
Reminder: Extra Credit 2% (!) Midterm Feedback

1. Did you attend the lecture on 03/26 where we did a “midterm review” ?

2. Did you have enough time to complete all questions ?  

‒ If no, how much more time would have been enough ?

3. Which part (1/2/3/4) was the hardest ? Why ?

4. Which part (1/2/3/4) was the easiest ? Why ?

5. [current/past UMBC undergrads] Have CSEE classes (100 to 300 level) prepared you 
for 475/675 or other “AI” classes (471/472/473/478/…)?

‒ If yes, which ones ? 

‒ If no, which topics do you wish we taught you before you took 475/675 ?

Email your answers to gokhale@umbc.edu with subject “[Neural Networks] Midterm Feedback”.  
Everyone who completes this feedback   by April 7   will receive +2 extra credit.

mailto:gokhale@umbc.edu


Trivia:  I’m teaching Computer Vision in Fall 2025
CMSC 472 / 672  https://courses.cs.umbc.edu/graduate/672/ 

• Syllabus and Evaluation breakdown etc. 
are tentative

• There was a bug (students couldn’t find 
the graduate section)

o Bug has been fixed

• Slides from Spring 24 are available

https://courses.cs.umbc.edu/graduate/672/


tejasgokhale.com

Lecture 11:
  

Neural 
Language Models I

Word2Vec, N-Gram
Some slides adapted from 

Diyi Yang (Stanford), 
Mariane Carpuat (UMD)

CMSC 475/675 Neural Networks



Applications:  Translation



when did Kendrick lamar’s
first album come out?

July 2, 2011

E.g., YONO (Lee et al. 2021) uses a T5 model fine-tuned for QA

Applications:  Question Answering

https://arxiv.org/pdf/2112.07381.pdf


GPT-3: Towards general-purpose language models



How should we represent words as vectors?



Handwritten notes …



How do we represent the meaning of a word?

9

Definition: meaning (Webster dictionary)
• the idea that is represented by a word, phrase, etc.
• the idea that a person wants to express by using words, signs, etc.
• the idea that is expressed in a work of writing, art, etc.

Common linguistic way of thinking of meaning:

signifier (symbol) ⟺ signified (idea or thing)

= denotational semantics

tree ⟺ { , , , …}



Representing words as discrete symbols

10

In traditional NLP, we regard words as discrete symbols:
hotel, conference, motel – a localist representation

Such symbols for words can be represented by one-hot vectors:
motel = [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]
hotel = [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]

Vector dimension = number of words in vocabulary (e.g., 500,000+)

Means one 1, the rest 0s



Problem with words as discrete symbols

11

Example: in web search, if a user searches for “Seattle motel”, we would like to match 
documents containing “Seattle hotel”

But:
motel = [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]
hotel = [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]

These two vectors are orthogonal
There is no natural notion of similarity for one-hot vectors!

Solution:
• learn to encode similarity in the vectors themselves

Sec. 9.2.2



Representing words by their context
• Distributional semantics: A word’s meaning is given

by the words that frequently appear close-by

• “You shall know a word by the company it keeps” (J. R. Firth 1957: 11)
• One of the most successful ideas of modern statistical NLP!

• When a word w appears in a text, its context is the set of words that appear nearby 
(within a fixed-size window).

• We use the many contexts of w to build up a representation of w

…government debt problems turning into banking crises as happened in 2009…
…saying that Europe needs unified banking regulation to replace the hodgepodge…

…India has just given its banking system a shot in the arm…

These context words will represent banking



Word vectors
We will build a dense vector for each word, chosen so that it is similar to vectors of words 
that appear in similar contexts, measuring similarity as the vector dot (scalar) product

Note: word vectors are also called (word) embeddings or (neural) word representations 
They are a distributed representation

banking =

0.286
0.792
−0.177
−0.107

0.109
−0.542
0.349
0.271

monetary =

0.413
0.582
−0.007
0.247
0.216
−0.718
0.147
0.051



Word meaning as a neural word vector

0.286
0.792
−0.177
−0.107

0.109
−0.542
0.349
0.271
0.487

expect =



word2vec: Overview
Word2vec is a framework for learning word vectors 
(Mikolov et al. 2013)

Idea:
• We have a large corpus (“body”) of text: a long list of words
• Every word in a fixed vocabulary is represented by a vector
• Go through each position t in the text, which has a center 

word c and context (“outside”) words o
• Use the similarity of the word vectors for c and o to calculate

the probability of o given c (or vice versa)
• Keep adjusting the word vectors to maximize this probability

