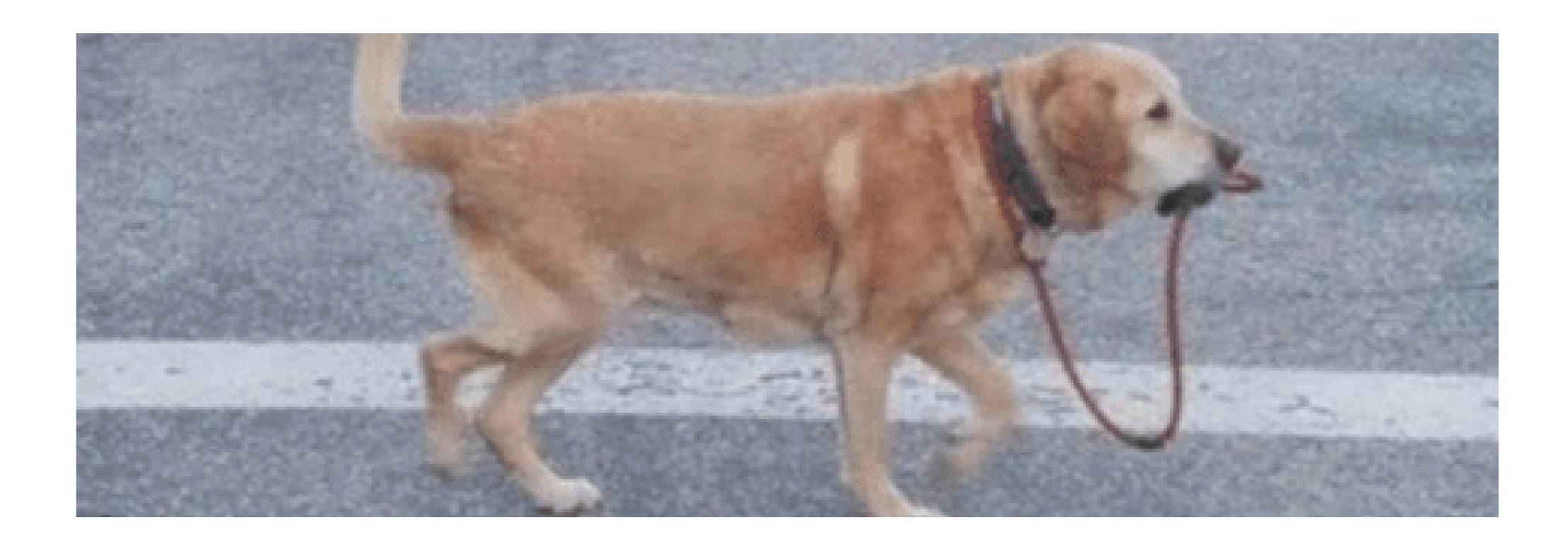


University of Catonsville, Left of Arbutus

Supervised Learning is Expensive ...

Lecture 9: Self-Supervised Learning



tejasgokhale.com

CMSC 475/675 Neural Networks



• Train a model on 1 million images \rightarrow Labels aren't magically given to you

- How much will it cost?

(1,000,000 images)X (10 seconds/image) $\times (1/3600 \text{ hours/second})$ X (\$15 / hour) X (3 annotators / image)

 $= \sim \$125k$

- (Fast annotation)
 - (Minimum wage) (for consensus / removing noise)

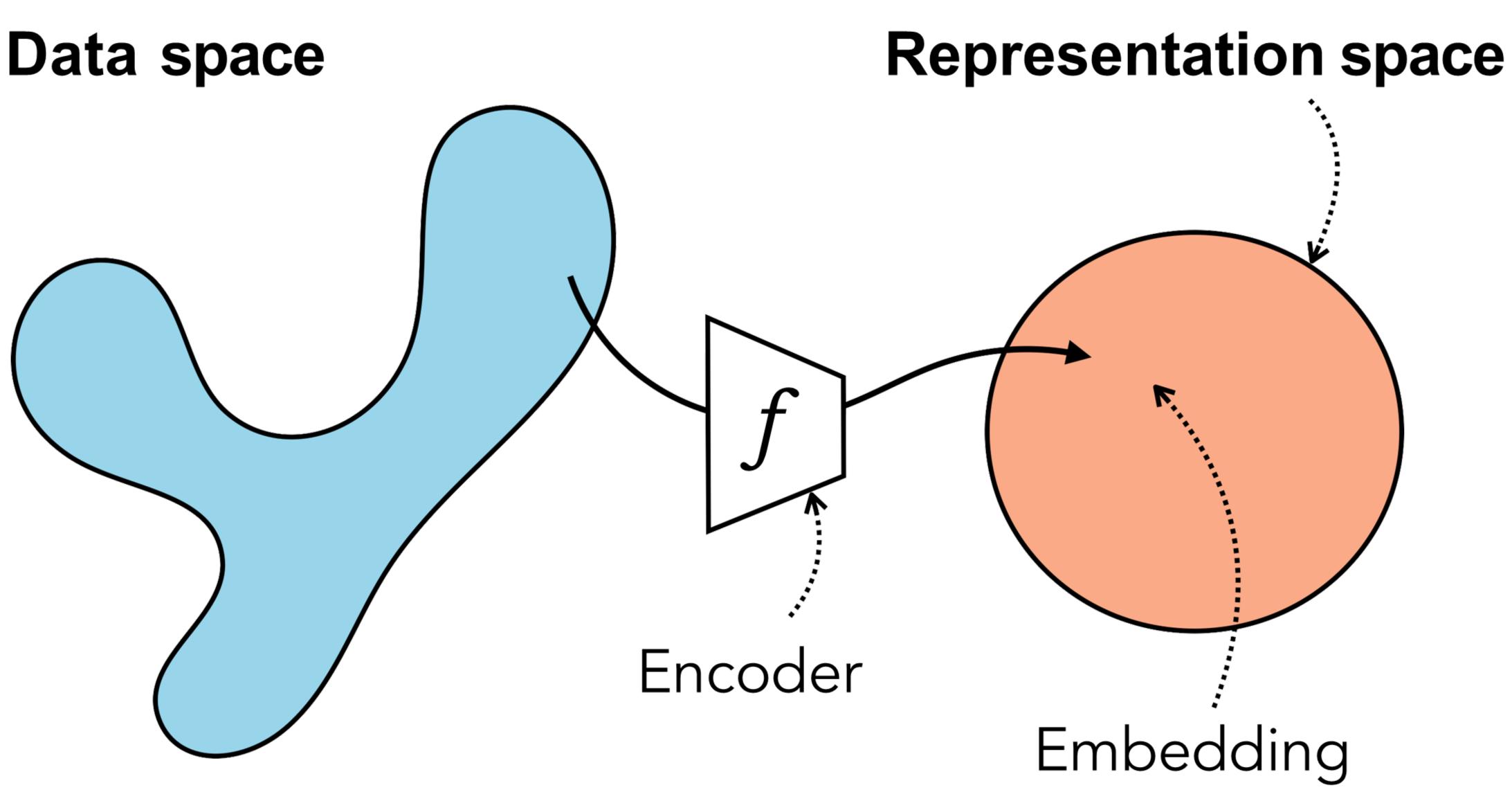
label 1 million images need human effort

(Small to medium sized dataset)

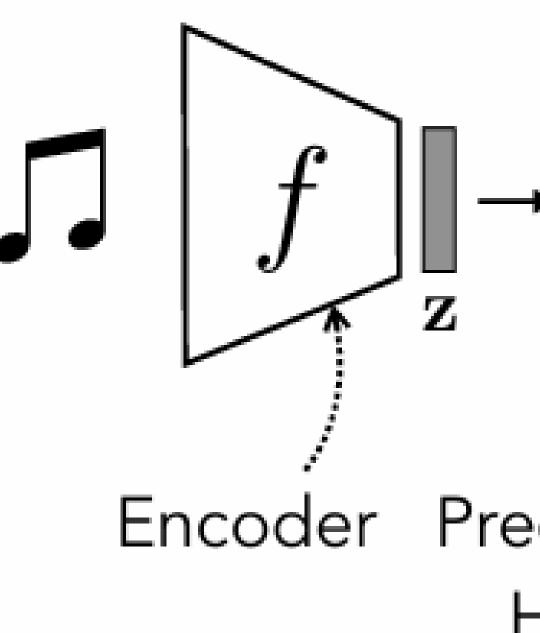
without considering overhead / admin costs ...

Recap: Representation Learning "x2vec"

- $\circ A$ representation of a data domain \mathcal{X} is a function $f: \mathcal{X} \to \mathbb{R}^d$ (an encoder) that assigns a feature vector to each input in that domain.
- $\circ A$ representation of a datapoint is a vector $z \in \mathbb{R}^d$ with z = f(x).



"Generally speaking, a good representation is one that makes a subsequent learning task easier." - Goodfellow et al. "Deep Learning". 2016



Training

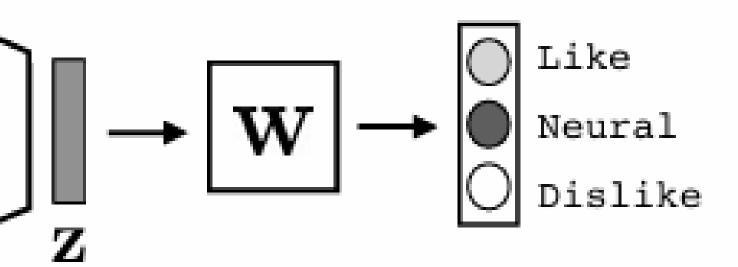
Genre recognition

classical hip hop rock metal alternative rap

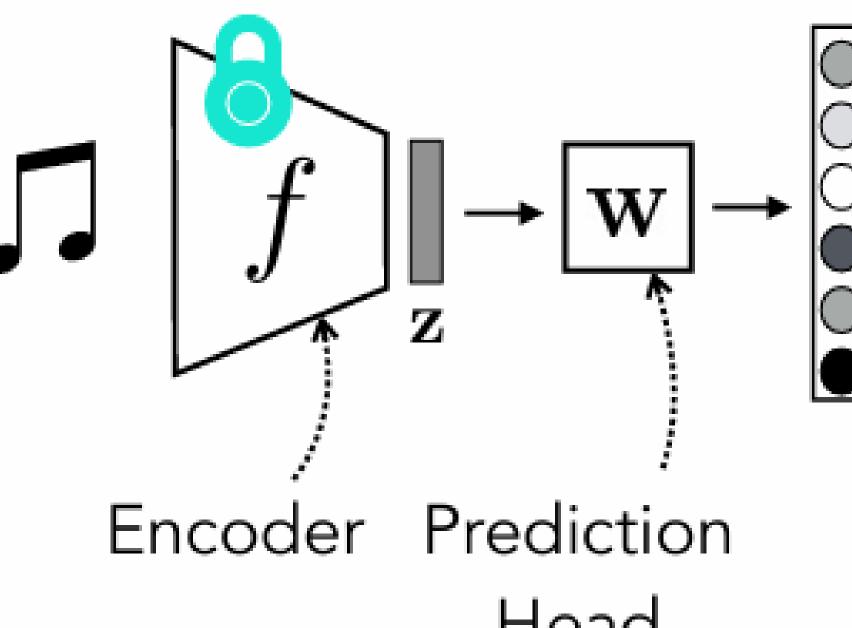
Prediction Head

Often, what we will be "tested" on is not what we were trained on.

Testing



"Generally speaking, a good representation is one that makes a subsequent learning task easier." - Goodfellow et al. "Deep Learning". 2016



Linear adaptation: freeze f, train a new linear map to new target data

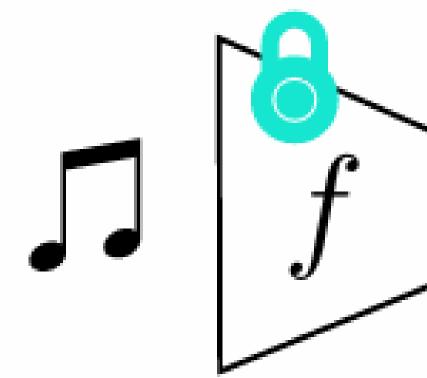
Training

Genre recognition

classical hip hop rock metal

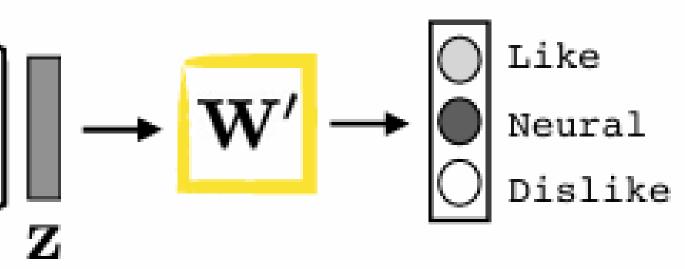
alternative

rap

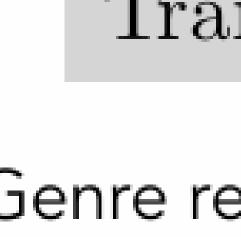


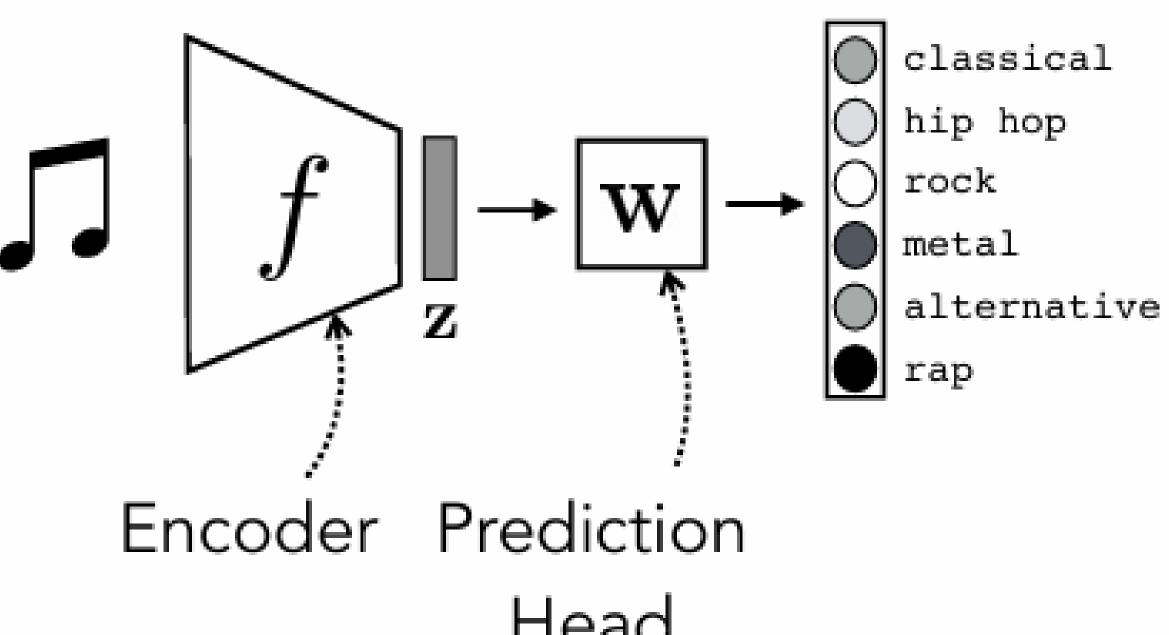
Head

Adapting



"Generally speaking, a good representation is one that makes a subsequent learning task easier." - Goodfellow et al. "Deep Learning". 2016





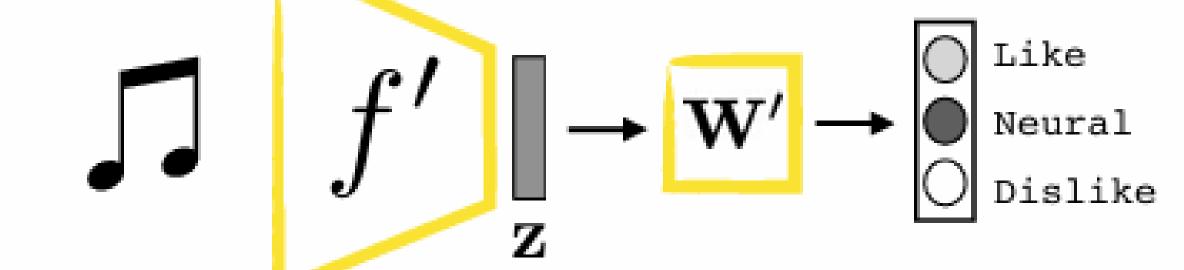
Finetuning: initialize f' as f, then continue training on new target data

