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Issues: Vector Space Model

N

o Assumes terms are independent

e Some terms are likely to appear together
e synonyms, related words
e spelling mistakes?
e Terms can have different meanings depending on
context
e Term-document matrix has very high
dimensionality

e are there really that many important features for
each document and term?
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Latent Semantic Indexing
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o Compute singular value decomposition of a
term-document matrix
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e D, a representation of M in rdimensions

e T, @ matrix for transforming new documents

e diagonal matrix X gives relative importance of

dimensions
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LSI Term matrix T

N

e T matrix
e gives a vector for each term combo in LSI space
e for a new document ¢, c*T gives a new row in D

e Thatis, “fold in” the new document into the LSI
space, where ¢’ is ¢ transpose

e LSI is a rotation of the term-space
e original matrix: terms are d-dimensional
e new space has (maybe much) lower dimensionality

e dimensions are groups of terms that tend to co-
occur in the same documents
e synonyms, contextually-related words, variant endings
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Value in dimension 1
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Value in dimension 2
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Value in dimension 3
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Singular Values

® 2. gives an ordering
to the dimensions

e values tend to drop
off very quickly

e singular values at the
lower right tail
represent "noise"

e cutting off low-value
dimensions reduces
noise and can
improve performance
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Truncating Dimensions in LSI
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S-grams, H.id
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Document matrix D

N

e D matrix
e coordinates of documents in LSI space
e same dimensionality as T vectors

e can compute the similarity between a term
and a document

In the literature, the formula is often
expressed M = Uzy?’
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Improved Retrieval with LSI

* New documents and queries are "folded in"
e multiply vector by Tx1

e Compute similarity for ranking as in VSM

e compare queries and documents by dot-product

o Improvements come from
e reduced noise
e no need to stem terms (variants will co-occur)

e no need for stop list

» stop words are used uniformly throughout collection, so
they tend to appear in the first dimension

e No speed or space gains, though...
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LSI in TREC-3

N

e LSI space computed from a sample of the
document collection

e Documents and queries folded into LSI
space for comparison
e Improvement in AP with LSI: 5%

e Improvements up to 20% seen in smaller
collections
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Other LSI Applications

e Text classification

e by topic
e dimension reduction -> good for clustering

e by language
e languages have their own stop words
e by writing style
e Information Filtering
e Cross-language retrieval
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N-gram indexing recap

e Index all ncharacter
sequences
e language-independent

e resistant to noisy text
e NO stemming
e easy to do

e Document =
array of n-gram
frequencies

Lecture 12 Information Retrieval
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Why N-grams?

* N-grams capture pairs of words
e Brings out phraseology and word choice

e LSI using n-grams might cluster documents by
writing style and/or author

e a lot of what makes style is word choices and stop
word usage
e Small experiment

e Three biblical Hebrew texts: Ecclesiastes, Song of
Songs, Book of Daniel

e used 3-grams in original Hebrew
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Conclusion

N

e LSI can be a useful technigue for reducing the
dimensionality of an IR problem

e reduction can improve effectiveness
e reduction can find surprising relationships!

* SVD can be expensive to compute on large
matrices

e Available tools for working with LSI
e MATLAB or Octave (small data sets only)
e Python package scipy.linalg
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