Skip-gram model 
(Mikolov et al. 2013)



word2vec Overview
Example windows and process for computing 𝑃𝑃 𝑤𝑤𝑡𝑡+𝑗𝑗 | 𝑤𝑤𝑡𝑡

…crisesbankingintoturningproblems… as

center word 
at position t

outside context words 
in window of size 2

outside context words 
in window of size 2

𝑃𝑃 𝑤𝑤𝑡𝑡+1 | 𝑤𝑤𝑡𝑡

𝑃𝑃 𝑤𝑤𝑡𝑡+2 | 𝑤𝑤𝑡𝑡

𝑃𝑃 𝑤𝑤𝑡𝑡−1 | 𝑤𝑤𝑡𝑡

𝑃𝑃 𝑤𝑤𝑡𝑡−2 | 𝑤𝑤𝑡𝑡



word2vec Overview
Example windows and process for computing 𝑃𝑃 𝑤𝑤𝑡𝑡+𝑗𝑗 | 𝑤𝑤𝑡𝑡

…crisesbankingintoturningproblems… as

center word 
at position t

outside context words 
in window of size 2

outside context words 
in window of size 2

𝑃𝑃 𝑤𝑤𝑡𝑡+2 | 𝑤𝑤𝑡𝑡

𝑃𝑃 𝑤𝑤𝑡𝑡+1 | 𝑤𝑤𝑡𝑡

𝑃𝑃 𝑤𝑤𝑡𝑡−2 | 𝑤𝑤𝑡𝑡

𝑃𝑃 𝑤𝑤𝑡𝑡−1 | 𝑤𝑤𝑡𝑡



word2vec: objective function
For each position 𝑡𝑡 = 1, … , 𝑇𝑇, predict context words within a window of fixed size m, 
given center word 𝑤𝑤𝑡𝑡. Data likelihood:

Likelihood =

The objective function 𝐽𝐽 𝜃𝜃 is the (average) negative log likelihood:

Minimizing objective function ⟺ Maximizing predictive accuracy

𝜃𝜃 is all variables 
to be optimized

sometimes called a cost or loss function



word2vec: objective function
• We want to minimize the objective function:

• Question: How to calculate 𝑃𝑃 𝑤𝑤𝑡𝑡+𝑗𝑗 | 𝑤𝑤𝑡𝑡; 𝜃𝜃 ?
• Answer: We will use two vectors per word w:

• 𝑣𝑣𝑤𝑤 when w is a center word
• 𝑢𝑢𝑤𝑤 when w is a context word

• Then for a center word c and a context word o:



word2vec with Vectors

𝑃𝑃 𝑢𝑢𝑝𝑝𝑟𝑟𝑜𝑜𝑏𝑏𝑙𝑙𝑒𝑒𝑚𝑚𝑠𝑠 | 𝑣𝑣𝑖𝑖𝑛𝑛𝑡𝑡𝑜𝑜

• Example windows and process for computing 𝑃𝑃 𝑤𝑤𝑡𝑡+𝑗𝑗 | 𝑤𝑤𝑡𝑡

• short for P 𝑝𝑝𝑟𝑟𝑜𝑜𝑏𝑏𝑙𝑙𝑒𝑒𝑚𝑚𝑠𝑠 | 𝑖𝑖𝑛𝑛𝑡𝑡𝑜𝑜 ; 𝑢𝑢𝑝𝑝𝑟𝑟𝑜𝑜𝑏𝑏𝑙𝑙𝑒𝑒𝑚𝑚𝑠𝑠, 𝑣𝑣𝑖𝑖𝑛𝑛𝑡𝑡𝑜𝑜, 𝜃𝜃

…crisesbankingintoturningproblems… as

center word 
at position t

outside context words 
in window of size 2

outside context words 
in window of size 2

𝑃𝑃 𝑢𝑢𝑏𝑏𝑎𝑎𝑛𝑛𝑘𝑘𝑖𝑖𝑛𝑛𝑔𝑔 |𝑣𝑣𝑖𝑖𝑛𝑛𝑡𝑡𝑜𝑜

𝑃𝑃 𝑢𝑢𝑐𝑐𝑟𝑟𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠 |𝑣𝑣𝑖𝑖𝑛𝑛𝑡𝑡𝑜𝑜𝑃𝑃 𝑢𝑢𝑝𝑝𝑟𝑟𝑜𝑜𝑏𝑏𝑙𝑙𝑒𝑒𝑚𝑚𝑠𝑠 | 𝑣𝑣𝑖𝑖𝑛𝑛𝑡𝑡𝑜𝑜