Training

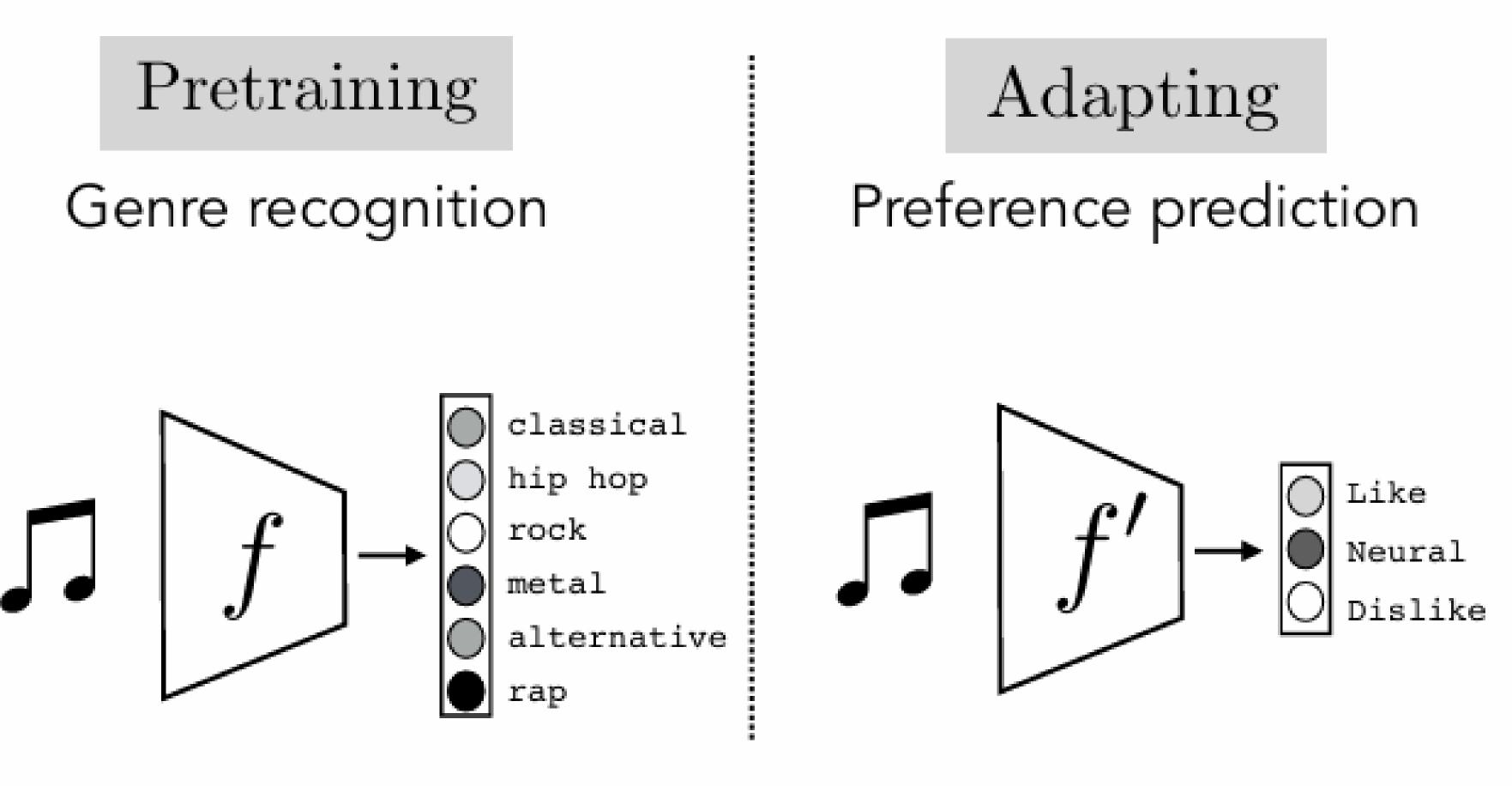
Genre recognition

Head

Adapting

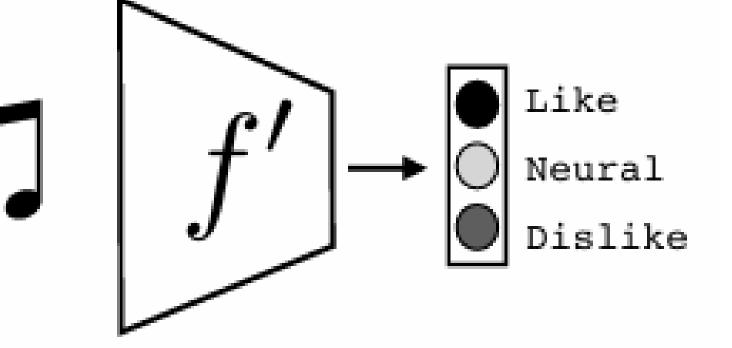


"Generally speaking, a good representation is one that makes a subsequent learning task easier." - Goodfellow et al. "Deep Learning". 2016



A lot of data

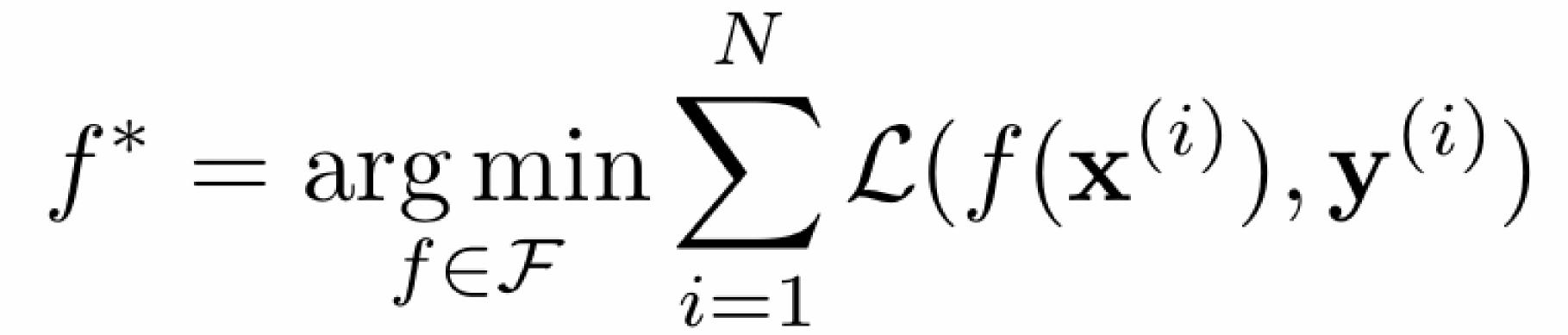
A little data



Learning from examples (aka supervised learning)

Training data

 $\{x^{(1)}, y^{(1)}\}$ $\{x^{(3)}, y^{(3)}\}$. . .



 $\{x^{(2)}, y^{(2)}\} \rightarrow |$ Learner $| \rightarrow f: X \rightarrow Y$

Learning without examples (includes unsupervised learning / self-supervised learning)

Data

 ${x^{(1)}}$ ${x^{(2)}}$ $\{x^{(3)}\}$

• • •

\rightarrow

Learner

?

Learning without examples (includes unsupervised learning / self-supervised learning)

Data

 $\{x^{(1)}\}\$ $\{x^{(2)}\}$ $x^{(3)}$

• • •

\rightarrow

Learner

<section-header><section-header><section-header><section-header><section-header>

Two Basic Approaches: (1) Compression (2) Prediction

Learning Method	Lea Pri
Autoencoding	Com
Contrastive	Com
Clustering	Com
Future prediction	Pre
Imputation	Prec
Pretext tasks	Pred

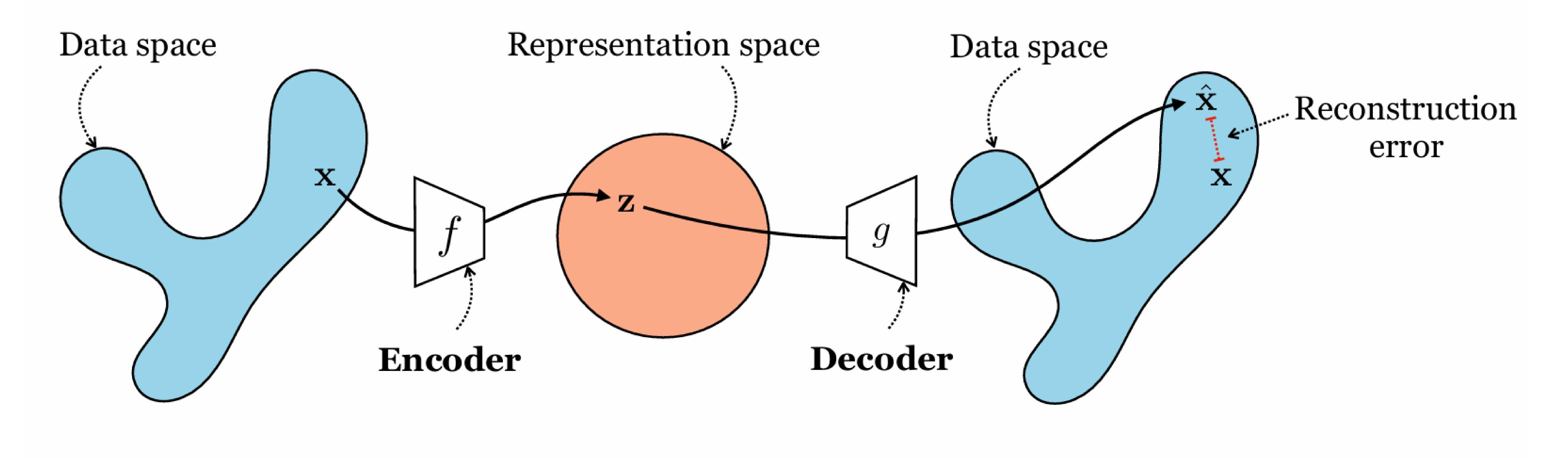
arning inciple

Short Summary

AppressionRemove redundant informationAppressionAchieve invariance to viewing transformationsAppressionQuantize continuous data into discrete categoriesAchieve invariance to viewing transformationsPredict the futureAchieve invariance to viewing transformationsPredict missing dataAchieve invariance to viewing transformationsPredict abstract properties of your data

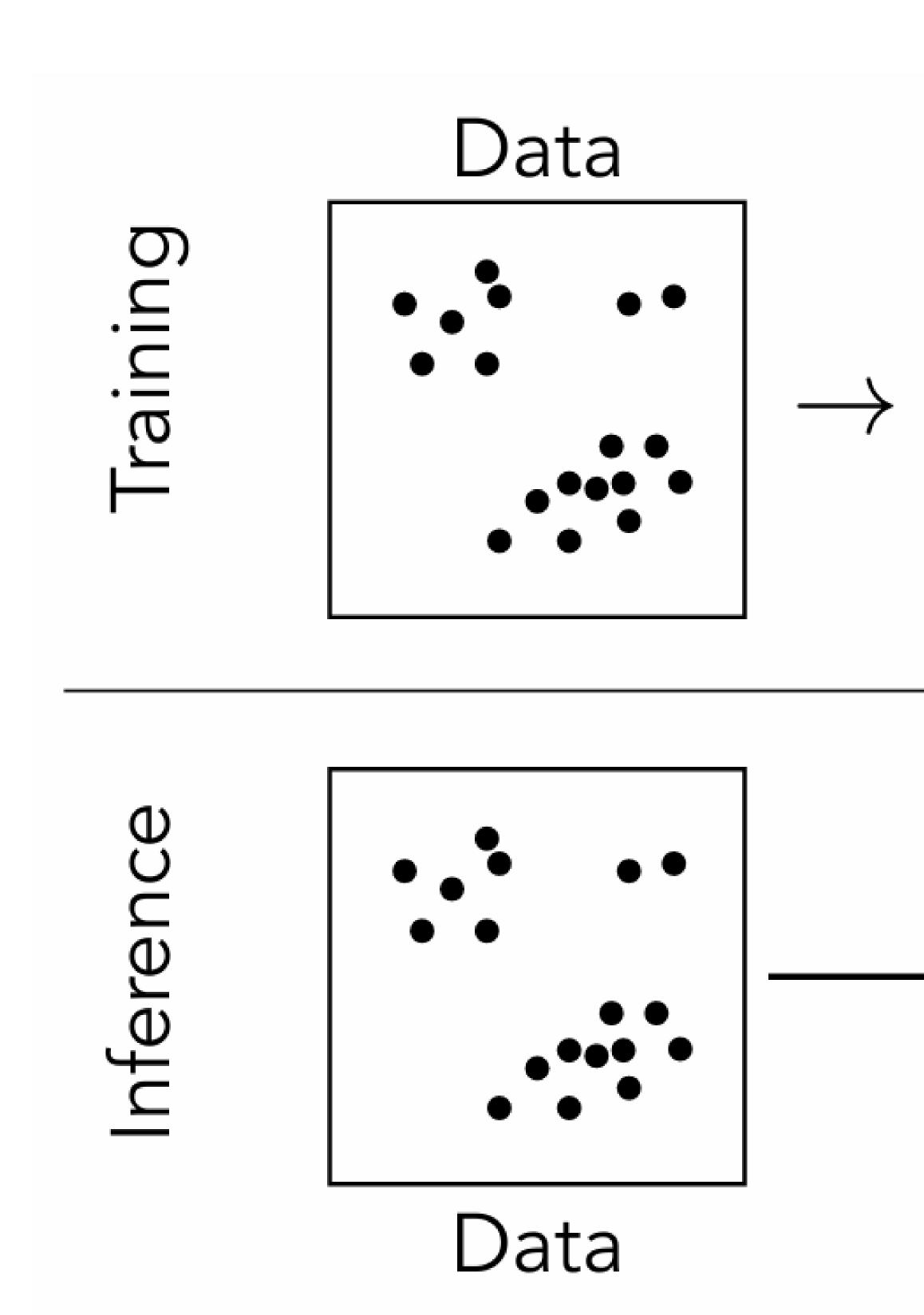
Some examples of the "Compression" Approach:

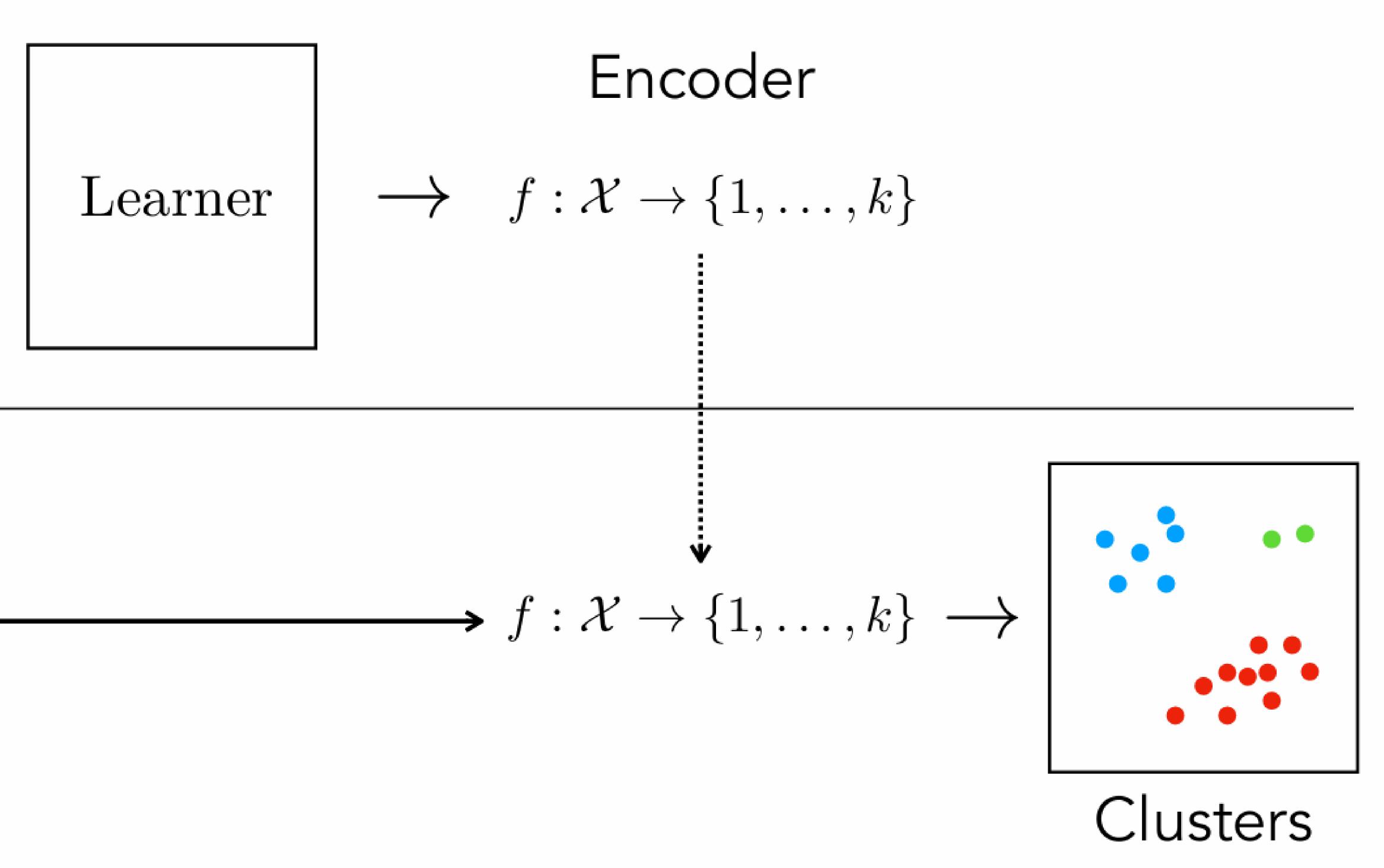
Recap: Autoencoder



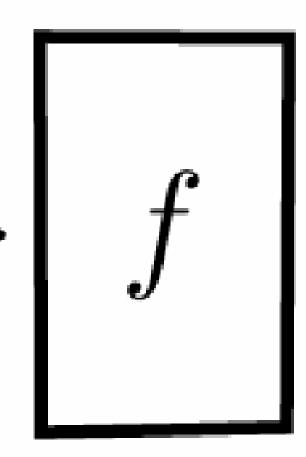
$f^*, g^* = \underset{f,g}{\operatorname{arg\,min}} \mathbb{E}_{\mathbf{x}} \|\mathbf{x} - g(f(\mathbf{x}))\|_2^2$

