Reminder: Extra Credit 2% (!) Midterm Feedback

Email your answers to gokhale@umbc.edu with subject “ [Neural Networks] Midterm Feedback”.

Everyone who completes this feedback by April 7 will receive +2 extra credit.

1. Did you attend the lecture on 03/26 where we did a “midterm review" ?

2. Did you have enough time to complete all questions 7

— If no, how much more time would have been enough 7

3. Which part (1/2/3/4) was the hardest ? Why 7
4. Which part (1/2/3/4) was the easiest ? Why ?

5. [current/past UMBC undergrads| Have CSEE classes (100 to 300 level) prepared you
for 475/675 or other “Al" classes (471/472/473/478/...)?

— If yes, which ones 7

— If no, which topics do you wish we taught you before you took 475/675 7

mailto:gokhale@umbc.edu

Trivia: I'm teaching Computer Vision in Fall 2025
CMSC 472 / 672 https://courses.cs.umbc.edu/graduate/672/

* Syllabus and Evaluation breakdown etc.
are tentative

* There was a bug (students couldn’t find N e
. : yeah? Name
the graduate section) Hin £ expe:rt_ WRGHG: detection
o Bug has been fixed computervision models!

* Slides from Spring 24 are available
B o

1& YOUE That's on me, | set

the bar too low

https://courses.cs.umbc.edu/graduate/672/

tejasgokhale.com

CMSC 475/675 Neural Networks

: — I DONT KNOW WHAT
Lecture 11: ALARGE LANGUAGE MODEL IS

N

Neural
Language Models |

N N § ¥
‘\“!M THIS POINT
1AM T00 AFRAID.TO ASK

© UMBC

Word2Vec, N-Gram

Some slides adapted from

Diyi Yang (Stanford),
Mariane Carpuat (UMD)

Applications: Translation

Hindi - detected v P g English

| have written all

raR I R o
s % these words in Hindi

ye saare shabd mainne hindee mein
likhe hai

English - detected - Pl Chinese (Simplified)

5 © lwouldlike some X ﬁféﬁ’—?‘%ﬁﬁﬂ%ﬁ%
Jasmine tea with FITEAR

W& xiang zai wican shi hé dian
molihua cha.

my lunch.

0 ©

Open in Google Translate -+ Feedback

Applications: Question Answering

These are my leftover songs you all can have them. I'm going to put my

Whe I dl d Ken dr l C k l dllla Xl ’ S best out. My best effort. I'm trying to look for an album in 2012."144 |n

~ > June 2011, Lamar released "Ronald Reagan Era (His Evils)", a cut from
rirst 4 l bum comme out: Section.80, featuring Wu-Tang Clan leader RZA.l%3] On July 2, 2011,

Lamar released Section.80, his first independent album. The album

JU l y 2 I 2 O :I_ :I_ features guest appearances from GLC, Colin Munroe, Schoolboy Q,

and Ab-Soul, while the production was handled by Top Dawg in-house

E.g., YONO (Lee et al. 2021) uses a T5 model fine-tuned for QA

Retrieval Layer Reranking Layer Reading Layer
Encoder) - =
w
&
Encoder) o o Encoder) \
i = r p
L = Encoder)
EHeOdet) % E = Encoder) = E‘ E
1L C %
E = E:"{% Encoder & Decoder) Answer
i o al
!] Encoder) S R Encoder } E{E =
= e © Encoder
evooe) [| £ | |9)
E Encoder
.
Q2
=

Encoder)

Encoder = Decoder

https://arxiv.org/pdf/2112.07381.pdf

GPT-3: Towards general-purpose language models @OpenAI

Hey please draft a polite mail to explain my boss Jeremy that | would not be able to come to
office for next 2 days because my 9 year song Peter is angry with me that | am not giving
him much time. So | have plans to take him out for a trip. | will return and complete my work

by meeting deadline.

Dear Jleremy,

| hope this email finds you well. I'm writing to let you know that | will not be able to come

into the office for the next two days.