𝑃𝑃 𝑢𝑢𝑡𝑡𝑢𝑢𝑛𝑛𝑖𝑖𝑛𝑛𝑔𝑔 | 𝑣𝑣𝑖𝑖𝑛𝑛𝑡𝑡𝑜𝑜

u context vector

v center word



word2vec: prediction function

• This is an example of the softmax function ℝ𝑛𝑛 → (0,1)𝑛𝑛

• The softmax function maps arbitrary values 𝑥𝑥𝑖𝑖 to a probability distribution 𝑝𝑝𝑖𝑖

𝑖𝑖=1𝑢𝑢𝑇𝑇𝑣𝑣 = 𝑢𝑢 ⋅ 𝑣𝑣 = σ𝑛𝑛 𝑢𝑢𝑖𝑖𝑣𝑣𝑖𝑖
Larger dot product = larger probability

③ Normalize over entire vocabulary 
to give probability distribution

② Exponentiation makes anything positive
① Dot product compares similarity

Open 
region

u context vector

v center word



To train the model: Optimize value of parameters to minimize loss

To train a model, we gradually adjust parameters to minimize a loss

• Recall: 𝜃𝜃 represents all the 
model parameters, in one 
long vector

• In our case, with
d-dimensional vectors and
V-many words, we have

• Remember: every word has 
two vectors

• We optimize these parameters by walking down the gradient (see right figure)
• We compute all vector gradients!



Optimization: (Stochastic) Gradient Descent
• We have a cost function 𝐽𝐽 𝜃𝜃 we want to minimize
• Gradient Descent is an algorithm to minimize 𝐽𝐽 𝜃𝜃
• Idea: for current value of 𝜃𝜃, calculate gradient of 𝐽𝐽 𝜃𝜃 , then take small step in direction 

of negative gradient. Repeat.

Note: Our 
objectives 
may not 
be convex 
like this

But life turns 
out to be 
okay



• Update equation (in matrix notation):

• Update equation (for single parameter):

• Algorithm:

(Stochastic) Gradient Descent  (on mini-batches)

𝛼𝛼 = step size or learning rate



word2vec:

u context vector

v center word



Cool Embedding Visualizer:

https://projector.tensorflow.org/ 

https://projector.tensorflow.org/




word2vec Variant
Skip-Gram model with negative sampling 

• The normalization term is computationally expensive (when many output classes):
o Denominator is a BIG sum over all words …

• Idea:  train binary logistic regression to differentiate between true pair and noise pair

o True pair:  (center word, context word)

o Noise pair: (center word, random word)



word2vec Variant
Skip-Gram model with negative sampling 

• The normalization term is computationally expensive (when many output classes):
o Denominator is a BIG sum over all words …

• Idea:  differentiate between true pair and noise pair
o True pair:  (center word, context word)
o Noise pair:  (center word, random word)

• Take negative samples (using word probabilities)
o Maximize probability that real context word appears;
o Minimize probability that random words appear around center word

• minimize:

sigmoid



Zoom out 



Language Modeling: Probabilistic Perspective

• The “joint probability” view:
o What is the probability of n words appearing in sequence?   [Mary, had, a, little]

o 𝑃𝑃 𝑊𝑊 =  𝑃𝑃 𝑤𝑤1 𝑤𝑤2 𝑤𝑤3 𝑤𝑤4  … .

• The “next word predictor” view of language modeling
o Given n previous words, can we build probabilistic models for the next word?

Mary

w1

Had

w2

A

w3

Little

w4

Mary

w1

Had

w2

A

w3

Little

w4

?



slide credit:  Dan Jurafsky



Language Models

• The “next word predictor” view of language modeling

o Given n previous words, can we build probabilistic models for the next word?

o Instead of modeling the joint P 𝑊𝑊 =  𝑃𝑃(𝑤𝑤1𝑤𝑤2𝑤𝑤3𝑤𝑤4 … ), 
let’s model 𝑃𝑃(𝑤𝑤5| 𝑤𝑤1𝑤𝑤2𝑤𝑤3𝑤𝑤4)



Language Models

• The “next word predictor” view of language modeling

o Given n previous words, can we build probabilistic models for the next word?

o Instead of modeling the joint P 𝑊𝑊 =  𝑃𝑃(𝑤𝑤1𝑤𝑤2𝑤𝑤3𝑤𝑤4 … ), 
let’s model 𝑃𝑃(𝑤𝑤5| 𝑤𝑤1𝑤𝑤2𝑤𝑤3𝑤𝑤4)

• How can we use the “next word predictor” view to model 𝑃𝑃(𝑊𝑊) ?
o Bayes rule!