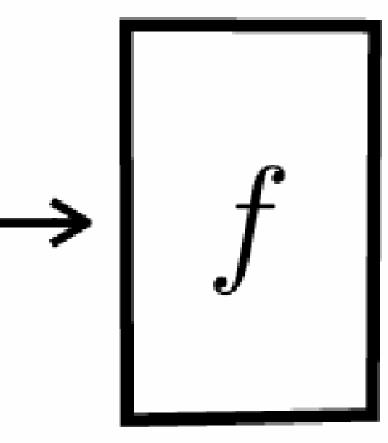
Clustering



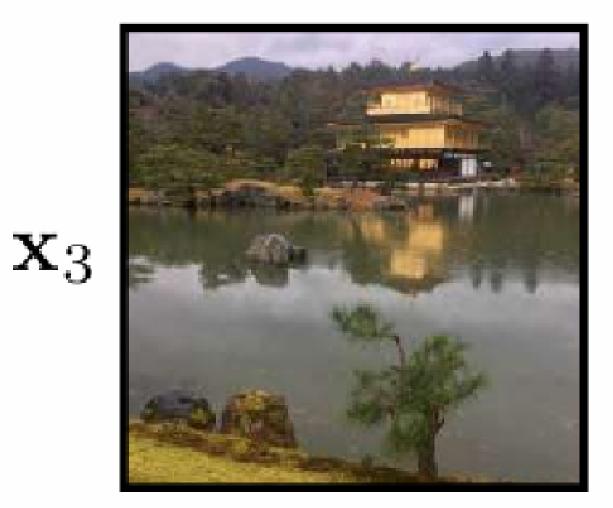


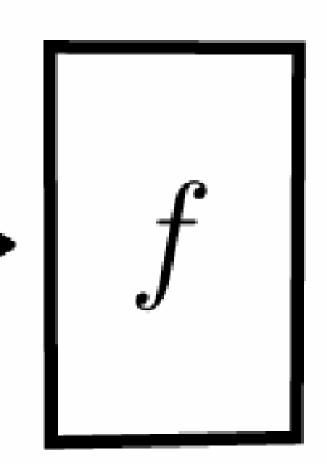
Clustering

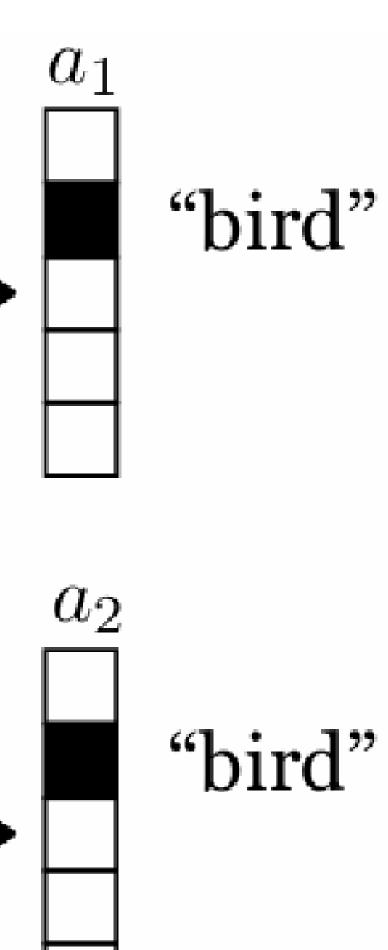


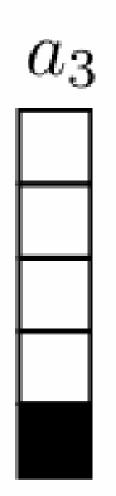


 \mathbf{x}_2









"temple"

- far?
- Language! ~

What's the best representation that humans have come up with so

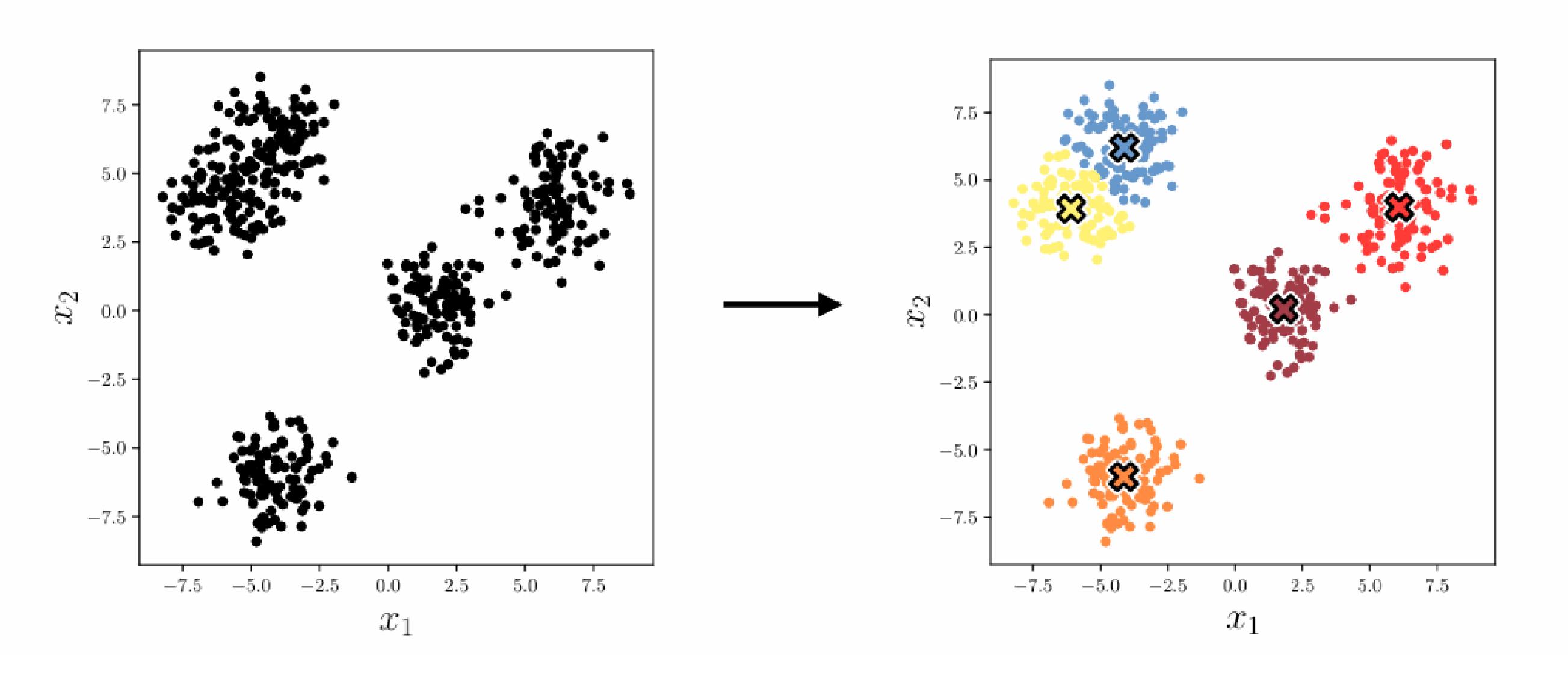
Words are the atoms of language

 Clustering is the problem of making up new words for things

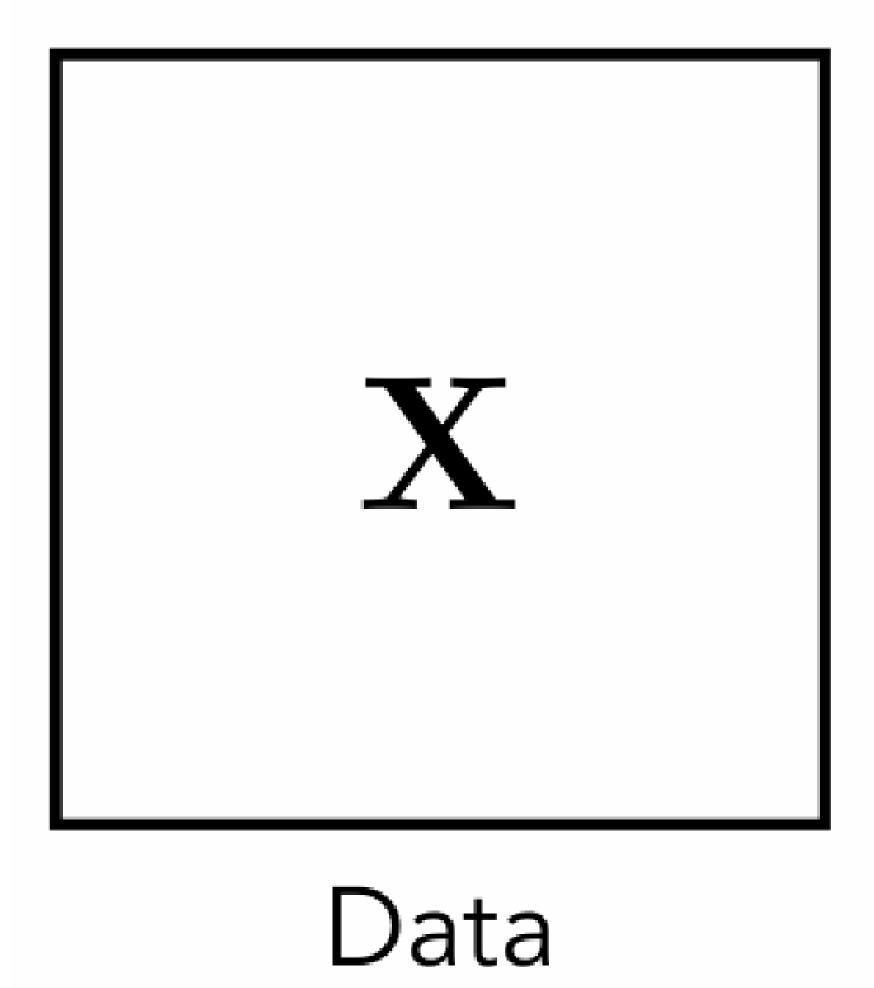
Clustering Algorithm: k-means

Map datapoints to integers (i.e. cluster)

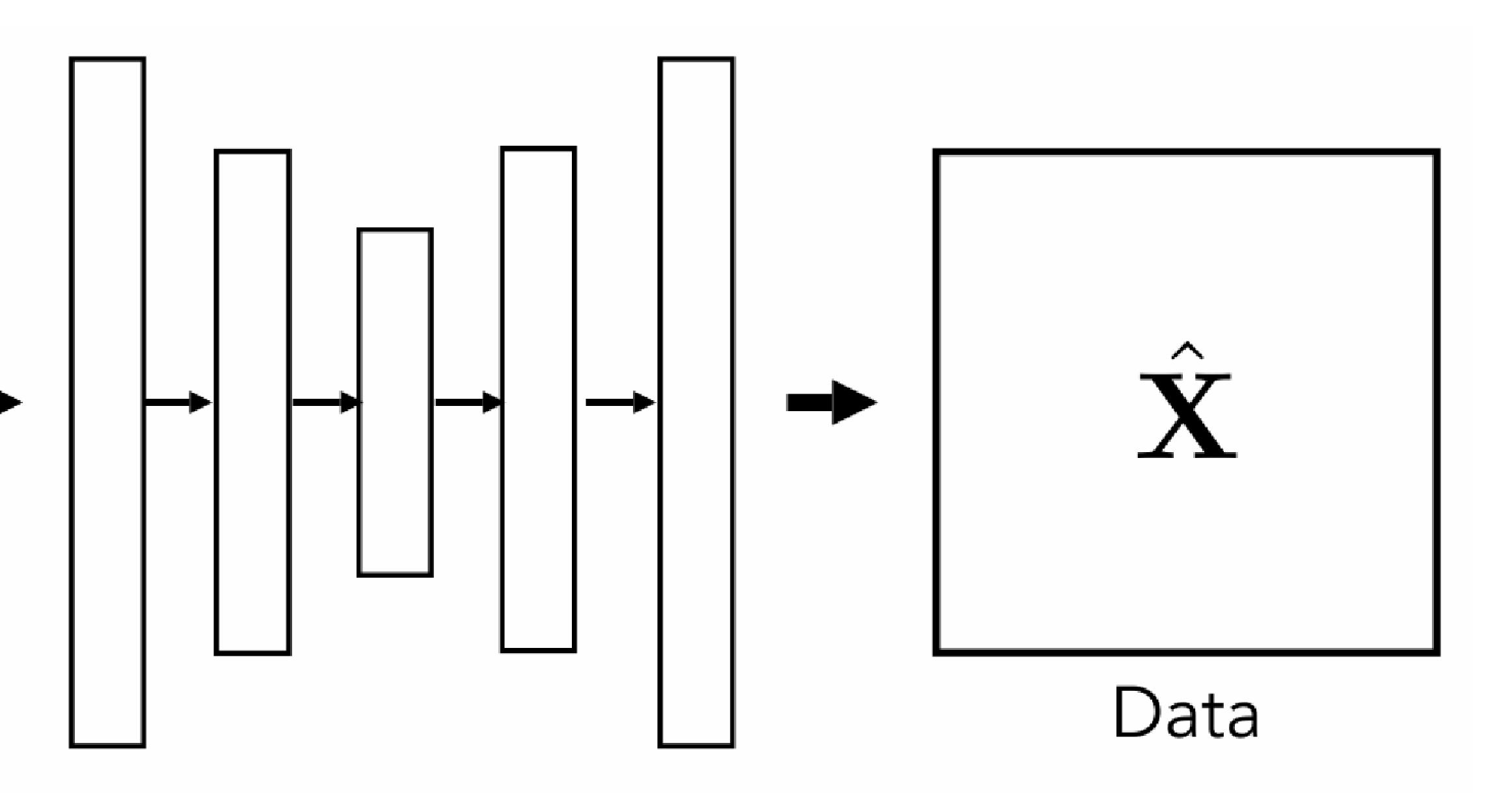
the cluster it is assigned to



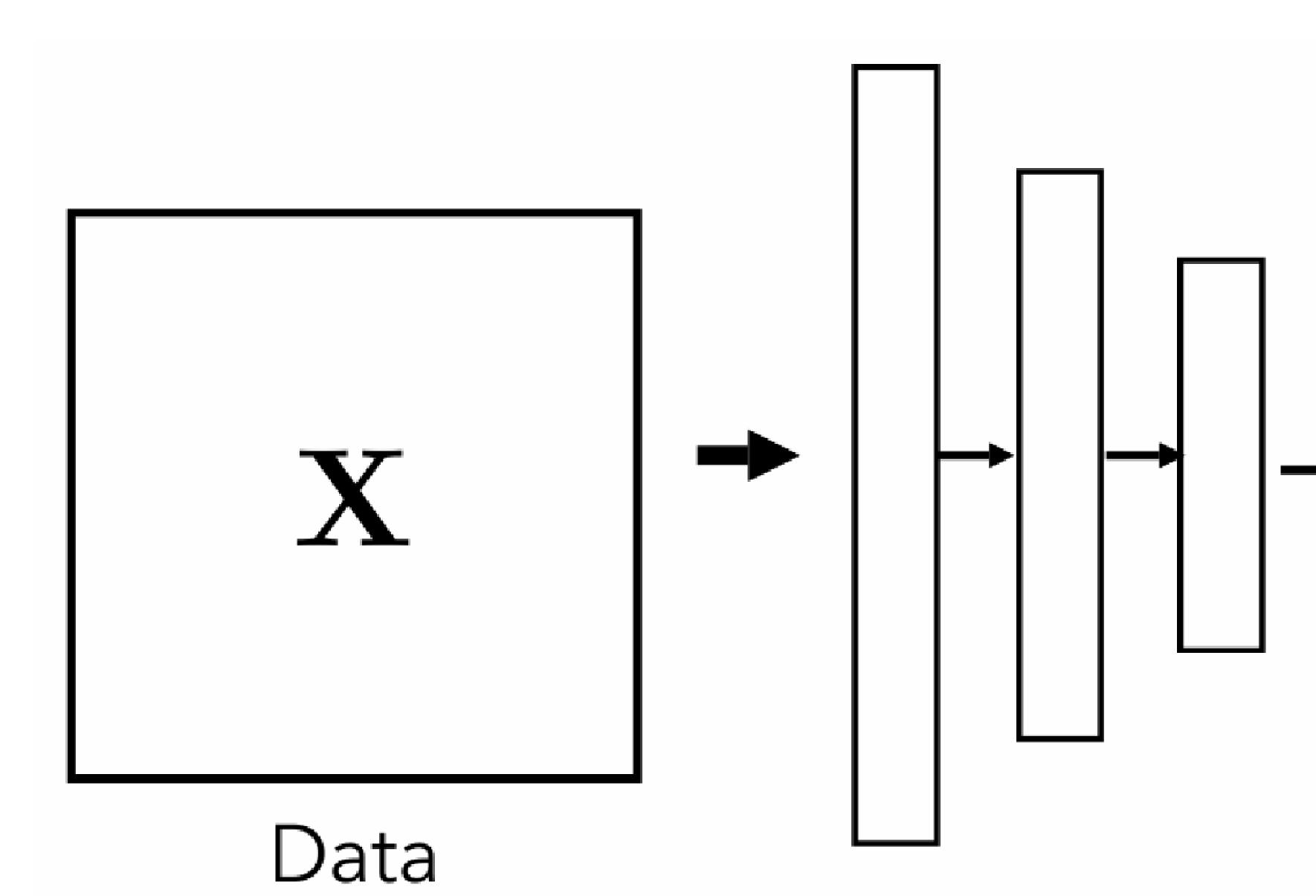
• In such a way that each datapoint is as close as possible to the mean of