My 9-year-old son Peter is feeling upset with me because he feels like | haven't been giving

him enough attention lately. In order to make it up to him, I've decided to take him on a

little trip to help us reconnect.

| understand that this may cause some inconvenience, but | promise to make up for any lost

time by working extra hard to meet any deadlines when | return.
Thank you for your understanding.

Best regards,

[Your Name]

Give a step-by-step analysis of the worst-case time complexity of the bubble sort
algorithm, with Python code examples, but write every sentence in the speaking style of a

fast-talkin' wise guy from a 1940's gangster movie.

User What is unusual about this image?

Source: Barnorama

GFT-4 The unusual thing about this image is that a man is ironing clothes on an ironing board
attached to the roof of a moving taxi.

How should we represent words as vectors?

Handwritten notes ...

How do we represent the meaning of a word?

Definition: meaning (Webster dictionary)

 theideathat is represented by a word, phrase, etc.
 theideathat a person wants to express by using words, signs, etc.
 theidea that is expressed in a work of writing, art, etc.

Common linguistic way of thinking of meaning:

signifier (symbol) < signified (idea or thing)

- J

= denotational semantics

 tree & @ 8 7T, .. \

Representing words as discrete symbols

In traditional NLP, we regard words as discrete symbols:
hotel, conference, motel —a localist representation

Means one 1, the rest Os

|

Such symbols for words can be represented by one-hot vectors:
motel=[000000000010000]
hotel=[00000001000000 0]

Vector dimension = number of words in vocabulary (e.g., 500,000+)

Problem with words as discrete symbols

Example: in web search, if a user searches for “Seattle motel”, we would like to match
documents containing “Seattle hotel”

But:

motel=[000000000010000]
hotel=[00000001000000 0]

These two vectors are orthogonal

There is no natural notion of similarity for one-hot vectors!

Solution:

* |earn to encode similarity in the vectors themselves

Representing words by their context

* Distributional semantics: A word’s meaning is given
by the words that frequently appear close-by

* “You shall know a word by the company it keeps” (J. R. Firth 1957: 11)

* One of the most successful ideas of modern statistical NLP!

* When a word w appears in a text, its context is the set of words that appear nearby
(within a fixed-size window).

* We use the many contexts of w to build up a representation of w

...government debt problems turning into banking crises as happened in 2009...
...saying that Europe needs unified banking regulation to replace the hodgepodge...
...India has just given its banking system a shot in the arm...

N\ /

These context words will represent banking

Word vectors

We will build a dense vector for each word, chosen so that it is similar to vectors of words
that appear in similar contexts, measuring similarity as the vector dot (scalar) product

N 4 N
0.286 0.413
0.792 0.582
-0.177 —-0.007
banking = ~0.107 monetary = 0.247
0.109 0.216
-0.542 -0.718
0.349 0.147
_ 0'271J _ 0'051j

Note: word vectors are also called (word) embeddings or (neural) word representations
They are a distributed representation

Word meaning as a neural word vector

expect =

0286)

0.792
-0.177
-0.107/

0.109
-0.542

0.349

0.271

need
ome
|:]|::|
take
.:]i-.;.- li':":'l}
make jet
meet S continue
.) el
expect want become
think
Say remain
be
being
been
ha
L N

have

help

di'e .

WE e o

S

word2vec: Overview

Word2vec is a framework for learning word vectors
(Mikolov et al. 2013)

ldea:

We have a large corpus (“body”) of text: a long list of words

Every word in a fixed vocabulary is represented by a vector

Go through each position t in the text, which has a center
word ¢ and context (“outside”) words o

Use the similarity of the word vectors for ¢ and o to calculate
the probability of o given c (or vice versa)

Keep adjusting the word vectors to maximize this probability

Input

w(t)

projection output

[V2
¢ | W1
>
o« W)
« | W(t2)

Skip-gram model
(Mikolov et al. 2013)

word2vec Overview

Example windows and process for computing P (w4, | w)

P(Wi—2 | we) P(Wet2 | W)

