Latent Semantic Indexing

Thanks to Dr. Ian Soboroff

Revised 4/16/2024

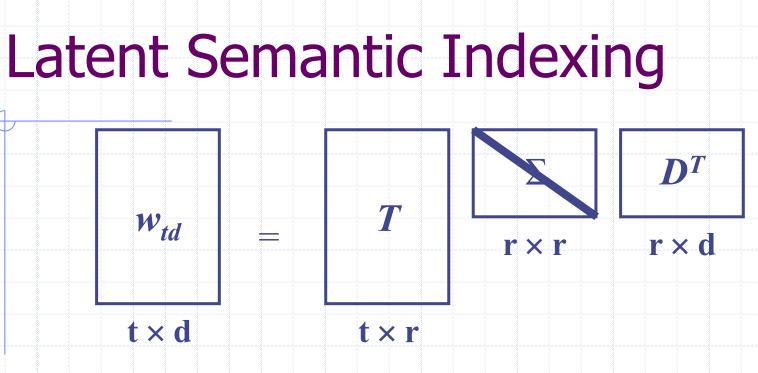
CMSC 476/676 Information Retrieval

1

Issues: Vector Space Model

Assumes terms are independent

- Some terms are likely to appear together
 - synonyms, related words
 - spelling mistakes?
- Terms can have different meanings depending on context
- Term-document matrix has very high dimensionality
 - are there really that many important features for each document and term?



Compute *singular value decomposition* of a term-document matrix

- D, a representation of M in *r* dimensions
- T, a matrix for transforming new documents
- diagonal matrix $\boldsymbol{\Sigma}$ gives relative importance of dimensions