The "Compression" Approach



The "Prediction" Approach for Representation Learning



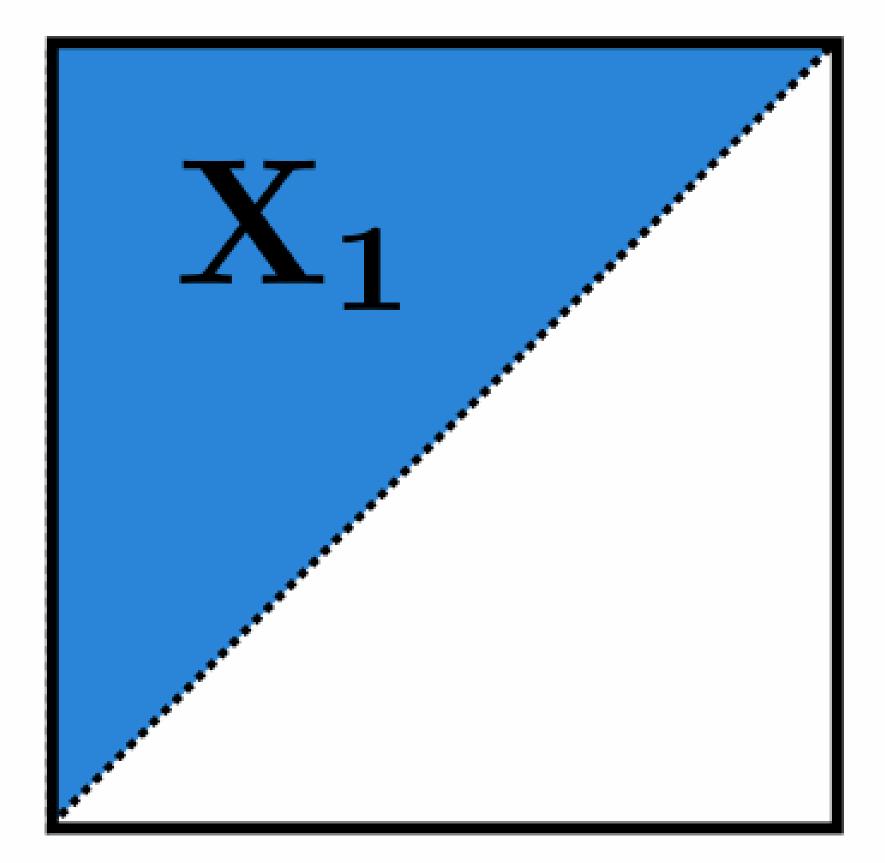
'Y Label

The "Prediction" Approach for Representation Learning

But ... what if we don't have labels?

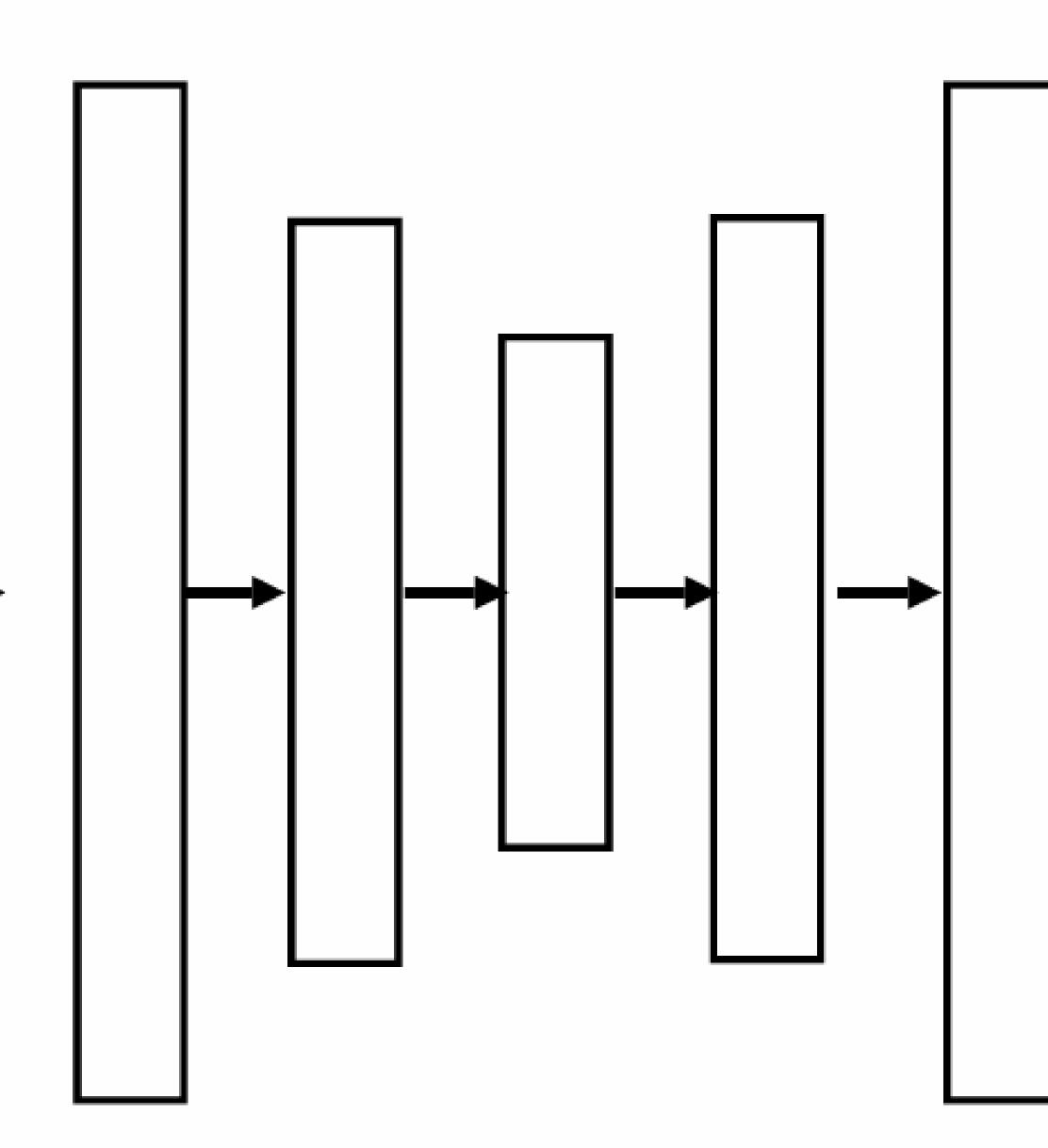
Data

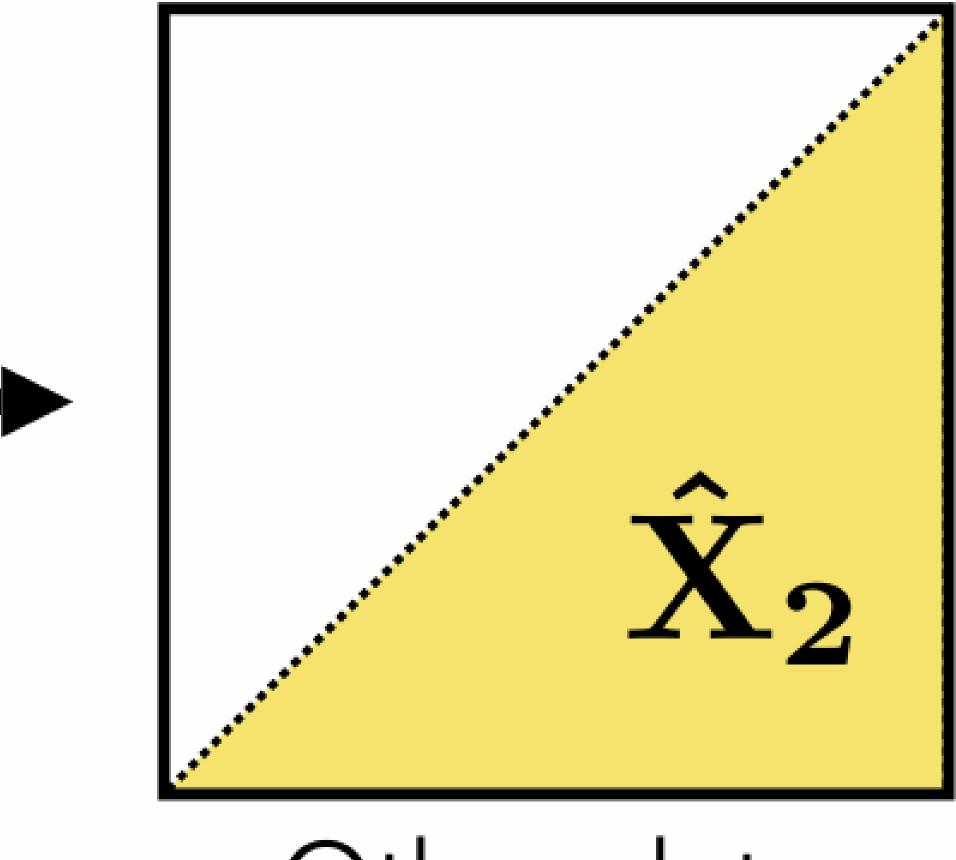
Label



Some data

Data prediction aka "self-supervised learning"





Other data

Self-Supervised Learning Build methods that learn from "raw" data (inputs only) — no labels!

• Unsupervised Learning:

Self-Supervised Learning:

Semi-Supervised Learning: o train jointly with some labeled data and a lot of unlabeled data.

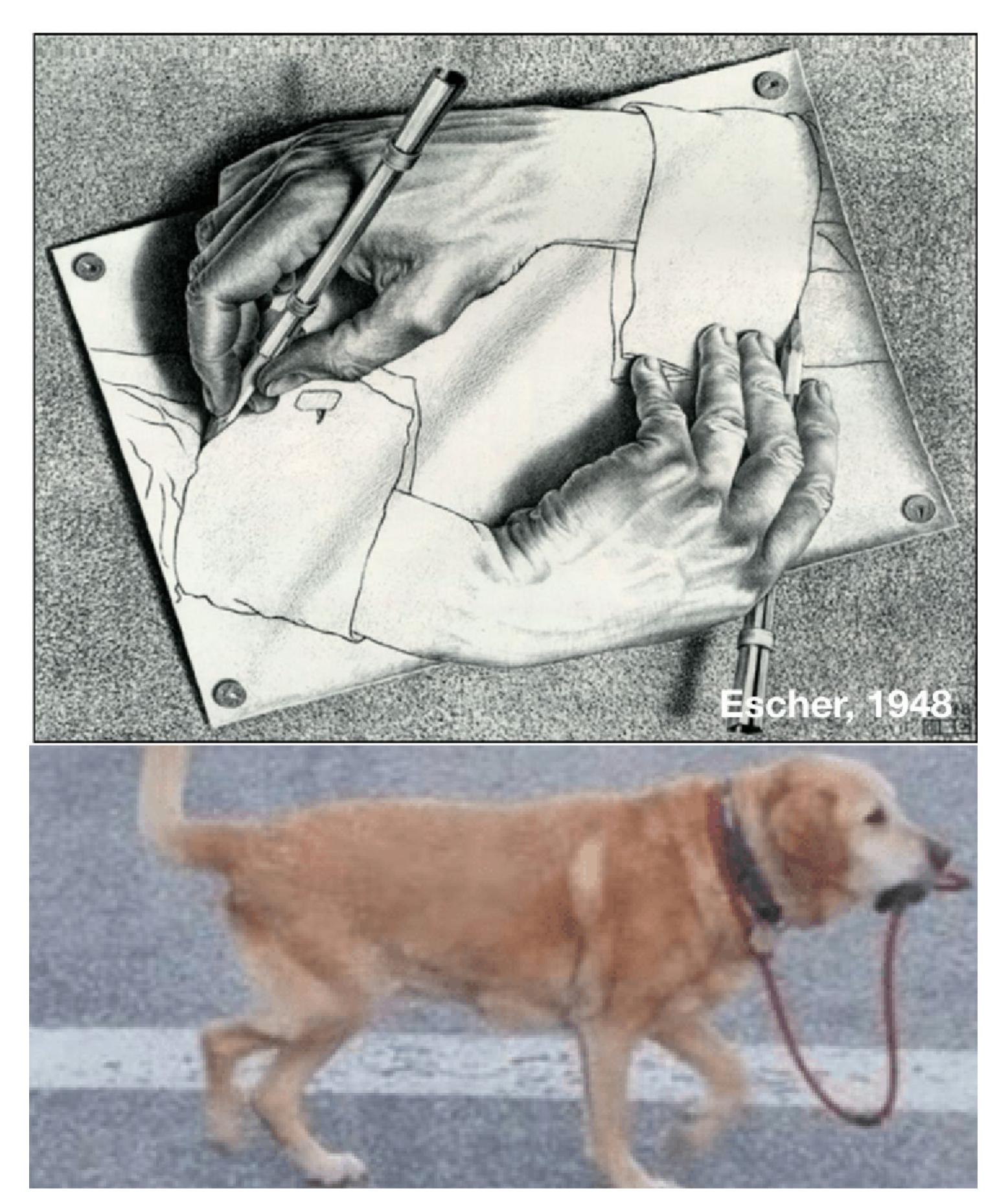
o older terminology ... model isn't told what to predict

o model is trained to predict *some natural occurring signal* rather than predicting labels

Self-Supervised Learning: A trick

- If you don't have labels, make labels.
- Convert "unsupervised" problem into "supervised"
- Cook up labels (prediction targets) from the data itself • This is often called a "pretext" task

Claim: Training a model for "pretext" task can lead to very good representations



Step 1: Pretrain a network on a pretext task that doesn't require supervision

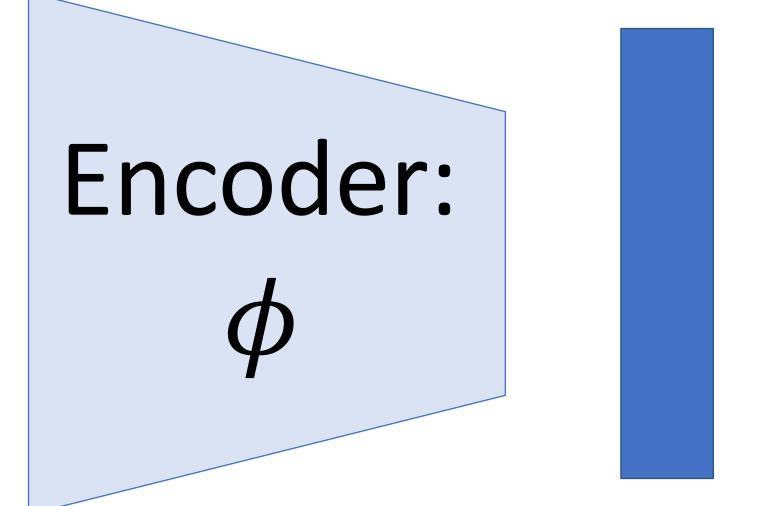
Step 2: Transfer encoder to downstream tasks via linear classifiers, KNN, finetuning

"Pretext then transfer"

Input Image: *x*

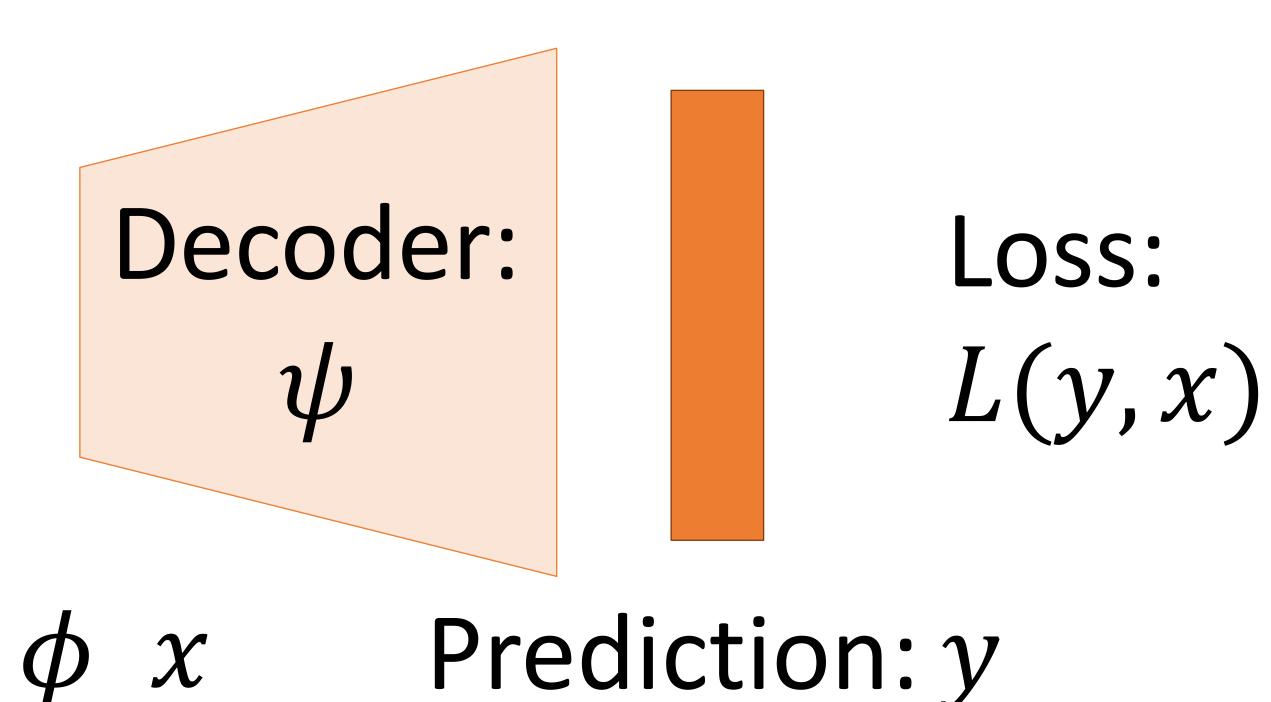
Encoder:

Features: ϕx

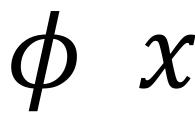


Features: ϕx

Input Image: *x*



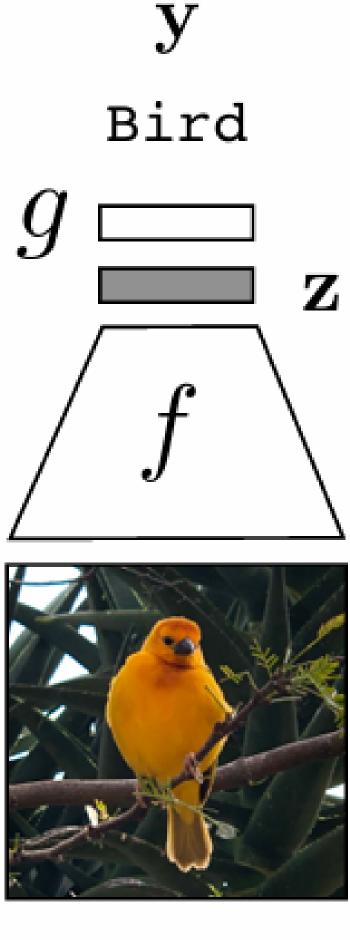
Downstream tasks: Image classification, object detection, semantic segmentation



Some Examples of Pretext Tasks

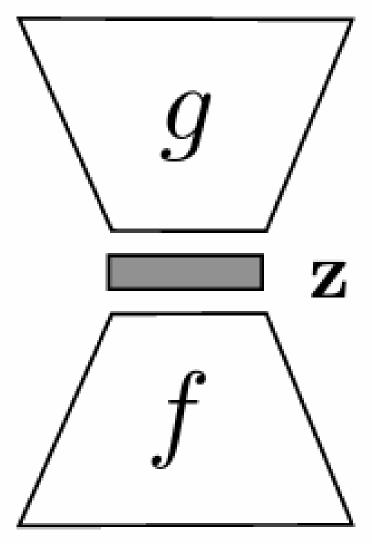
Pretext task:

Model schematic:



Class prediction

Future frame prediction



e	Next pixel prediction	
	\mathbf{y}	
	\mathbf{X}	

Examples of Pretext Tasks

Generative:

Predict part of the input signal

- Autoencoders

 (sparse, denoising, masked)
- Autoregressive
- GANs
- Colorization
- Inpainting

Discriminative:

Predict something about the input signal

- Context prediction
- Rotation
- Clustering
- Contrastive

Multimodal:

Use some signal in addition to RGB images

- Video
- 3D
- Sound
- Language

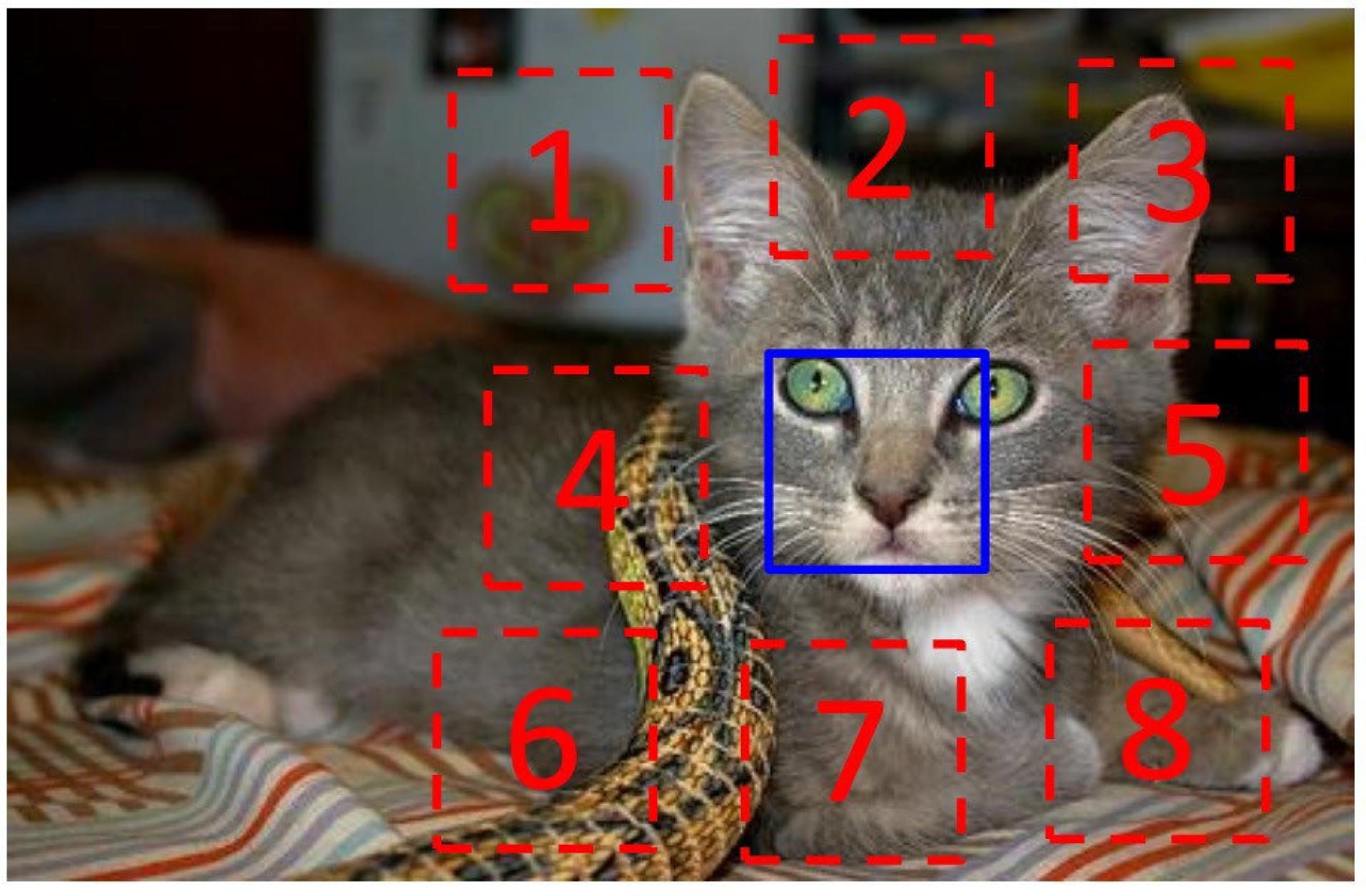


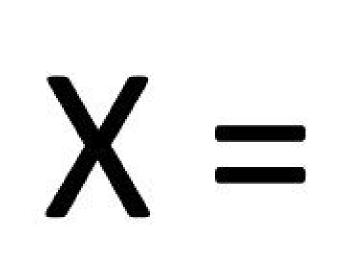
Context Prediction

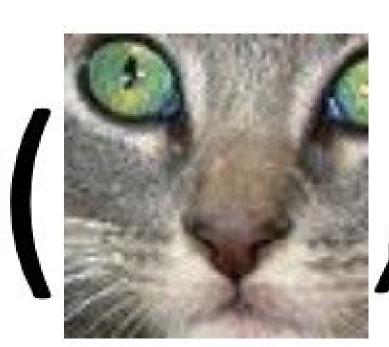
Model predicts relative location of two patches from the same image. <u>Discriminative</u> pretraining task

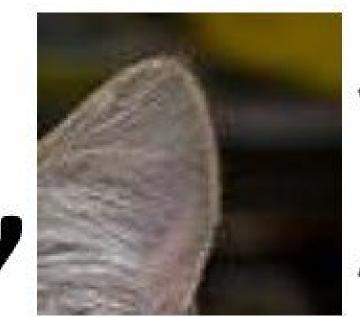
Intuition: Requires understanding objects and their parts

Doersch et al, "Unsupervised Visual Representation Learning by Context Prediction", ICCV 2015







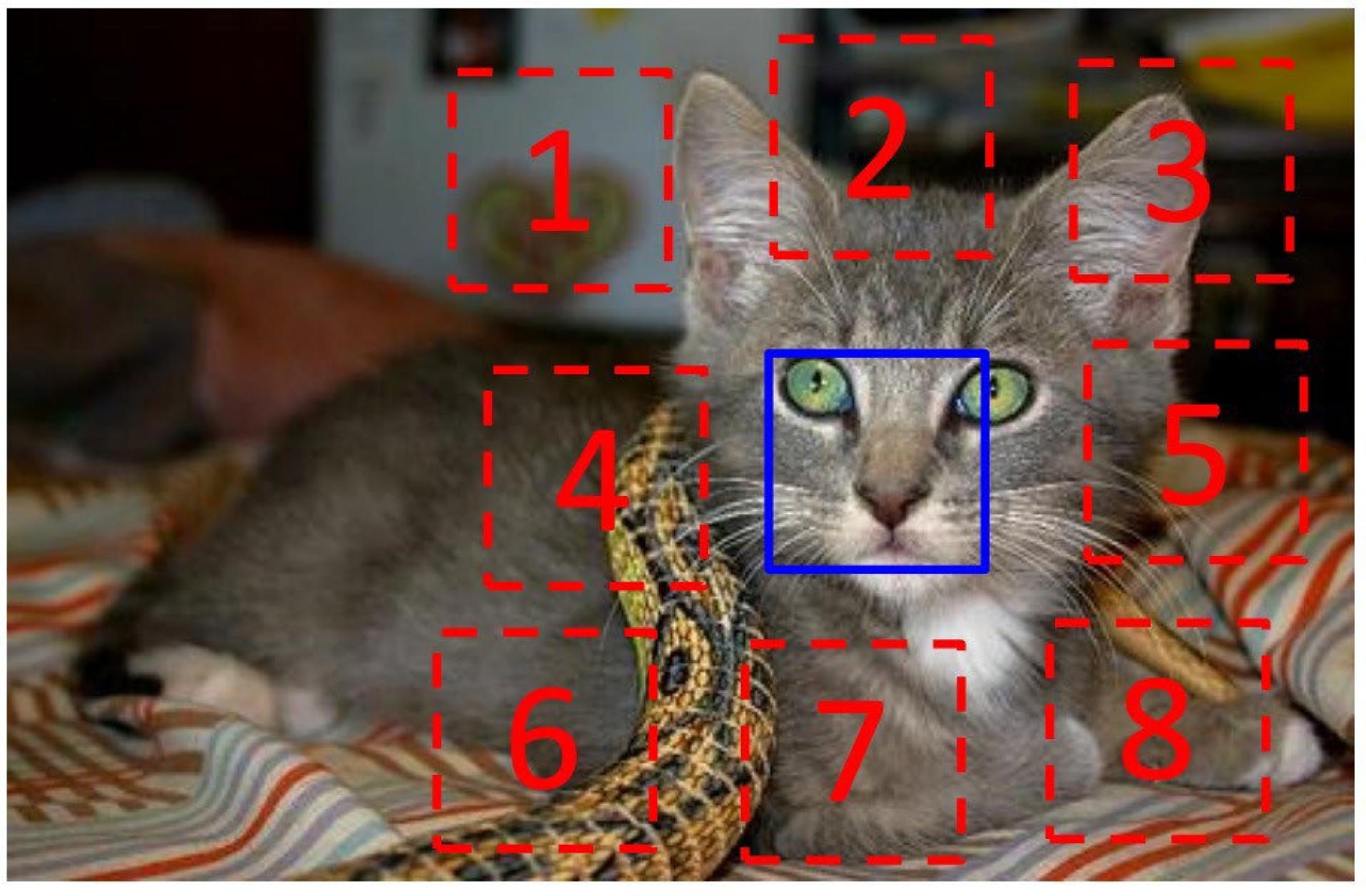


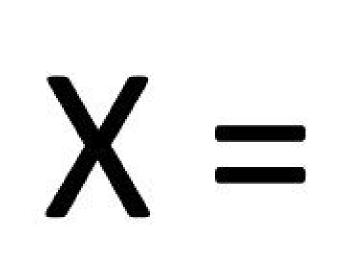
Context Prediction

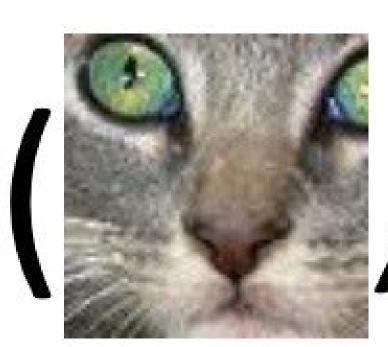
Model predicts relative location of two patches from the same image. **Discriminative** pretraining task

Intuition: Requires understanding objects and their parts

Doersch et al, "Unsupervised Visual Representation Learning by Context Prediction", ICCV 2015







); Y = 3

Context Prediction

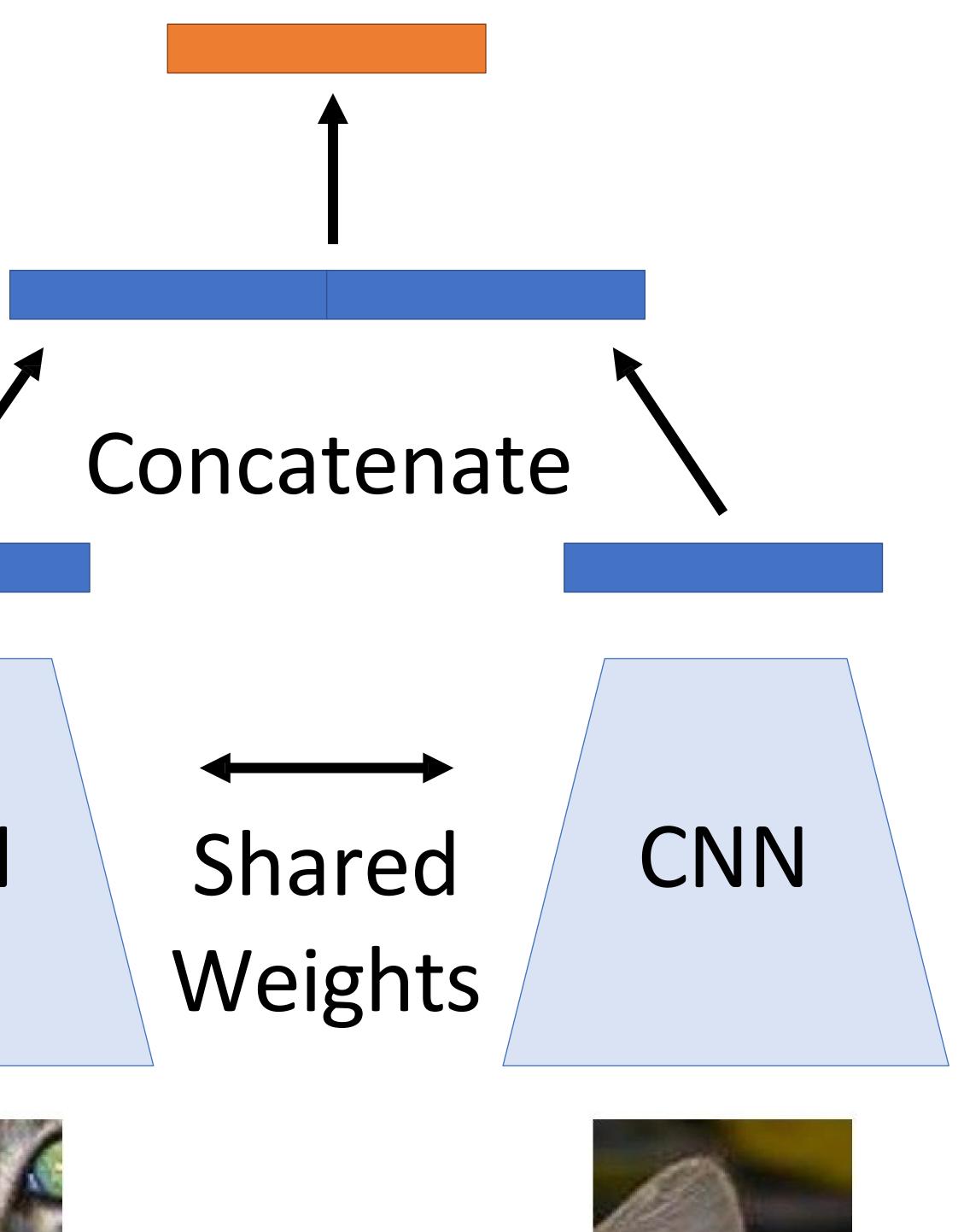
Model predicts relative location of two patches from the same image. **Discriminative** pretraining task