P(w¢—1 | Wt) P(W¢yq | Wt)

problems turning banking crises as

\ o)
v v \ Y)

outside context words center word outside context words
in window of size 2 at positiont in window of size 2

word2vec Overview

Example windows and process for computing P (w4, | w)

P(w¢_» | Wt) P(W¢y2 | Wt)

problems turning into crises as

Y Y \ Y ’
outside context words center word outside context words
in window of size 2 at positiont in window of size 2

word2vec: objective function

For each positiont = 1, ..., T, predict context words within a window of fixed size m,
given center word w;. Data Iikelihood

Likelihood = L(6) = 1_[1_[P(wes; | wis 6)
0 is all variables _I t=1 —msj<m

to be optimized J#0

l sometimes called a cost or loss function

The objective function J(8) is the (average) negative log likelihood:

|
J(6) = -~ log L(6) = z). logP(wes; | wii0)

—m<j<m
JEAV

Minimizing objective function <& Maximizing predictive accuracy

word2vec: objective function

* We want to minimize the objective function:

J(6) = ——Z Z logP(wH] | Wi 9)

—ms<j<m
J#0

* Question: How to calculate P (w4 | wy; 0) ?

 Answer: We will use two vectors per word w:
e v, when wis a center word

° U, when wis a context word

* Then for a center word ¢ and a context word o:

exp (Uo)
ZWEV cXp (ua/ vc)

P(o|c) =

a N
word2vec with Vectors U context vector

V center word
0 /

» Example windows and process for computing P (We4; | we)

° P(upmblems | Vinto) short for P(problems | into ; Uproblems, Vintos 9)

P(Uproblems ‘ Ulnto) P(uCTiSiS ‘vlnta)

P(utuning ‘ Vinto) P ubanking ‘Uinto)

problems turning banking crises as

\ J | J
| f \ Y }

outside context words center word outside context words
in window of size 2 at positiont in window of size 2

word2vec: prediction function

(2 Exponentiation makes anything positive

/

T
exp(Uo V)

P(olc) =

to give probability distribution

 This is an example of the softmax function R* — (0,1)* <« Open
region

exp(x;)
i=1exp(x;)

softmax(x;) = = p;

a
U

'/
.

N

context vector

center word

4

T
ZWEV CXp (uw vc:)
\ (3 Normalize over entire vocabulary

* The softmax function maps arbitrary values x; to a probability distribution p;

To train the model: Optimize value of parameters to minimize loss

To train a model, we gradually adjust parameters to minimize a loss

* Recall: 6 represents all the
model parameters, in one
long vector

* |n our case, with
d-dimensional vectors and 0

V-many words, we have =»

* Remember: every word has
two vectors

VUaardvark
Vq

Uzebra

Ugardvark
Uq

Uzebra

a0

* We optimize these parameters by walking down the gradient (see right figure)

 We compute all vector gradients!

Optimization: (Stochastic) Gradient Descent

We have a cost function J () we want to minimize

Gradient Descent is an algorithm to minimize J (0)

ldea: for current value of 0, calculate gradient of / (8), then take small step in direction
of negative gradient. Repeat.

Cost

Note: Our
objectives
may not
be convex

like this ®

Learning step

But life turns

out to be
okay ©

Minimum

Random
Initial value

D>

(Stochastic) Gradient Descent (on mini-batches)

* Update equation (in matrix notation):

grew — Qold . QV@J(Q)
|

« = step size or learning rate

* Update equation (for single parameter):

prew = g9ld — q 89?M J(0)

* Algorithm:

while True:
theta grad = evaluate gradient(J,corpus,theta)
theta = theta - alpha * theta grad

word2vec:

Word2vec parameters

U

V

outside center

“Bag of words” model!