Lecture 12

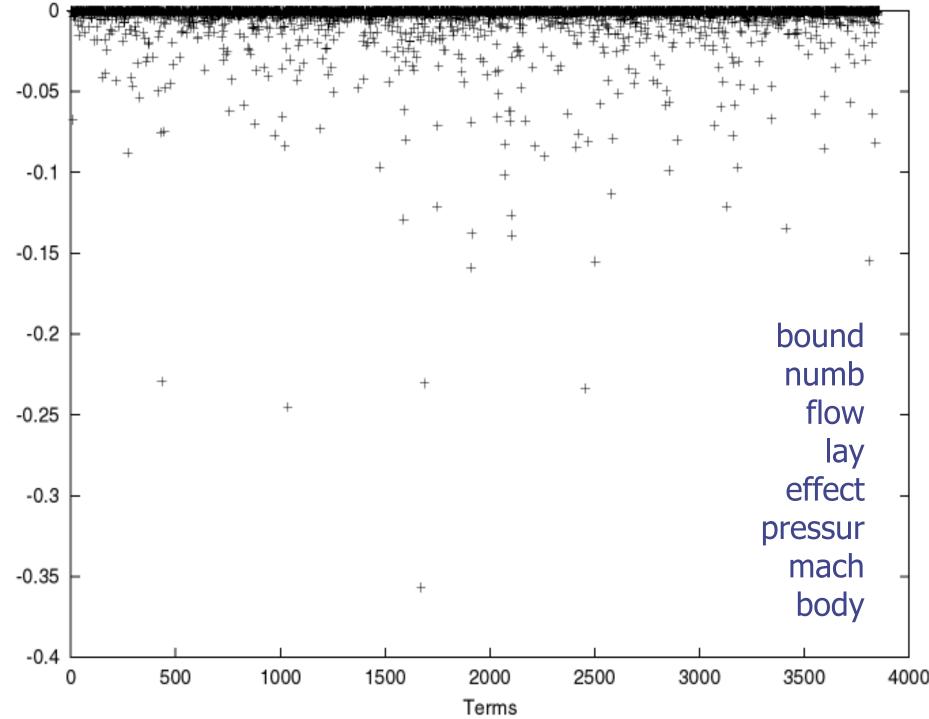
Information Retrieval

LSI Term matrix T

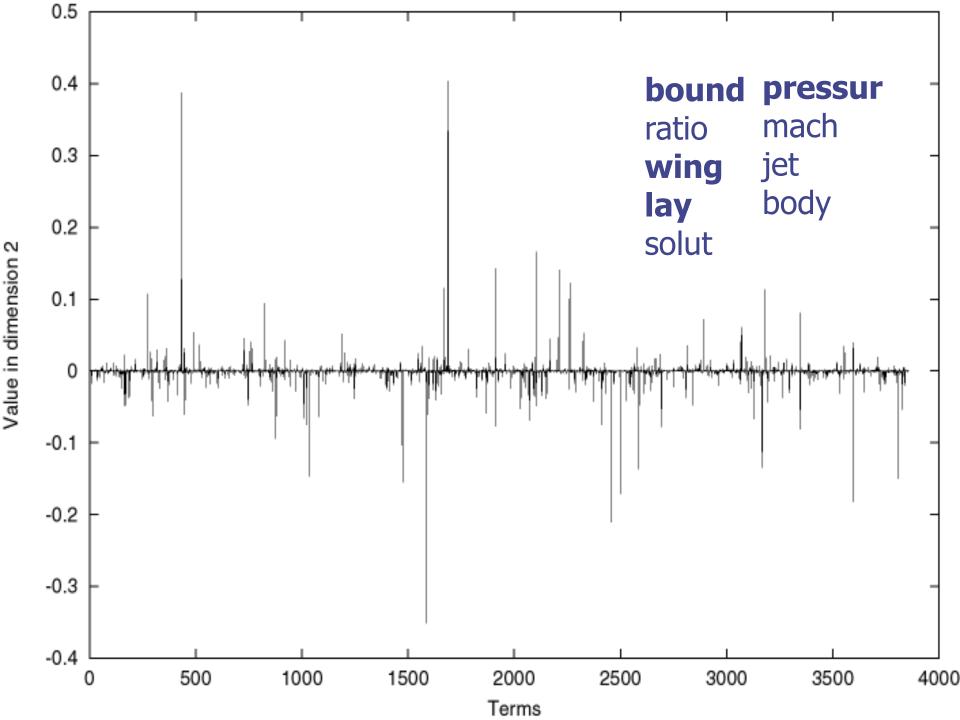
• T matrix

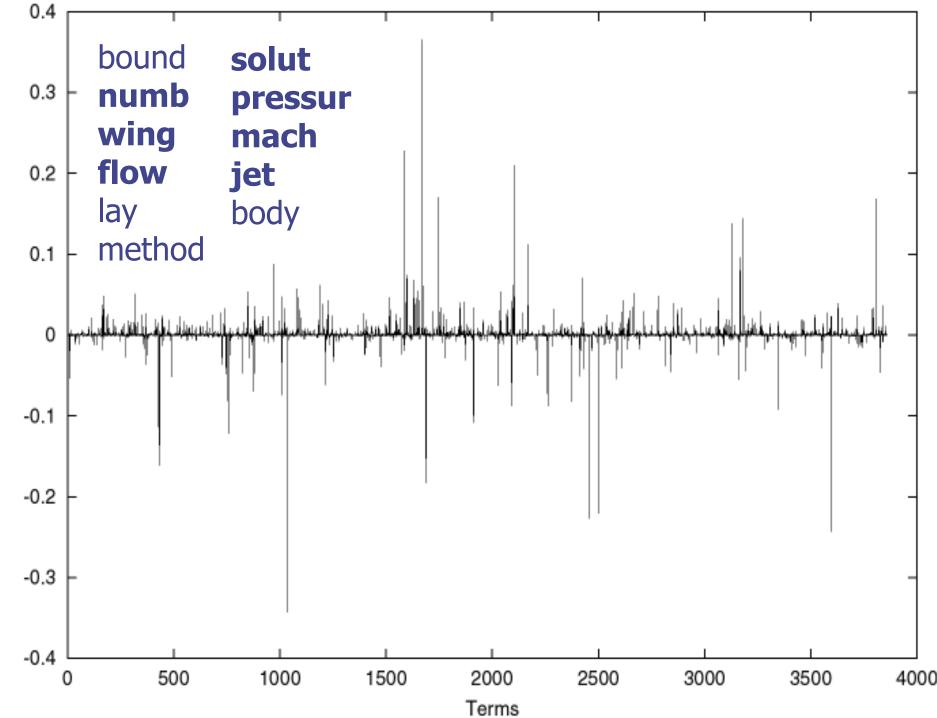
- gives a vector for each term combo in LSI space
- for a new document c, c'*T gives a new row in D
- That is, "fold in" the new document into the LSI space, where c' is c transpose
- LSI is a rotation of the term-space
 - original matrix: terms are d-dimensional
 - new space has (maybe much) lower dimensionality
 - dimensions are groups of terms that tend to cooccur in the same documents
 - synonyms, contextually-related words, variant endings