Intuition: Requires understanding objects and their parts

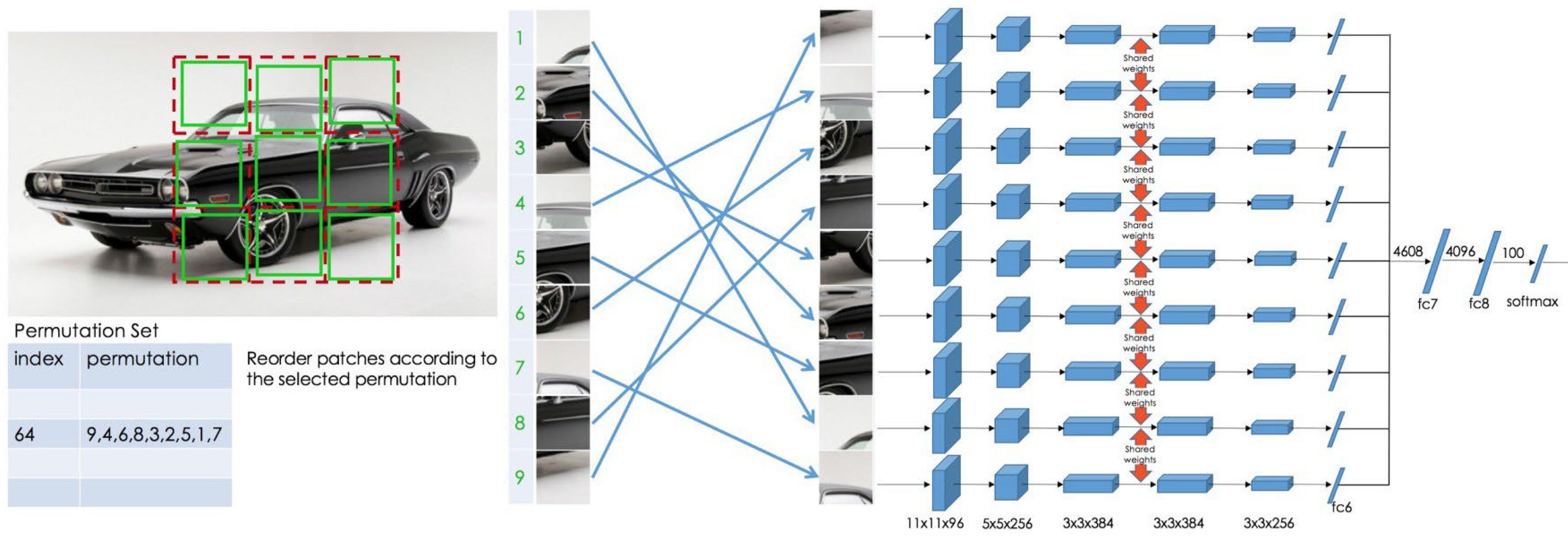
Doersch et al, "Unsupervised Visual Representation Learning by Context Prediction", ICCV 2015

CNN

Classification over 8 positions

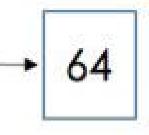


Extension: Solving Jigsaw Puzzles

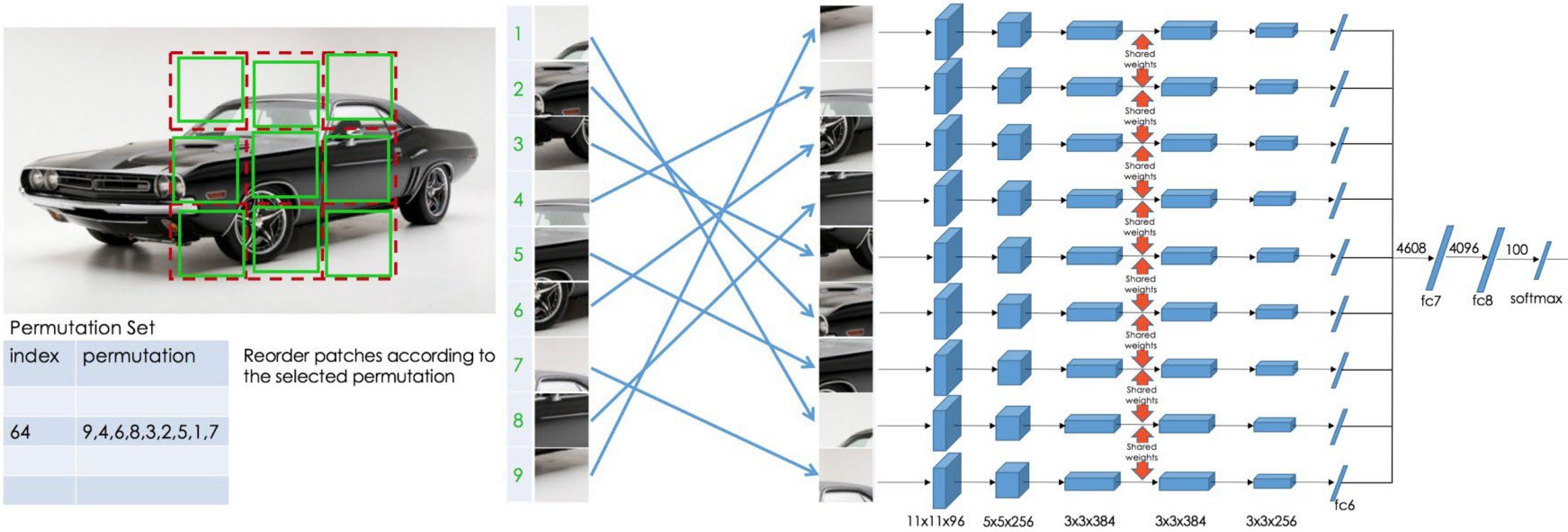


Noroozi and Favoro, "Unsupervised learning of visual representations by solving jigsaw puzzles", ECCV 2016

Rather than predict relative position of two patches, instead predict permutation to "unscramble" 9 shuffled patches



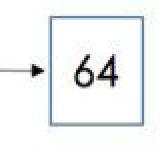
Extension: Solving Jigsaw Puzzles



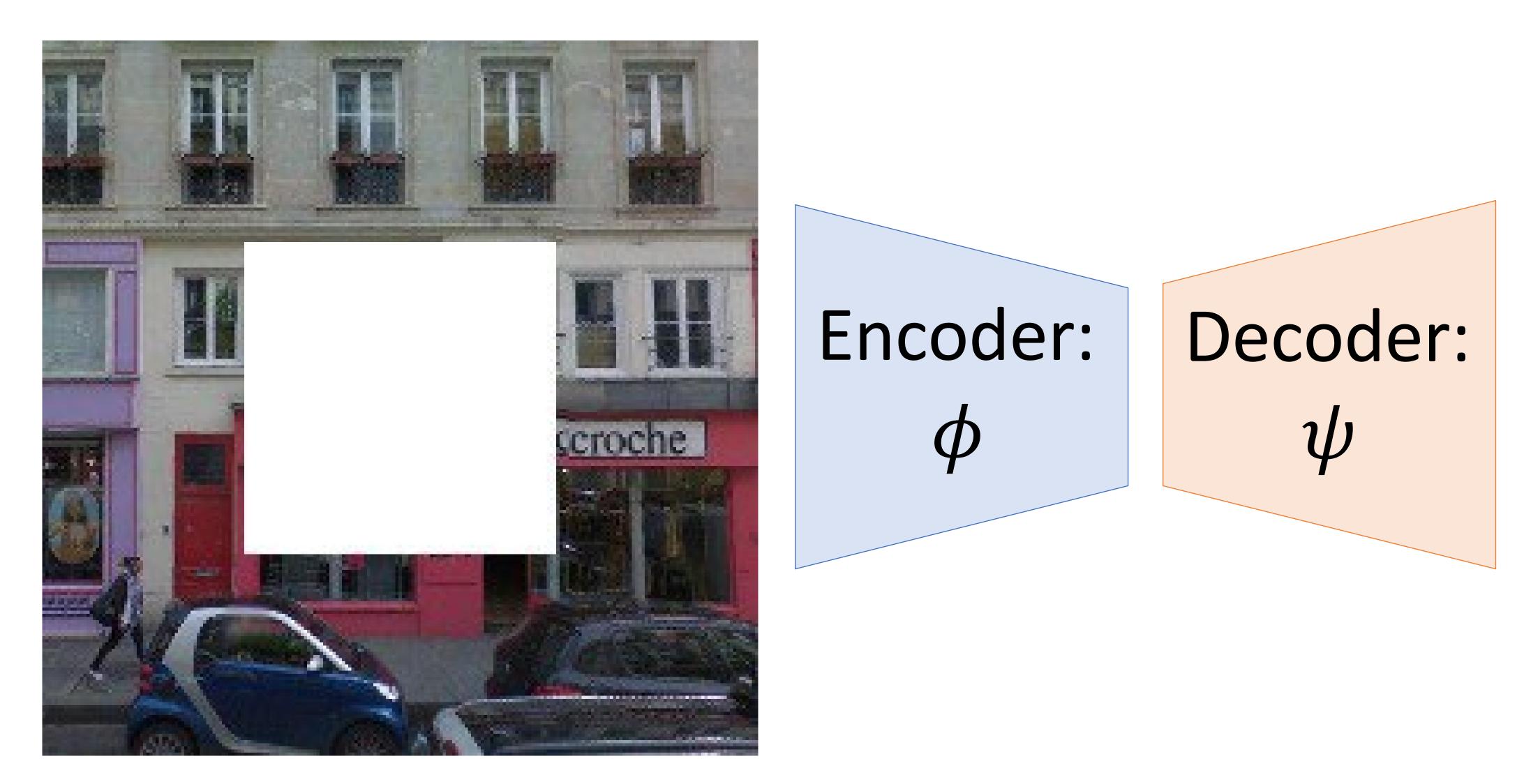
index	permutation
64	9,4,6,8,3,2,5,1,7

Noroozi and Favoro, "Unsupervised learning of visual representations by solving jigsaw puzzles", ECCV 2016

Rather than predict relative position of two patches, instead predict permutation to "unscramble" 9 shuffled patches

