
ments. Sample sizes of 100, 300, and 700 documents were examined. 

Databases were ranked with the CORI database ranking algorithm (Section
4). frequency statistics (dfi,j) using the length, in words, of the database (cwj)
(Callan et al., 1995). It is not known yet how to estimate database size with 
query-based sampling. In these experiments, term frequency information (df)
was normalized using the length, in words, of the set of documents used to 
construct the resource description. 

Queries were based on TREC topics 51-150 (Harman, 1994). The query 
sets were INQ001 and INQ026, both created at the CIIR (Callan et al., 1995a). 
Queries in these query sets are long, complex, and have undergone automatic 
query expansion. The relevance assessments were the standard TREC rele-
vance assessments supplied by the U.S. National Institute for Standards and 
Technology (Harman, 1994). 

The experimental results are summarized in Figure 5.4. The baselines are the 
curves showing results with the actual resource description (“complete resource 
descriptions”). This is the best result that the database ranking algorithm can 
produce when given a complete description for each database. 

Resource rankings produced from learned language models were slightly less 
accurate than rankings produced from complete language models. However, 
the difference was small when learned language models were created from 



Distributed Information Retrieval 143

700 and 300 documents. The difference was greater when language models 
were learned from only 100 documents, but the loss is small compared to the 
information reduction. Accuracy at “low recall” (only 10-20% of the databases 
searched) was quite good. 

These results are consistent with the results presented in Section 6.1. The 
earlier experiments showed that term rankings in the learned and actual resource 
descriptions were highly correlated after examining 300 documents. These 
experiments demonstrate that the degree of correlation is sufficiently high to 
enable accurate resource ranking. 

6.3 ACCURACY OF DOCUMENT RANKINGS 
Relatively accurate database rankings are a prerequisite for accurate docu-

ment rankings, but the degree of accuracy required in the database ranking was 
not known. In particular, it was not known whether the minor database ranking 
errors introduced by learned language models would cause small or large errors 
in document ranking. A set of experiments was designed to study this issue. 

Document ranking accuracy was studied using the testbed of 100 databases 
created from TREC CDs 1, 2, and 3 (Section 2). 100 complete resource descrip-
tions were created (one per database). 100 learned resource descriptions were 
also created (one per database). The learned resource descriptions were cre-
ated using query-based sampling, with query terms selected randomly from the 
learned language model, and 4 documents examined per query. Each databases 
was sampled with enough queries to yield 300 unique documents. 

The CORI database selection algorithm ranked databases using either the 
learned resource descriptions or the complete resource descriptions, as deter-
mined by the experimenter. The 10 databases ranked most highly for each query 
by the database selection algorithm were searched by INQUERY. The number 
10 was chosen because it was used in recent research on distributed search (Xu 
and Callan, 1998; Xu and Croft, 1999). Each searched database returned its 
most highly ranked 30 documents. Document rankings produced by different 
databases were merged into a single ranking by INQUERY’s default result-
merging algorithm (Section 5). Document ranking accuracy was measured by 
precision at ranks 5, 10, 15, 20, and 30. 

The experimental results indicate that distributed retrieval is about as effective 
with learned resource descriptions as it is with complete resource descriptions 
(Table 5.3). Precision with one query set (INQ026, topics 51-100) was 6.6% 
to 8.3% higher using learned descriptions. Precision with the other query set 
(INQ001, topics 101-150) averaged 2.2% lower using learned descriptions, with 
a range of –0.3% to –6.0%. Both the improvement and the loss were too small 
for most people to notice. 
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Table5.3 Precision of a search system using complete and learned resource descriptions for
database selection and result merging. TREC volumes 1, 2, and 3, divided into 100 databases. 
10 databases were searched for each query. 

Topics 51-100 (INQ026 queries) Topics 101-150 (INQ001 queries) 
Complete Learned Complete Learned 

Document Resource Resource Resource Resource
Rank Descriptions Descriptions Descriptions Descriptions 

5 0.5800 0.6280 (+8.3%) 0.5960 0.5600 (–6.0%)
10 0.5640 0.6040 (+7.1%) 0.5540 0.5520 (–0.3%)
15 0.5493 0.5853 (+6.6%) 0.5453 0.5307 (–2.7%)
20 0.5470 0.5830 (+6.6%) 0.5360 0.5270 (–1.7%)
30 0.5227 0.5593 (+7.0%) 0.5013 0.4993 (–0.4%)

Table 5.4 Summary statistics for the query sets used with the testbed. 

TREC TREC Average 
Topic Topic Length 

Query Set Name Set Field (Words)
Title queries, 51-100 51-100 Title 3 
Title queries, 101 -150 101-150 Title 4
Description queries, 51-100 51-100 Description 14
Description queries, 101-150 101-150 Description 16

Experiments were also conducted with shorter queries. Sets of queries 
were created for TREC topics 51-100 using text from the Title fields (Title
queries), and sets were created using text from the Description fields (Descrip-
tion queries). Summary characteristics for the query sets are shown in Table 
5.4.

Table 5.5 summarizes the results of experiments with shorter queries. The 
shorter queries produce rankings with lower precision than the long queries 
(INQ026 and INQ001, Table 5.3), which was expected. The difference in pre-
cision between searches done with complete language models and with learned 
language models is larger than in experiments with longer queries (Table 5.5). 
The drop in precision was 5 – 10% with all but one one query set; in one test, 
precision actually improved slightly. 