(2) Exponentiation makes anything positive

/

exp(ulv
P(olc) = p(uyvd)

ZWEV EXp (uvTv vc)

U'U4T

dot product

\ (3 Normalize over entire vocabulary

to give probability distribution

and computations

a
U

V

<

n

context vector

center word

4

softmax(U - v4')

probabilities

»The model makes the same predictions at each position

We want a model that gives a reasonably high probability
estimate to all words that occur in the context (at all often)

Cool Embedding Visualizer:

https: rojector.tensorflow.or

https://projector.tensorflow.org/

|
s 4 i] ¥ L F
o oy . ¥ PR ® gdisks
=] E } = ; L @ L
i @dx lamwm#u; & .
@ circuits
-] "I- g % < atorage
-‘!L_te;'mmala $; % ..i
g . A =
i v "By Bbosieen ‘acs Wdickior,
X & , o — — 8
| a #9. grise), P[Dgfgmmﬂmeadmm
o o o 7 » 'ﬁ}ﬂ!:r:i % SPointer g compting ginterface
':'.||. - "_ - i . .?3-;’“"““?&_5 m“'h'P-E-E{ .EI'!'IhIEI:HEd
wharbour + g helsinki g pdph ™8, T e T @n@compiler @
] PRl AL ; - “ﬂfﬂg @ integrated ;_ S mlaped o S0eV0
gade % ¥ % : ® 2 -
PRRA U T | 2 b L
o i _FF__: £ 5 - ; . 4 i i . 3
& ."'2 h:'E"j-En_-'ﬁ':iiurtiq 5 ' Pl 3 " & programiming
'_. ir R ., _.,"; .-
-,% L i T -.. “wa W I.“ 'l .
¥ tﬁhﬂﬂl@_ﬂig N
* lpd'::h,u_gh IEiPI,i_g -ﬁ-‘ - 2 design
¥ Mg o g&ﬂm f v, .
T #saxony . © - - i ,
.. L .!i £ 3
wnzples ¥
] <+ :

®

e ‘g :'i;,h.":.l' .- s 1‘"
- h‘ s Eu. -lgtﬂlal:ﬂﬁ?té “?]
= '.ts.. - "f*—f‘. e

. T I#-Ial.. - antaro
-, L.r!ir. o'y J

li"-'ii
| "

4 T

i :
: ¥4
L= e o = ‘ ' .

~ B
@]

word2vec Variant
Skip-Gram model with negative sampling

(2 Exponentiation makes anything positive
(1) Dot product compares similarity of o and c.

J T, — — ~Nh
- T UvV=U"V=0,;_1UDj
P(O ‘C) _ €XP)/ Larger dot product = larger probability

T
ZWEV exp (uwvc)
\ (3 Normalize over entire vocabulary

to give probability distribution

* The normalization term is computationally expensive (when many output classes):

o Denominator is a BIG sum over all words ...

 |dea: train binary logistic regression to differentiate between true pair and noise pair

o True pair: (center word, context word)

o Noise pair: (center word, random word)

word2vec Variant
Skip-Gram model with negative sampling

The normalization term is computationally expensive (when many output classes):

o Denominator is a BIG sum over all words ...

ldea: differentiate between true pair and noise pair

o True pair:

o Noise pair:

(center word, context word)

(center word, random word)

Take negative samples (using word probabilities)

o Maximize probability that real context word appears;
o Minimize probability that random words appear around center word
minimize: _ T
]neg—sample(umvm U) - logo-(uovc) o z

;

sigmoid

ke{K sampled indices}

log o(—upv,)

/oom out

Language Modeling: Probabilistic Perspective

* The “joint probability” view:
o What is the probability of n words appearing in sequence? [Mary, had, a, little]
oP(W) = P(wyw, waw, ...

* The "next word predictor’ view of language modeling

o Given n previous words, can we build probabilistic models for the next word?