Language Models

• The “next word predictor” view of language modeling

o Given n previous words, can we build probabilistic models for the next word?

o Instead of modeling the joint P 𝑊𝑊 =  𝑃𝑃(𝑤𝑤1𝑤𝑤2𝑤𝑤3𝑤𝑤4 … ), 
let’s model 𝑃𝑃(𝑤𝑤5| 𝑤𝑤1𝑤𝑤2𝑤𝑤3𝑤𝑤4)

• How can we use the “next word predictor” view to model 𝑃𝑃(𝑊𝑊) ?
o Bayes rule!

o Recall: 𝑃𝑃 𝐴𝐴, 𝐵𝐵 = 𝑃𝑃 𝐴𝐴 𝑃𝑃(𝐵𝐵|𝐴𝐴)

o More generally (CHAIN RULE) 

𝑃𝑃 𝑤𝑤1 𝑤𝑤2 … 𝑤𝑤𝑛𝑛 = 𝑃𝑃 𝑤𝑤1 𝑃𝑃 𝑤𝑤2 𝑤𝑤1 𝑃𝑃 𝑤𝑤3 𝑤𝑤1𝑤𝑤2) … 𝑃𝑃 𝑤𝑤𝑛𝑛 𝑤𝑤1𝑤𝑤2 … 𝑤𝑤𝑛𝑛−1)



Language Models:  Chain Rule

𝑃𝑃 𝑤𝑤1 … 𝑤𝑤𝑛𝑛 = �
𝑖𝑖

𝑃𝑃 𝑤𝑤𝑖𝑖 𝑤𝑤1 … 𝑤𝑤𝑖𝑖−1)



Language Models:  Markov Assumption
• Markov:  ya’ll looking too far. A few previous words are enough.

In connection with student 
riots in 1908, professors and 
lecturers of St. Petersburg 
University were ordered to 
monitor their students. 
Markov refused to accept 
this decree, and he wrote an 
explanation in which he 
declined to be an "agent of 
the governance". Markov 
was removed from further 
teaching duties at St. 
Petersburg University, and 
hence he decided to retire 
from the university.



Simple Language Models:  Unigram Model



Simple Language Models:  Bigram Model



More generally:  N-gram models



Estimating Bigram Probabilities



Estimating Bigram Probabilities

“I want to eat Chinese food lunch spend”



Estimating Bigram Probabilities

“I want to eat Chinese food lunch spend”



Computing likelihood using bigrams



What do n-grams reveal …. ?









Larger n-grams …

Toolkit: “KenLM”:   https://kheafield.com/code/kenlm 

https://kheafield.com/code/kenlm/


Google N-Gram Release: August 2006



How to Evaluate Models?   Model A vs B?

• Does our language model prefer good sentences to bad ones?

• Does it assign higher probability to “real” or “frequently observed” sentences ?

• Does it assign lower probability to “ungrammatical” or “rarely observed” sentences ?

Extrinsic    vs    Intrinsic     Evaluation



Intrinsic Evaluation

“A better model assigns a higher probability to the word that actually occurs”

• Collect “test” sentences (i.e. new sentences not in training corpus)

o How well can the model predict the next word?

Unigrams are TERRIBLE at this game.   WHY?



Intrinsic Evaluation:  Perplexity

“The best model predicts the best on an unseen test set”

• A model that gives the highest 𝑃𝑃(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)



Intrinsic Evaluation:  Perplexity

“The best model predicts the best on an unseen test set”

• A model that gives the highest 𝑃𝑃(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)





Towards Neural Language Models



Representing Words (recap)

• •“one hot vector” 
 dog = [ 0, 0, 0, 0, 1, 0, 0, 0 …] 
 cat = [ 0, 0, 0, 0, 0, 0, 1, 0 …] 
 eat = [ 0, 1, 0, 0, 0, 0, 0, 0 …] 

• That’s a large vector! practical solutions: 

o limit to most frequent words (e.g., top 20000) 

o cluster words into classes 

o Word2vec using gradient descent ….









Word Embeddings: a product of neural LMs



Word Embeddings Capture Useful Regularities
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