These experimental results with short and long queries extend the results of 
the previous sections, which indicated that using learned resource descriptions 
to rank databases introduced only a small amount of error into the ranking 
process. These results demonstrate that the small errors introduced by learned 
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Table 5.5 The effects of query-based sampling on the CORI database ranking algorithm, as 
measured by the precision of the document rankings that are produced. 10 databases searched 
in a 100 database testbed. (a) Title queries. (b) Description queries.

Title queries 
Precision Topics 51-100 Topics 101-150

at Rank Full Sampled Full Sampled
5 docs 0.4800 0.4520 (–5.8%) 0.4440 0.4440 (0.0%) 

10 docs 0.4400 0.4280 (–2.7%) 0.4100 0.3920 (–4.4%) 
15 docs 0.4240 0.4067 (–4.1%) 0.3987 0.3627 (–9.0%) 
20 docs 0.4070 0.3870 (–4.9%) 0.3740 0.3470 (–7.2%)
30 docs 0.3913 0.3620 (–7.5%) 0.3560 0.3267 (–8.2%) 

100 docs 0.3054 0.2748 (–10.0%) 0.2720 0.2576 (–5.3%) 
Description queries 

Precision Topics 51-100 Topics 101-150
at Rank Full Sampled Full Sampled 

5 docs 0.4960 0.4840 (–2.4%) 0.4560 0.4920 (+7.9%) 
10 docs 0.4660 0.4540 (–2.6%) 0.4260 0.3980 (–6.6%) 
15 docs 0.4520 0.4227 (–6.5%) 0.3973 0.3600 (–9.4%) 
20 docs 0.4350 0.4080 (–6.2%) 0.3890 0.3430 (–11.8%) 
30 docs 0.4273 0.3860 (–9.7%) 0.3733 0.3327 (–10.9%) 

100 docs 0.3128 0.2772 (–11.4%) 0.2702 0.2376 (–12.1%) 

resource descriptions do not noticeably reduce the accuracy of the final search 
results.

The accuracy of the document ranking depends also on merging results from 
different databases accurately. The experimental results indicate that learned 
resource descriptions support this activity as well. This result is important be-
cause INQUERY’s result merging algorithm estimates a normalized document 
score as a function of the database’s score and the document’s score with respect 
to its database. The results indicate that not only are databases ranked appropri-
ately using learned descriptions, but that the scores used to rank them are highly
correlated with the scores produced with complete resource descriptions. This 
is further evidence that query-based sampling produces very accurate resource 
descriptions.

7 SUMMARY AND CONCLUSIONS 
The research reported in this paper addresses many of the problems that arise 

when full-text information retrieval is applied in environments containing many 
text databases controlled by many independent parties. The solutions include 
techniques for acquiring descriptions of resources controlled by uncooperative 
parties, using resource descriptions to rank text databases by their likelihood 
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of satisfying a query, and merging the document rankings returned by different 
text databases. Collectively, these techniques represent an end-to-end solution 
to the problems that arise in distributed information retrieval. 

The distributed IR solutions developed in this paper are effective under a 
broad set of conditions. The experimental conditions include testbeds with rel- 
atively uniform database sizes, testbeds with relatively heterogeneous database 
sizes, and testbeds ranging in size from O(10) to O(1,00) databases. The 
solutions scale to at least O( 1,000) databases. The experiments presented in 
this paper are a representative subset of distributed IR experiments done at the 
CIIR over a five year period. The core algorithms required little adjustment 
during that time. 

The experimental methodology developed as part of this research was in-
tended to reflect conditions in wide area computer networks. These conditions 
include minimal cooperation among parties, a complete lack of global corpus 
information (e.g., idf statistics), a desire to minimize communication costs, and 
a desire to minimize the number of interactions among parties. Database rank-
ing algorithms were evaluated by how well they identified databases containing 
the largest number of relevant documents for each query, and by the precision 
an end-user would see. The intent was to be as “real world” and unforgiving as 
possible.

In spite of good intentions, weaknesses remain, and these reflect opportu- 
nities for future research. The major remaining weakness is the algorithm 
for merging document rankings produced by different databases. This paper 
presents two versions of the algorithm. One requires some cooperation among 
parties; the other does not. Neither algorithm has a strong theoretical basis, 
and neither algorithm has been tested with document rankings and document 
scores produced by multiple, disparate search systems, as would be common in 
the “real world”. These weaknesses could be avoided, at some computational 
cost, by parsing and reranking the documents at the search client. They could 
also be avoided with a simpler heuristic algorithm, at the cost of a decrease in 
precision, as in Allan et al., 1996. However, an accurate and efficient solution 
to this problem remains unknown. 

The experimental results with O(1,00) databases demonstrate the need for 
additional research on “high precision” database ranking algorithms. Few peo-
ple can or will search 10% of the databases when many databases are available. 
The most useful algorithms will be those that are effective when 10 out of 1,000 
databases (1%), or 10 out of 10,000 databases (0.1%) are searched. None of 
the prior research has studied this level of accuracy. 

The research reported in this paper represents a large first step towards crest- 
ing a complete multi-database model of full-text information retrieval. A simple 
distributed IR system can be built today, based on the algorithms presented here. 
However, many of the traditional IR tools, such as relevance feedback, have yet 
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to be applied to multi-database environments. Query expansion greatly im-
proves the ranking of databases (Xu and Callan, 1998), but this result is of only 
academic interest until there is a general method for creating query expansion 
databases that accurately represent many other databases. Nobody has shown 
how to summarize database contents so that a person can browse in an environ-
ment containing thousands of databases. These and related problems are likely 
to represent the next wave of research in distributed information retrieval. 
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