Language Modeling (LM) more formally

Goal: compute the probability of a sentence or
sequence of words W:

P(W) = P(w,,W,,W5,W,,Wc...W,)

Related task: probability of an upcoming word:
P(wc|w,,W,,w3,wW,) or P(w,|w,,wW,..w, ;)

An LM computes either of these:
P(W) or P(w,|w,wW,..wW_,)

slide credit: Dan Jurafsky

Language Models

* The “next word predictor’ view of language modeling
o Given n previous words, can we build probabilistic models for the next word?

o Instead of modeling the joint P(W) = P(w;w,o,wswy ...),
let's model P(ws| wywo,wsw,)

Language Models

* The “next word predictor’ view of language modeling
o Given n previous words, can we build probabilistic models for the next word?

o Instead of modeling the joint P(W) = P(w;w,o,wswy ...),
let’s model P(ws| wyw,o,wsw,)

* How can we use the “next word predictor’ view to model P(W) ? OLD BAYES
o Bayes rule! ‘::5‘ Stﬂ"gﬂfs

Priors
SHRIMP
for over 250 years

CHICKEN Hnmﬁm"m}

Language Models

* The “next word predictor’ view of language modeling
o Given n previous words, can we build probabilistic models for the next word?

o Instead of modeling the joint P(W) = P(w;w,o,wswy ...),
let’s model P(ws| wyw,o,wsw,)

* How can we use the “next word predictor’ view to model P(W) ? OLD BAYES
o Bayes rulel ‘:-.-5‘ Stﬂ!ﬂgﬂfs

Priors
Same great formula
for over 250 years

CHICKEN Hnmﬁm“m}

SHRIMP

o Recall: P(A,B) = P(A)P(B|A)
o More generally (CHAIN RULE)
P(wy wy ...wp) = P(w)P(wa|wy)P(ws|lwiwy) ... P(wplwiw, ..owp_q)

Language Models: Chain Rule

P(“its water is so transparent”) =
P(Wy ...wy,) = Hp(wi | Wy Wiy P(its) x P(water]its) x P(is|its water)
i x P(so|its water is)

x P(transparent|its water is so)

* Could we just count and divide?

P (the |its water is so transparent that) =

Count (its water is so transparent that the)

Count (its water is so transparent that)

* No! Too many possible sentences!

 We'll never see enough data for estimating these

Language Models: Markov Assumption

* Markov: ya'll looking too far. A few previous words are enough.

P(blue|The water of Walden Pond is so beautifully)

U

P(bluelbeautifully)

P(Wn|Win—1) = P(Wn|wp—1)

Bigram Markov Assumption h comection wih studert

riots in 1908, professors and

lecturers of St. Petersburg

University were ordered to

monitor their students.

Markov refused to accept

P P this decree, and he wrote an

Wl ?’l Wlek 1) explanation in which he

declined to be an "agent of

— the governance". Markov

H_ was removed from further

teaching duties at St.

X Petersburg University, and

H (Wk‘W]_k 1) hence he decided to retire
k=1 from the university.

Instead of:

Simple Language Models: Unigram Model

Pww,..w)=]_[P(wi)

Some automatically generated sentences from two different unigram models

To him swallowed confess hear both . Which . Of save on trail
for are ay device and rote life have

Hill he late speaks ; or ! a more to leg less first you enter
Months the my and i1ssue of year foreign new exchange’s September

were recession exchange new endorsed a acqgulre to sl1x executlives

Simple Language Models: Bigram Model

Pw. lww,...w._)=P(w. lw._)

Some automatically generated sentences rom two different unigram models

Why dost stand forth thy canopy, forsooth; he 1s this palpable hit
the King Henry. Live king. Follow.

What means, sir. I confess she? then all sorts, he 1s trim, captain.