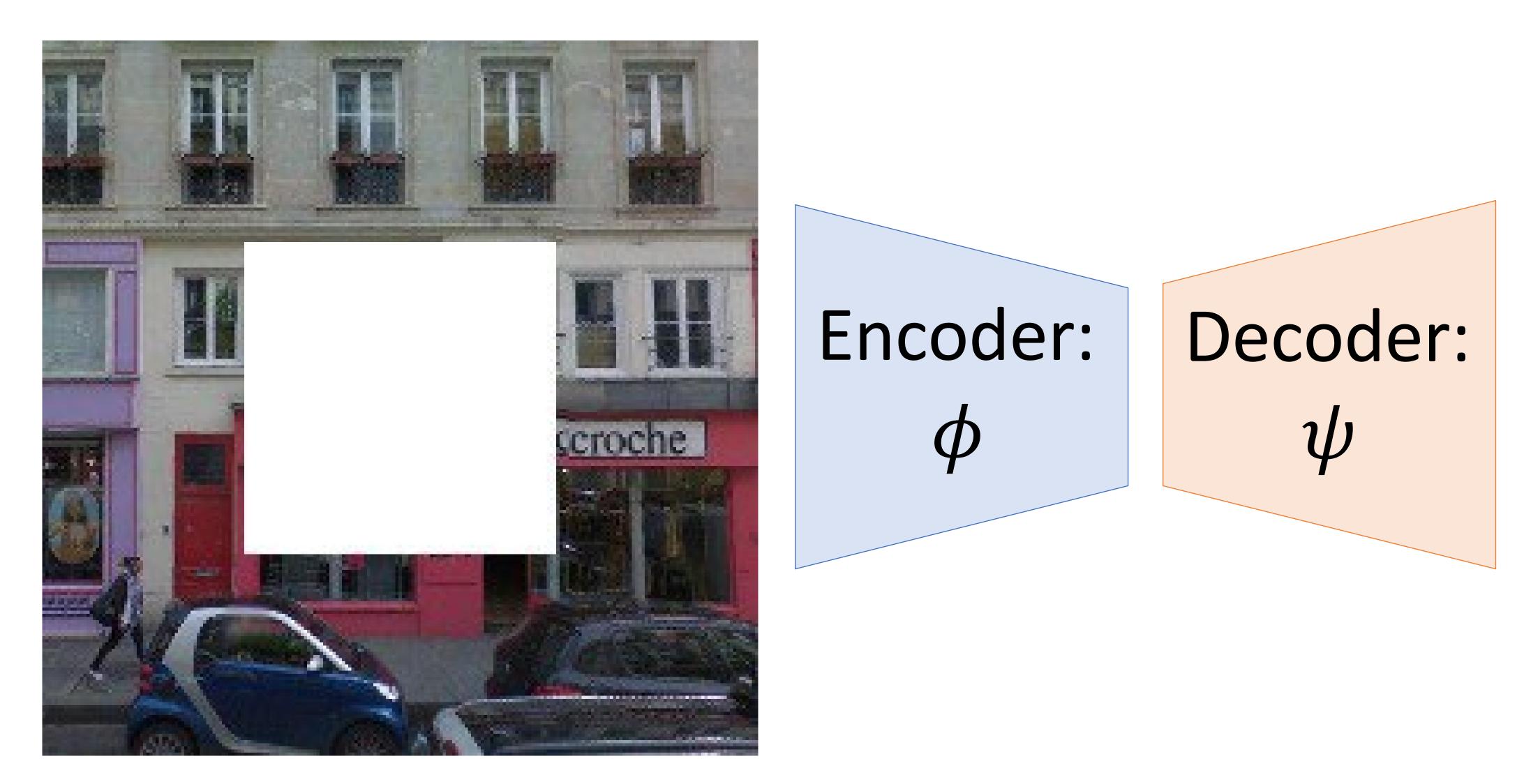


Input Image



Pathak et al, "Context Encoders: Feature Learning by Inpainting", CVPR 2016

Input Image

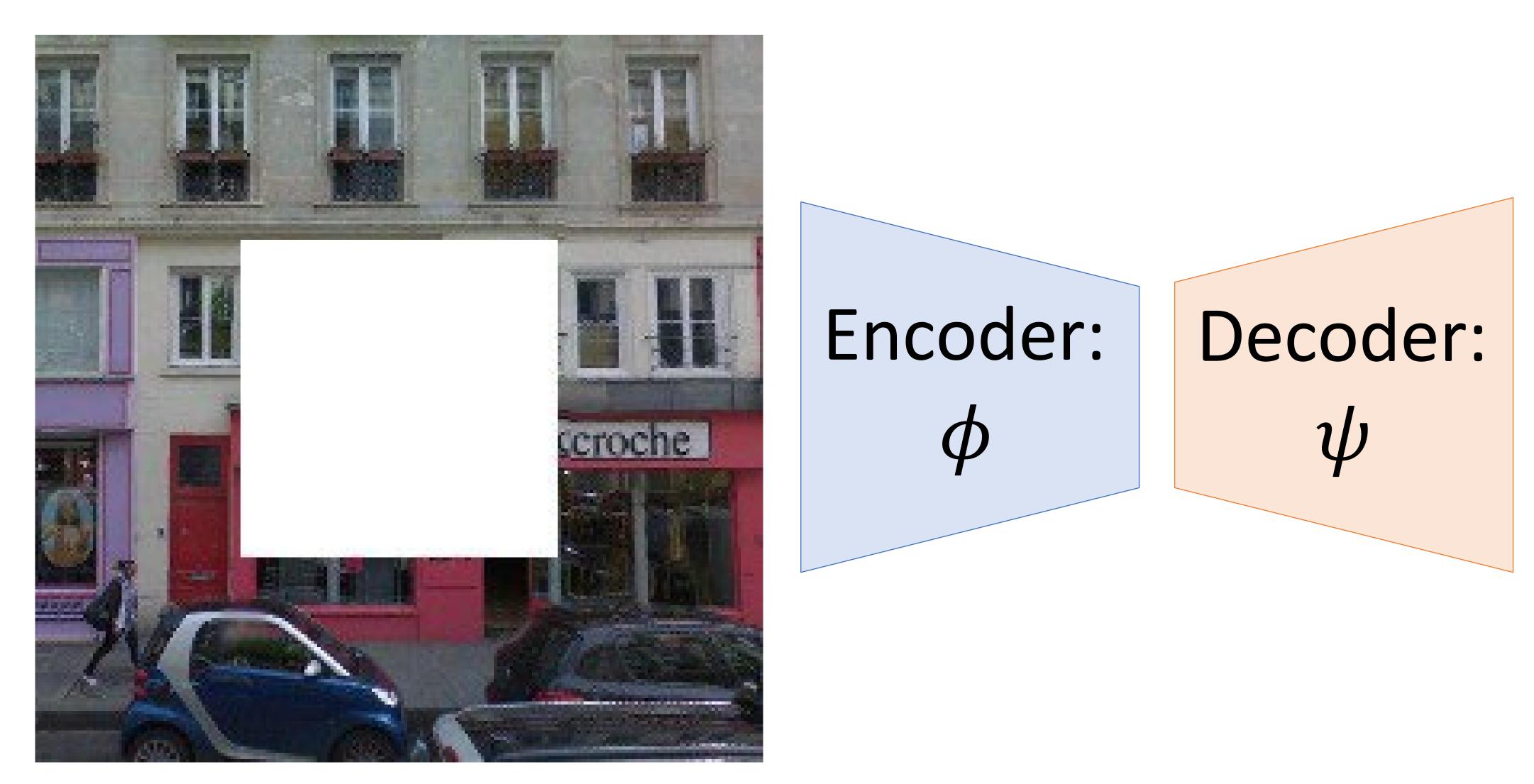


Pathak et al, "Context Encoders: Feature Learning by Inpainting", CVPR 2016

Predict Missing Pixels

Human Artist

Input Image

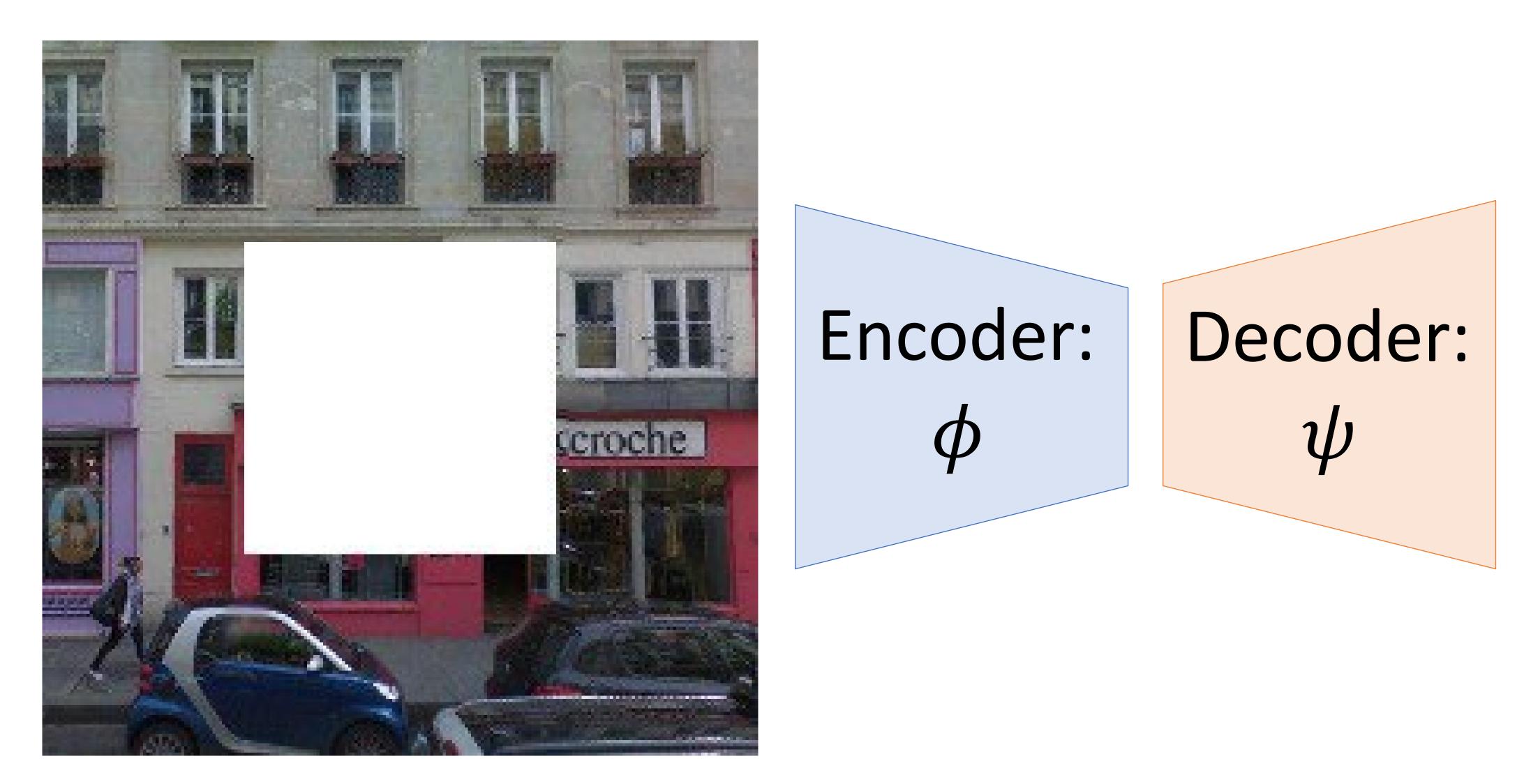


Pathak et al, "Context Encoders: Feature Learning by Inpainting", CVPR 2016

Predict Missing Pixels

L2 Loss (Best for feature learning)

Input Image



Pathak et al, "Context Encoders: Feature Learning by Inpainting", CVPR 2016

Predict Missing Pixels



L2 + Adversarial Loss (Best for nice images)

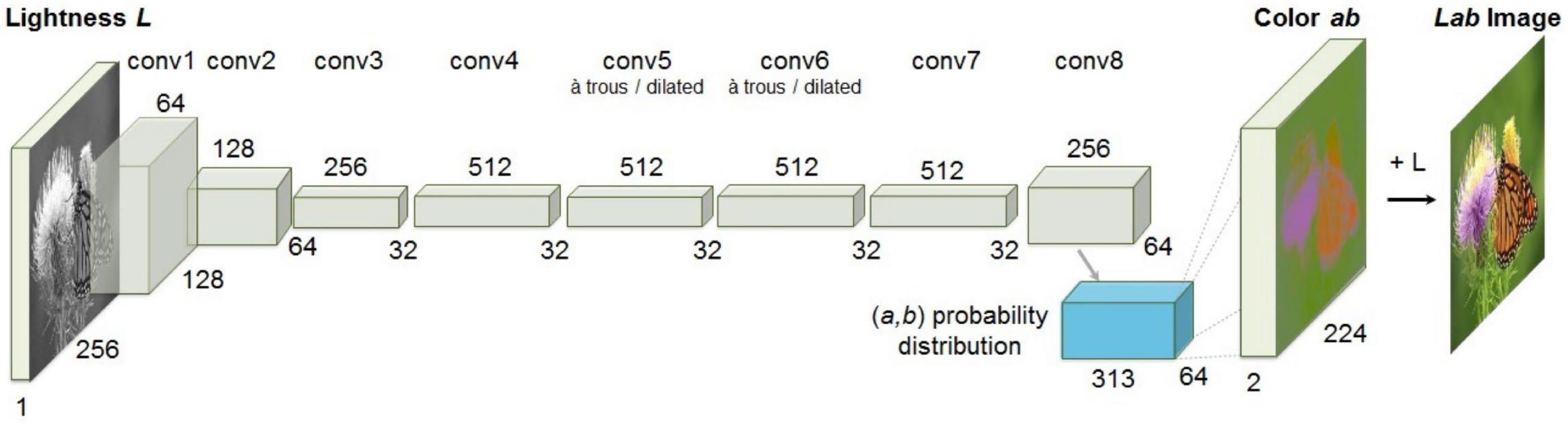
Intuition: A model must be able to identify objects to be able to colorize them

Input: Grayscale Image

Zhang et al, "Colorful Image Colorization", ECCV 2016

Output: Color Image

Colorization



Zhang et al, "Colorful Image Colorization", ECCV 2016

Pretext task: video coloring

Idea: model the temporal coherence of colors in videos

reference frame

t = 0

how should I color these frames?

t = 1

t = 2

t = 3

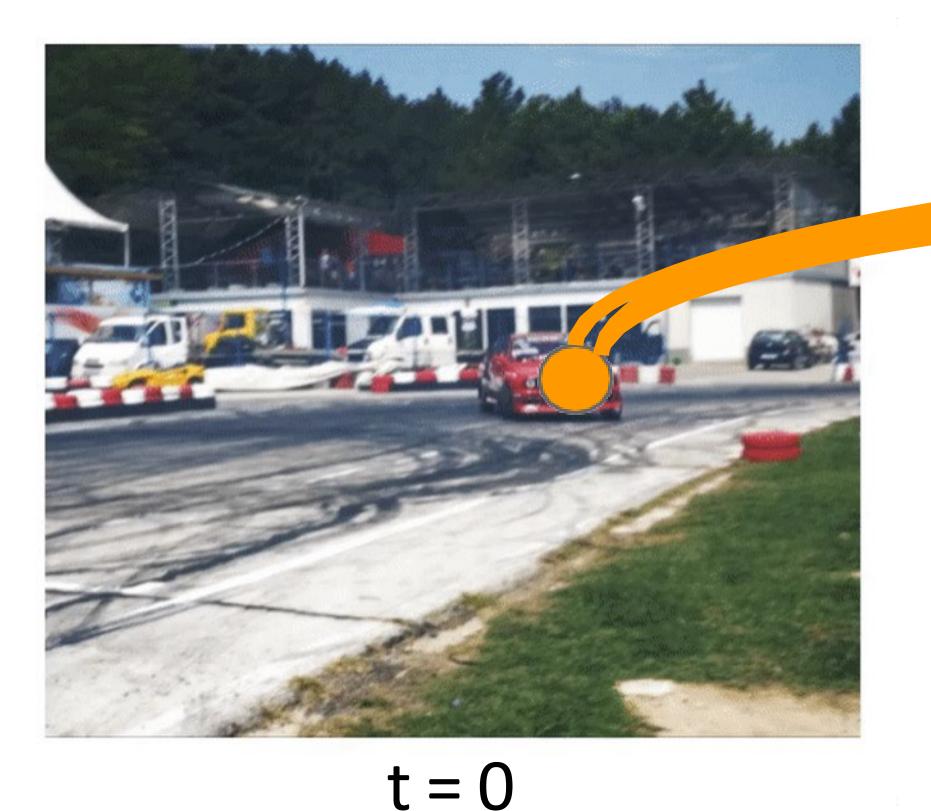
Source: Vondrick et al., 2018

 \bullet \bullet \bullet

Pretext task: video coloring

Idea: model the temporal coherence of colors in videos

reference frame



track regions or objects without labels!

how should I color these frames? Should be the same color!

t = 1

t = 2

Hypothesis: learning to color video frames should allow model to learn to

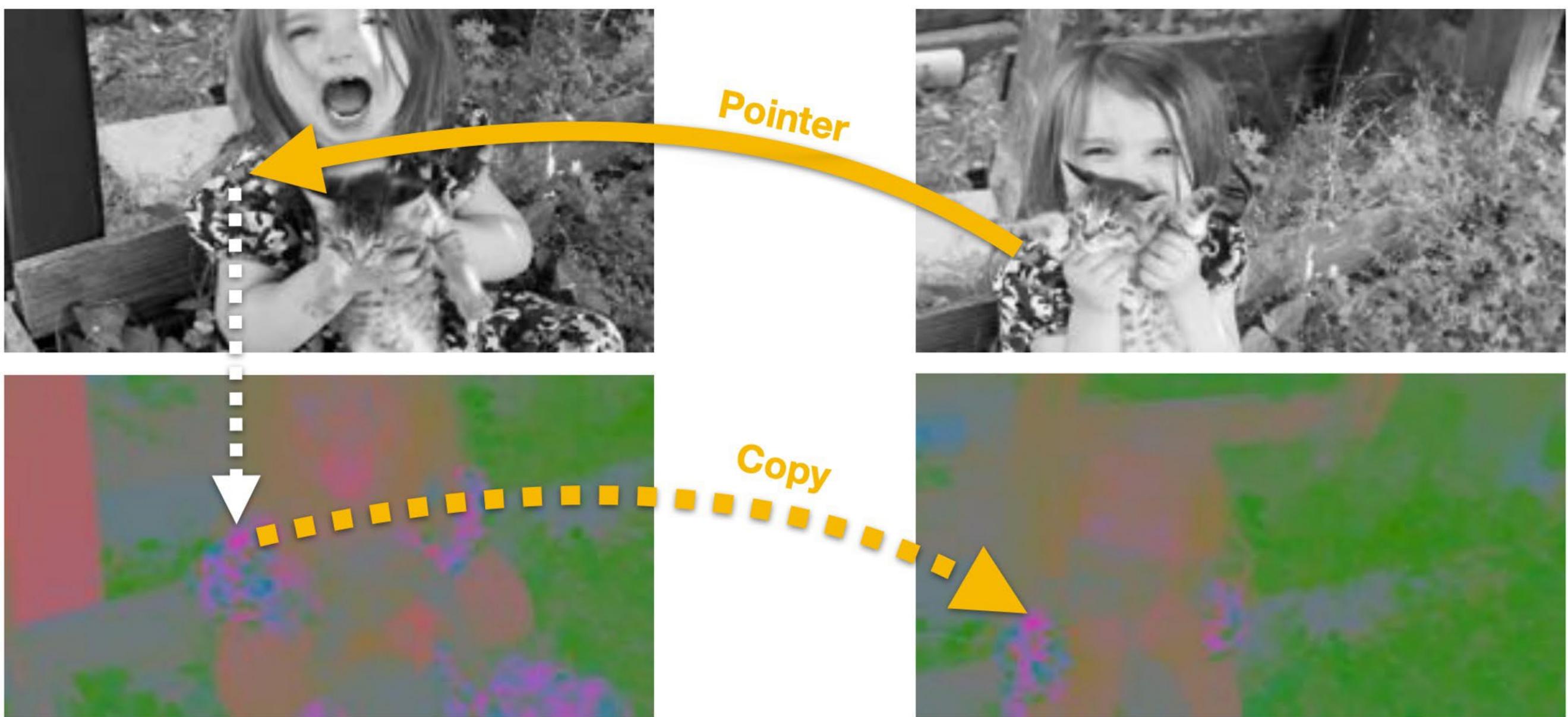
t = 3

Source: Vondrick et al., 2018

 \bullet \bullet \bullet

Learning to color videos

Reference Frame



Reference Colors

Input Frame

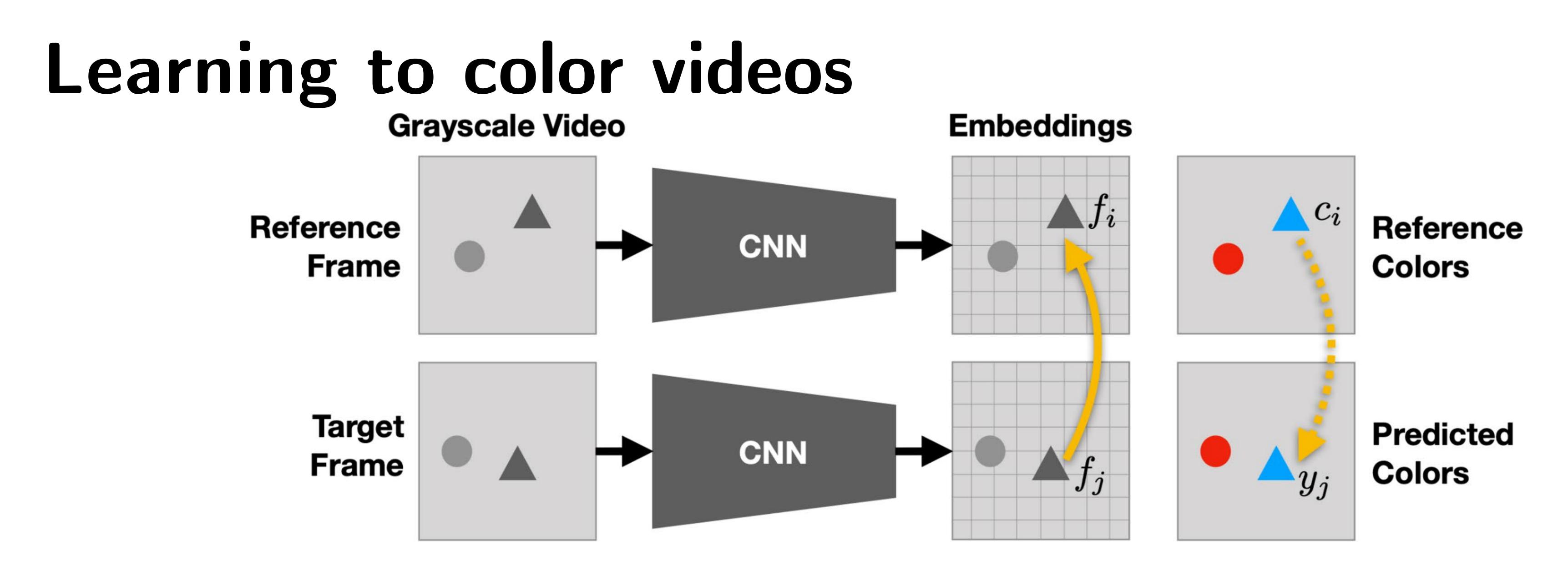
Target Colors

Learning objective:

Establish mappings between reference and target frames in a learned feature space.

Use the mapping as "pointers" to copy the correct color (LAB).