Lecture 12



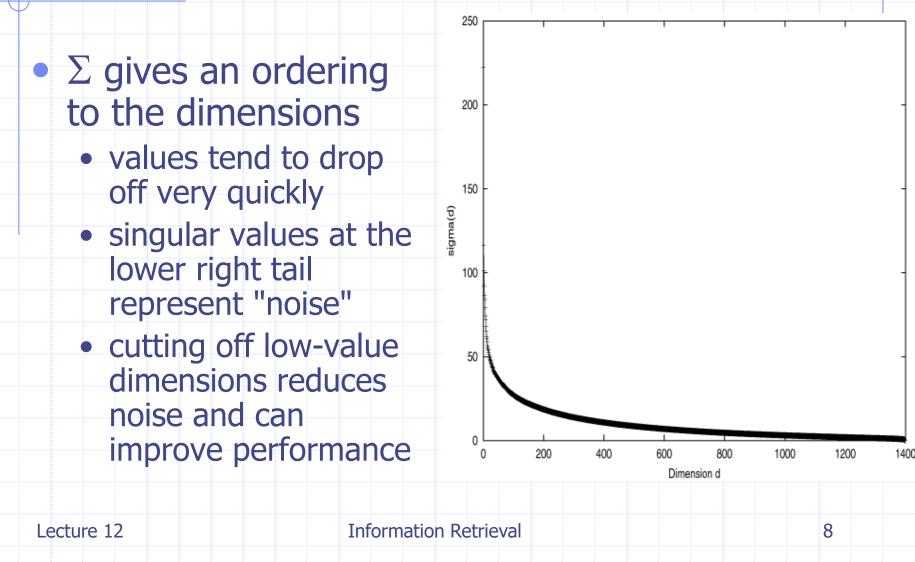
Value in dimension 1

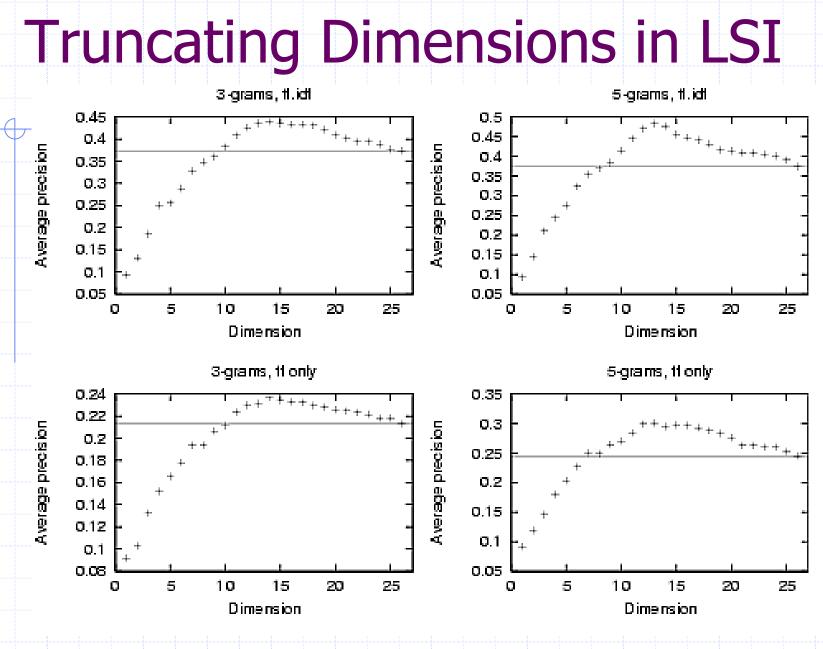




Value in dimension 3

Singular Values





Lecture 12

Information Retrieval

9

Document matrix D

D matrix

- coordinates of documents in LSI space
- same dimensionality as T vectors
- can compute the similarity between a term and a document

In the literature, the formula is often expressed $M = U\Sigma V^T$

Improved Retrieval with LSI

- New documents and queries are "folded in"
 multiply vector by TΣ⁻¹
- Compute similarity for ranking as in VSM
 - compare queries and documents by dot-product
- Improvements come from
 - reduced noise
 - no need to stem terms (variants will co-occur)
 - no need for stop list
 - stop words are used uniformly throughout collection, so they tend to appear in the first dimension
 - No speed or space gains, though...

Lecture 12

LSI in TREC-3

- LSI space computed from a sample of the document collection
- Documents and queries folded into LSI space for comparison
- Improvement in AP with LSI: 5%
 - Improvements up to 20% seen in smaller collections

Other LSI Applications

- Text classification
 - by topic
 - dimension reduction -> good for clustering
 - by language
 - languages have their own stop words
 - by writing style
- Information Filtering
- Cross-language retrieval

N-gram indexing recap

- Index all *n* character
 sequences
 - language-independent
 - resistant to noisy text
 - no stemming
 - easy to do
- Document ⇒ array of n-gram frequencies