Last December through the way to preserve the Hudson corporation N.
B. E. C. Taylor would seem to complete the major central planners

one gram point five percent of U. S. E. has already old M. X.
corporation of living

on information such as more frequently fishing to keep her

More generally: N-gram models

Estimating Bigram Probabilities

An example

<s>|am Sam </s> Pw, 1w,)=
[[—

<s>Sam | am </s>

<s> | do not like green eggs and ham </s>

P(I|<s>)=2%=.67 P(Sam|<s>) =1 = .33

3
P(</s>|Sam) = % = P(Sam|am) = % =.5

c(w,_,)

Plam|I)
P(do|I)

o= |9

c(w._,,w,)

= .67

33

Estimating Bigram Probabilities

“l want to eat Chinese food lunch spend”

1 want | to eat chinese | food | lunch | spend
1 5 827 0 9 0 0 0 2
want 2 0 608 | 1 6 6 5 1
to 2 0 4 686 | 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 15| 0 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0

Estimating Bigram Probabilities

“l want to eat Chinese food lunch spend”

Normalize by unigrams:

1 want to eat chinese food lunch spend
2533 927 2417 746 158 1093 341 278
Result:
i want | to | eat chinese | food | lunch | spend

1 0.002 0.33 |0 0.0036 | O 0 0 0.00079
want 0.0022 | O 0.66 0.0011 | 0.0065 | 0.0065 | 0.0054 | 0.0011
to 0.00083 | O 0.0017 | 0.28 0.00083 | O 0.0025 | 0.087
eat 0 0 0.0027 | O 0.021 0.00271 0.056 |0
chinese || 0.0063 | O 0 0 0 0.52 0.0063 | O
food 0.014 0 0.014 | O 0.00092 | 0.0037 | O 0
lunch 0.0059 |0 0 0 0 0.0029 | O 0
spend | 0.0036 | O 0.0036 | O 0 0 0 0

Computing likelihood using bigrams

P(<S> I Want engliSh fOOd </S>) — Whoever told me to come to London

owes me an apology

P(I|<s>)
x P(want|I)
x P(english|want)
x P(food|english)
x P(</s>|food)
= .000031

What do n-grams reveal ?

P(englishjwant) =.0011
P(chineselwant) = .0063
P(tolwant) = .66

P(eat | to) = .28

P(food | to) =0

P(want | spend) = 0
P(1|<s>)=.25

Approximating Shakespeare

gram

gram

gram

gram

—To him swallowed contess hear both. Which. Of save on trail for are ay device and
rote life have
—Hill he late speaks; or! a more to leg less first you enter

—Why dost stand forth thy canopy, forsooth; he 1s this palpable hit the King Henry. Live
king. Follow.
—What means, sir. I confess she? then all sorts, he 1s trim, captain.

—Fly, and will rid me these news of price. Therefore the sadness of parting, as they say,
't1s done.
—This shall forbid 1t should be branded, 1f renown made 1t empty.

—King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A
great banquet serv’d 1n;
—It cannot be but so.

Shakespeare as corpus

N=884,647 tokens, V=29,066

Shakespeare produced 300,000 bigram types out of
V2= 844 million possible bigrams.

> S0 99.96% of the possible bigrams were never seen (have
zero entries in the table)

> That sparsity is even worse for 4-grams, explaining why
our sampling generated actual Shakespeare.

Can you guess the author? These 3-gram sentences
are sampled from an LM trained on who?

1) They also polnt to ninety nine polnt
s1xX billion dollars from two hundred four

oh six three percent of the rates of
interest stores as Mexico and gram Brazil]

on market conditions

2) This shall forbld 1t should be branded,
1f renown made 1t empty.

3) “You are uniformly charming!” cried he,
with a smile of associating and now and
then I bowed and they perceived a chaise

and four to wish for.

Larger n-grams ...

4-grams, 5-grams

Large datasets of large n-grams have been released

* N-grams from Corpus of Contemporary American English (COCA)
1 billion words (Davies 2020)

* Google Web 5-grams (Franz and Brants 2006) 1 trillion words)
 Efficiency: quantize probabilities to 4-8 bits instead of 8-byte float
Newest model: infini-grams (e<-grams) (Liu et al 2024)

* No precomputing! Instead, store 5 trillion words of web text in
suffix arrays. Can compute n-gram probabilities with any n!

Toolkit: “KenLM™: https://kheafield.com/code/kenlm

https://kheafield.com/code/kenlm/

Google N-Gram Release: August 2006

Home » Blog >

All Our N-gram are Belo

You

August 3, 2006 - Posted by Alex Franz and Thorsten Brants, Google Machine Translation

File sizes: approx. 24 GB compressed (gzip'ed) text

Number
Number
Number
Number
Number
Number
Number

of
of
of
of
of
of
of

tokens:

sentences:

unigrams:
bigrams:
trigrams:

fourgrams:
fivegrams:

1,024,968,267,229
95,119,665,584
15,588,391
314,843,401
977,069,902
1,313,818,354
1,1/6,470,663

We believe
amounts o
direction ¢
matter hov
to share th
running te
appear at |
appear les

serve
serve
serve
serve
serve
serve
serve
serve
serve
serve
serve
serve
serve
serve

d5S
d5S
d5S
d5S
d5S
d5S
d5
d5
d5
d5
d5
d5
d5
d5

ne

ne
ne

ne
ne

ne
ne
ne

ne
ne

ne
ne

+ t 7t 7+ t++ 7+ 7t t+ t+ &+ t+ t T

ne

initial 5331
initiating 125
initiation 63
initiator 81
injector 56
inlet 41
inner 87
input 1323
inputs 189
insertion 49
insourced 67
inspection 43
inspector 66

inspiration 13960

1SSive
mising
DS, NO

ve decided
irds of

s that

s that

How to Evaluate Models? Model A vs B?

* Does our language model prefer good sentences to bad ones?
* Does it assign higher probability to “real” or “frequently observed” sentences ?

* Does it assign lower probability to “ungrammatical’ or “rarely observed” sentences ?

Extrinsic vs Intrinsic Evaluation

Intrinsic Evaluation

“A better model assigns a higher probability to the word that actually occurs”

* Collect "test” sentences (i.e. new sentences not in training corpus)

o How well can the model predict the next word? /

| always order pizza with cheese and <

The 33" President of the US was

| saw 3

mushrooms 0.1
pepperoni 0.1

anchovies 0.01

fried rice 0.0001

k and 1e-100

Unigrams are TERRIBLE at this game. WHY?

Intrinsic Evaluation: Perplexity

“The best model predicts the best on an unseen test set”

* A model that gives the highest P(sentence)

1

N

Perplexity is the inverse probability of the PP(W) P(ww,..wy)

test set, normalized by the number of
words: \/ 1
— N

Pwyw,..wy)

Chain rule: - :
D — i
Il“v} \‘]._.[P{u',hl']...“’r—l}

=1

For bigrams:

N i

WW%:\HHWMM

i=1

Minimizing perplexity is the same as maximizing probability

Intrinsic Evaluation:

Perplexity

“The best model predicts the best on an unseen test set”

* A model that gives the highest P(sentence)

Training 38 million words, test 1.5 million words, WSJ

N-gram Bigram Trigram
Order

Perplexity 962

Problems with N-gram models

* N-grams can't handle long-distance dependencies:

“The soups that | made from that new cookbook |
bought yesterday were amazingly delicious.”

* N-grams don't do well at modeling new sequences
with similar meanings

The solution: Large language models
* can handle much longer contexts

* because of using embedding spaces, can mode|
synonymy better, and generate better novel strings

Towards Neural Language Models

Word$|

Figures by Philipp Koehn (JHU)

Representing Words (recap)

* o one hot vector’

dog=0,0,0,0,1,0,0,0..]
cat=1{0,0,0,0,0,0,1,0 ...
eat=1[0,1,0,0,0,0,0,0..]

* That's a large vector! practical solutions:

o limit to most frequent words (e.g., top 20000)
o cluster words into classes

o Word2vec using gradient descent

Language Modeling with
Feedforward Neural Networks

Map each word into a

using shared weight matrix

O0OO0O0C0O00O0C e
SOl O @ O @ S0
CO0O00CO0000O0

0O0000C@e@00O0
CO00Q0Q0QOQO0O
O0000000O0

O00Q0C0000O0
00000000
olol NoloNoNoRoNS

O0O000000O0
OO00Q000Q0 00
O0O0000CeO0

Bengio et al. 2003

Example: Prediction with a Feedforward LM

Output layer P(wju) XV

dhx3d W
Projection layer 1x3d (@6 <@ +-
concatenated embeddings | embedding for embedding for embedding for
for context words word 35 word 9925 word 45180 word 42
g SIS T

S Thole|in | the | oaround | there | lived ..