Hello World

n=5

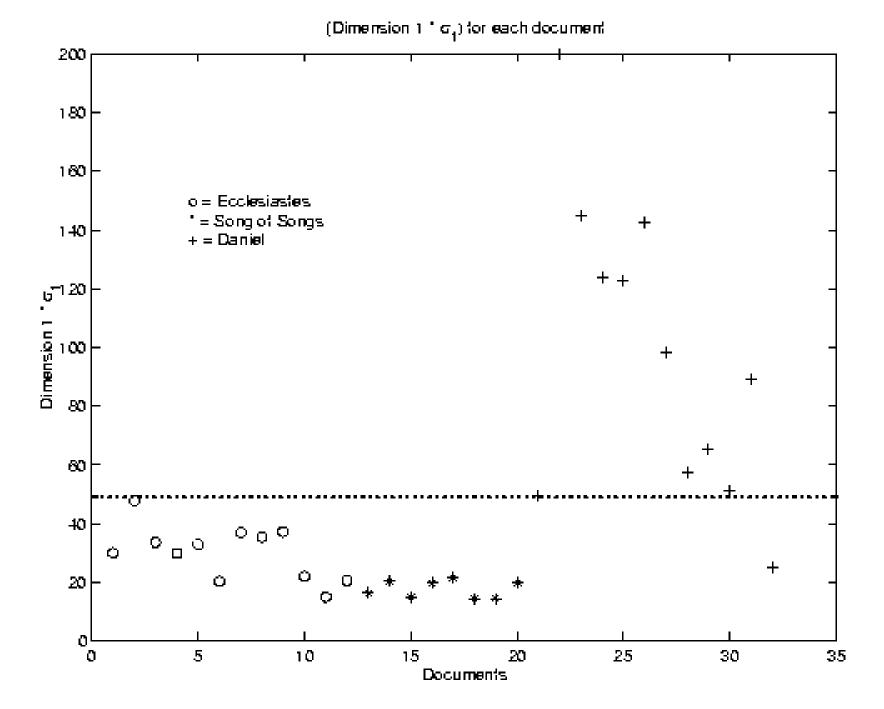
H<mark>ello</mark>World

Lecture 12

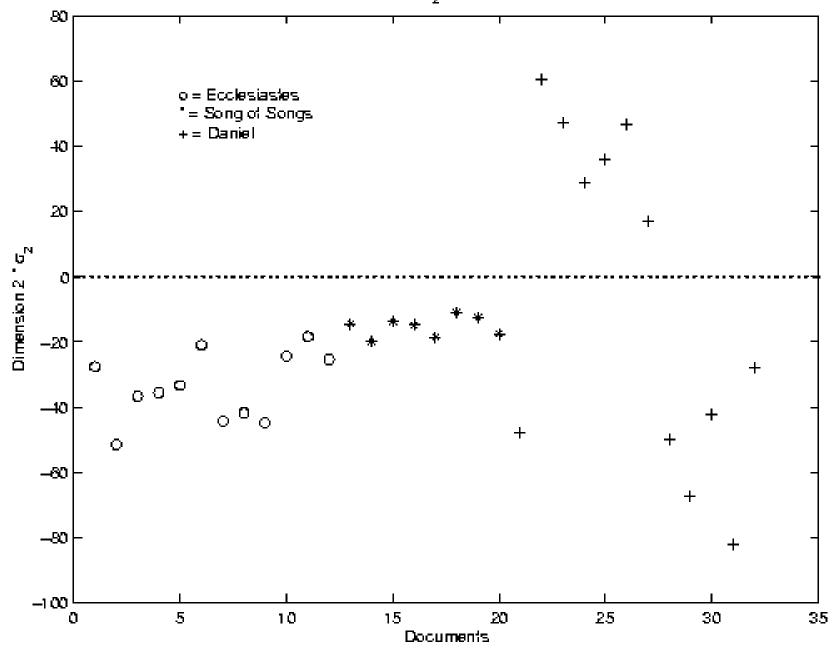
Why N-grams?

- N-grams capture pairs of words
 - Brings out phraseology and word choice
- LSI using n-grams might cluster documents by writing style and/or author
 - a lot of what makes style is word choices and stop word usage
- Small experiment
 - Three biblical Hebrew texts: Ecclesiastes, Song of
 - Songs, Book of Daniel
 - used 3-grams in original Hebrew





(Dimension 2 * $\sigma_{_{\rm Z}})$ for each document



Conclusion

- LSI can be a useful technique for reducing the dimensionality of an IR problem
 - reduction can improve effectiveness
 - reduction can find surprising relationships!
- SVD can be expensive to compute on large matrices
- Available tools for working with LSI
 - MATLAB or Octave (small data sets only)
 - Python package scipy.linalg