Fxample: Prediction with a Feedforward LM

Output layer P(wlu) !XV

Vixd, U

Hjdden layer 1xd; [Q{K %3 SRR\ § BT
'y .

dhKEd w

Projection layer |x3d

concatenated embeddings | embedding for embedding for embedding for
for context words word 35 word 9925 word 45180 word 42
e SN Poa R N

T Jhole[in| _the | ground | there | lived [.3
[hole]

2/ e/

Note: bias omitted in figure

~ N S]

(Ex1 ,Ex;g:, ...,Ex)
o(We+b)
Uh

softmax (z)

Word Embeddings: a product of neural LMs

O 0O
OO0O0
OO0O0
OO0O0O
O 0O
O OO0
Q0O
O 0O
OGN _

Word

Embedding

O 0O
O OO0
O OO
ORONO

 Words that occurs in similar
contexts tend to have similar

embeddings

. Embeddin%s capture many
usage regularities

* Useful features for many NLP
tasks

Word Embeddings Capture Useful Regularities

Morpho-Syntactic Semantic
* Adjectives: base form vs. comparative * Word similarity/relatedness
* Nouns: singular vs. plural e Semantic relations

* Verbs: present tense vs. past tense
[IMikolov et al. 2013}

* But tends to fail at distinguishing

* Synonyms vs. antonyms
* Multiple senses of a word

/'7 AUNT
KINGS MAN /
QUEEN UNCLE
/ QUEEN

KING
KING

	Reminder: Extra Credit 2% (!) Midterm Feedback
	Trivia: I’m teaching Computer Vision in Fall 2025�CMSC 472 / 672 https://courses.cs.umbc.edu/graduate/672/
	Lecture 11:� �Neural �Language Models I��Word2Vec, N-Gram
	Applications: Translation
	Applications: Question Answering
	GPT-3: Towards general-purpose language models
	How should we represent words as vectors?
	Handwritten notes …
	How do we represent the meaning of a word?
	Representing words as discrete symbols
	Problem with words as discrete symbols
	Representing words by their context
	Word vectors
	Word meaning as a neural word vector
	word2vec: Overview
	word2vec Overview
	word2vec Overview
	word2vec: objective function
	word2vec: objective function
	word2vec with Vectors
	word2vec: prediction function
	To train the model: Optimize value of parameters to minimize loss
	Optimization: (Stochastic) Gradient Descent
	(Stochastic) Gradient Descent (on mini-batches)
	word2vec:
	Cool Embedding Visualizer:��https://projector.tensorflow.org/
	Slide Number 27
	word2vec Variant�Skip-Gram model with negative sampling
	word2vec Variant�Skip-Gram model with negative sampling
	Zoom out
	Language Modeling: Probabilistic Perspective
	Slide Number 32
	Language Models
	Language Models
	Language Models
	Language Models: Chain Rule
	Language Models: Markov Assumption
	Simple Language Models: Unigram Model
	Simple Language Models: Bigram Model
	More generally: N-gram models
	Estimating Bigram Probabilities
	Estimating Bigram Probabilities
	Estimating Bigram Probabilities
	Computing likelihood using bigrams
	What do n-grams reveal …. ?
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Larger n-grams …
	Google N-Gram Release: August 2006
	How to Evaluate Models? Model A vs B?
	Intrinsic Evaluation
	Intrinsic Evaluation: Perplexity
	Intrinsic Evaluation: Perplexity
	Slide Number 55
	Towards Neural Language Models
	Representing Words (recap)
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Word Embeddings: a product of neural LMs
	Word Embeddings Capture Useful Regularities