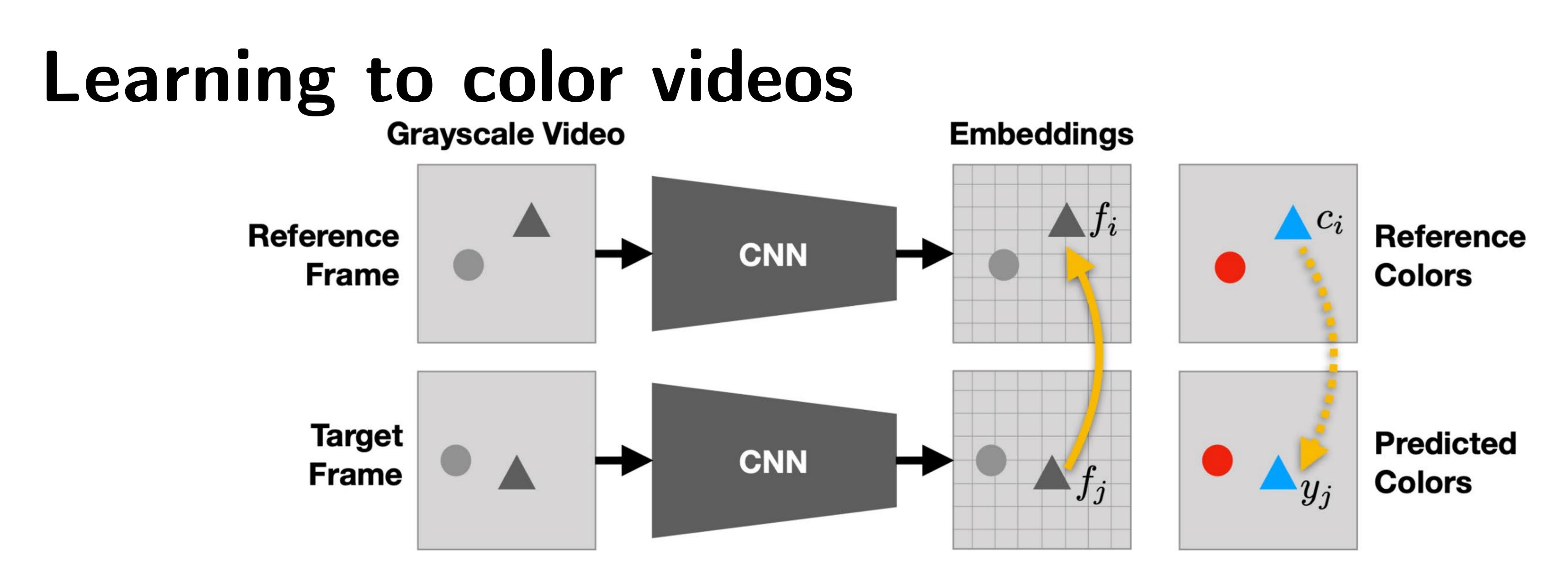
Source: Vondrick et al., 2018



attention map on the reference frame

 $A_{ij} = \frac{\exp\left(f_i^T f_j\right)}{\sum_k \exp\left(f_k^T f_j\right)}$

Source: Vondrick et al., 2018



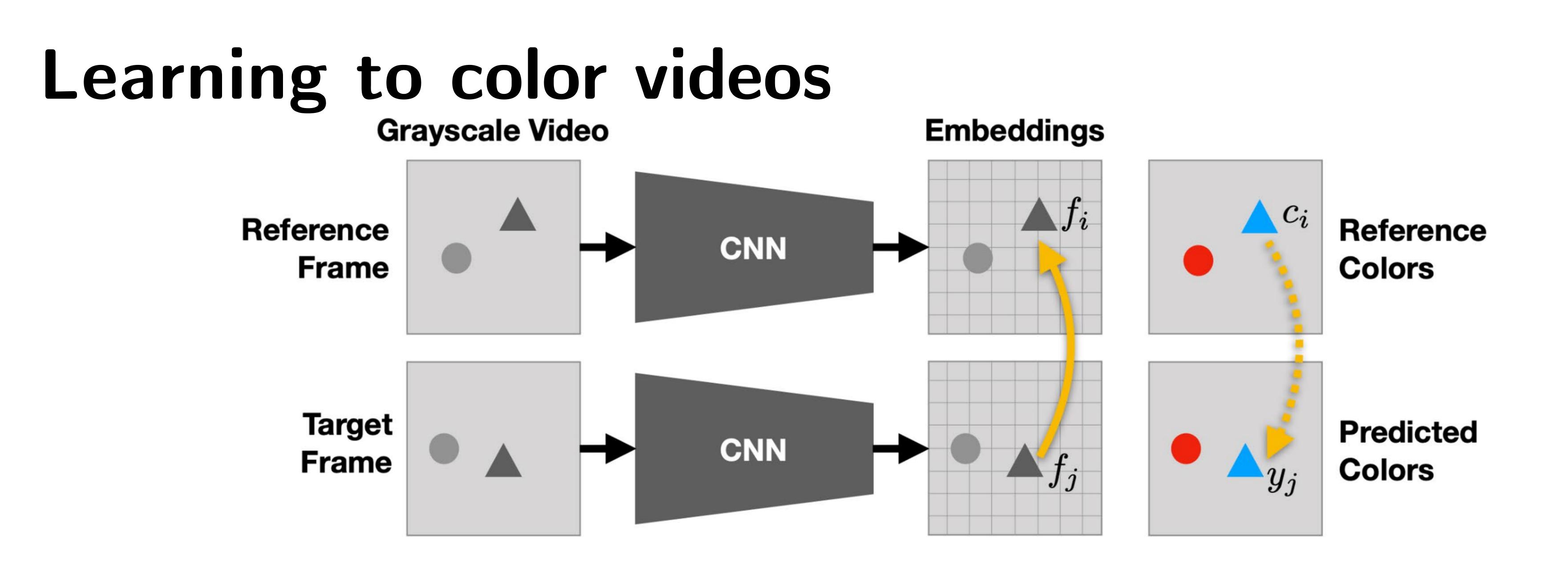
attention map on the reference frame

 $A_{ij} = \frac{\exp\left(f_i^T f_j\right)}{\sum_k \exp\left(f_k^T f_j\right)}$

predicted color = weighted sum of the reference color

$$y_j = \sum_i A_{ij} c_i$$

Source: Vondrick et al., 2018



attention map on the reference frame

 $A_{ij} = \frac{\exp\left(f_i^T f_j\right)}{\sum_k \exp\left(f_k^T f_j\right)}$

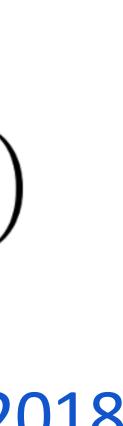
predicted color = weighted sum of the reference color

$$y_j = \sum_i A_{ij} c_i$$

loss between predicted color and ground truth color

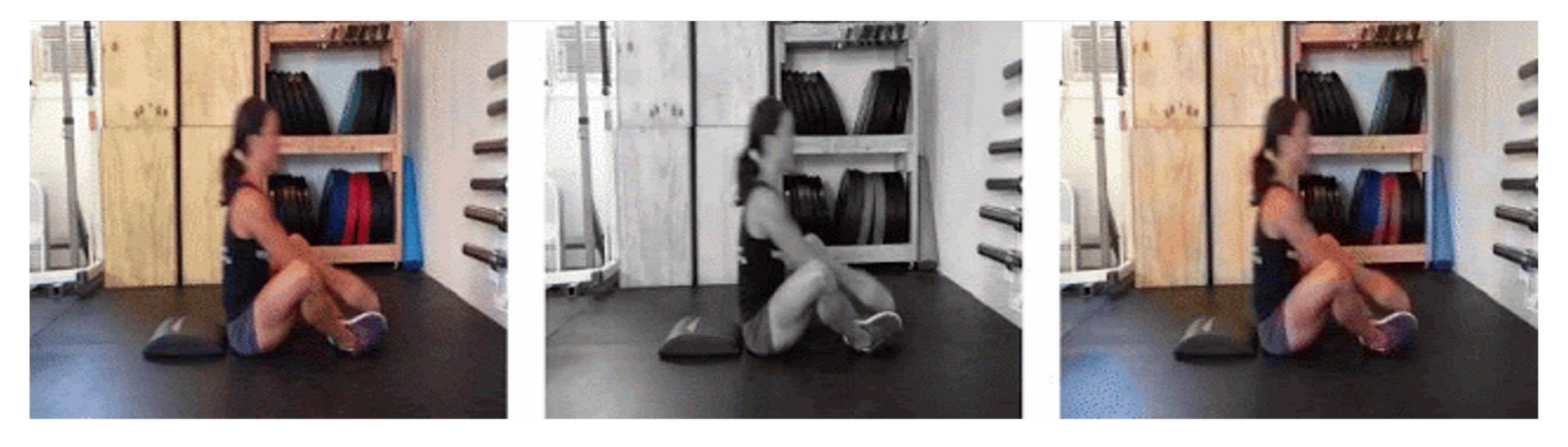
$$\min_{\theta} \sum_{j} \mathcal{L}(y_j, c_j)$$

Source: Vondrick et al., 2018



Colorizing videos (qualitative)

reference frame



target frames (gray)

predicted color

Source: Google AI blog post

Colorizing videos (qualitative)

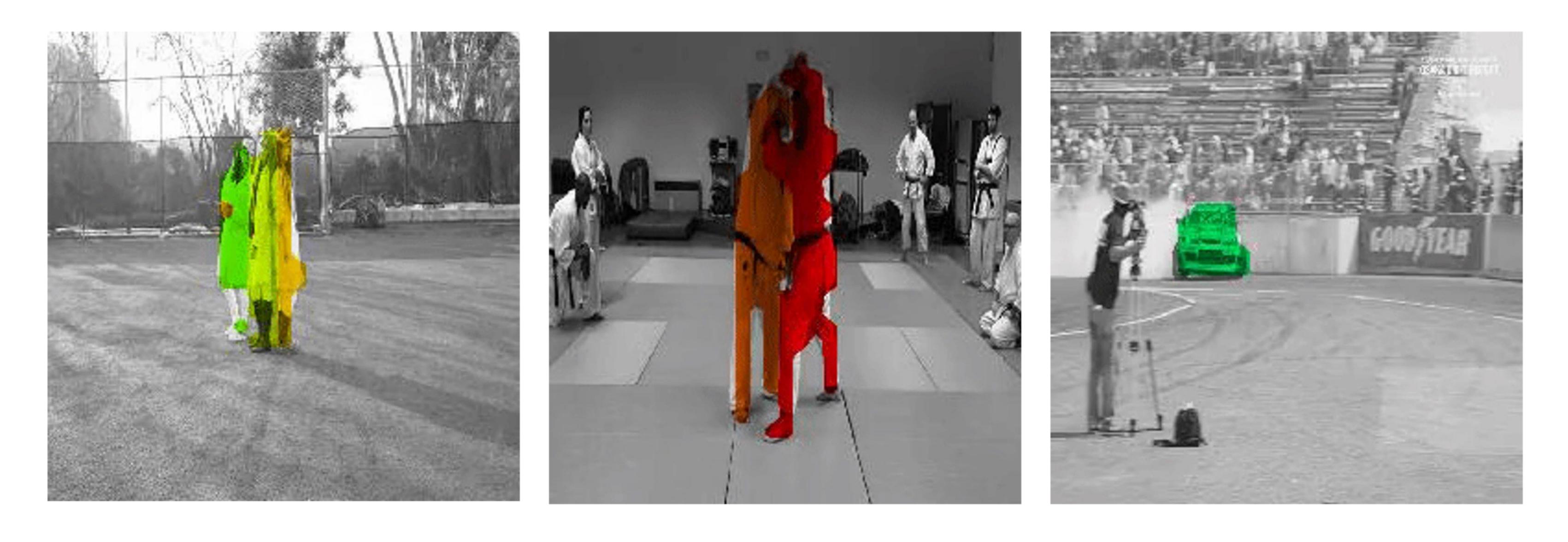
reference frame

target frames (gray)

predicted color

Source: Google AI blog post

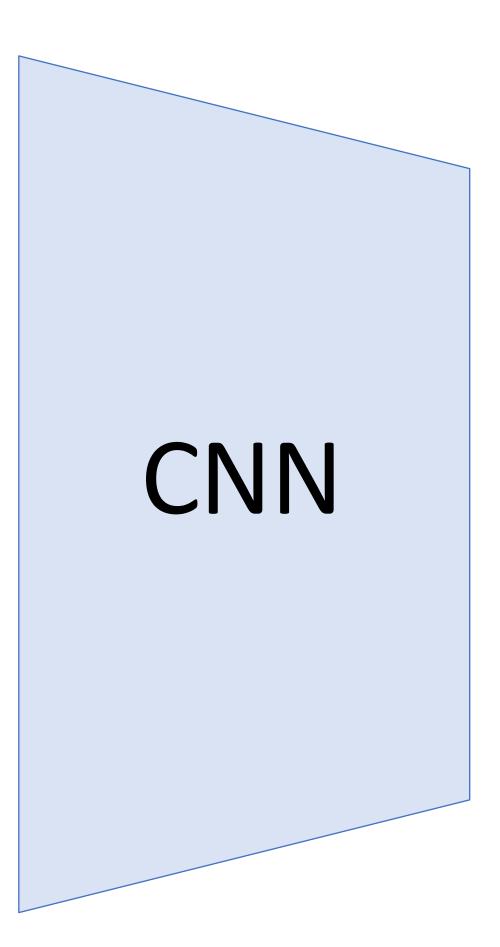
Tracking emerges from colorization Propagate segmentation masks using learned attention



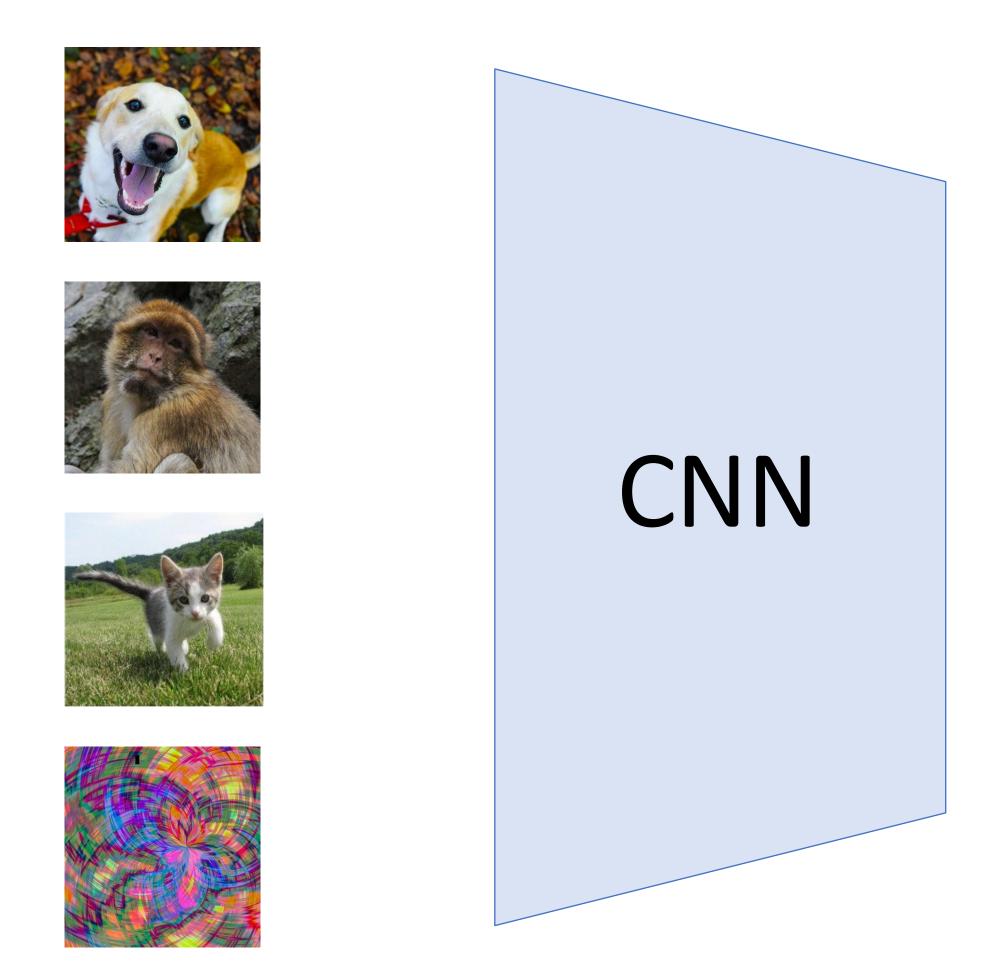
Source: Google AI blog post

Tracking emerges from colorization Propagate pose keypoints using learned attention

Source: Google Al blog post

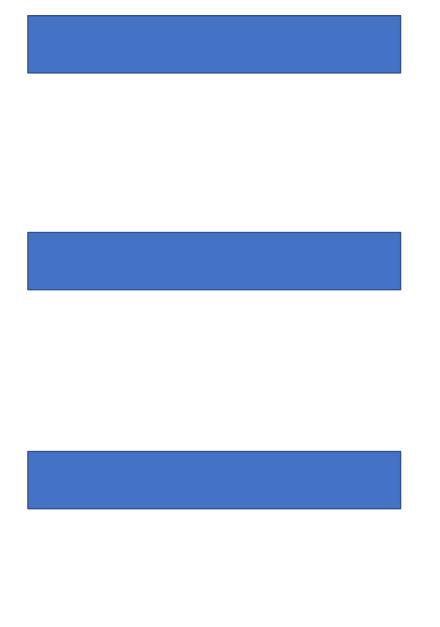


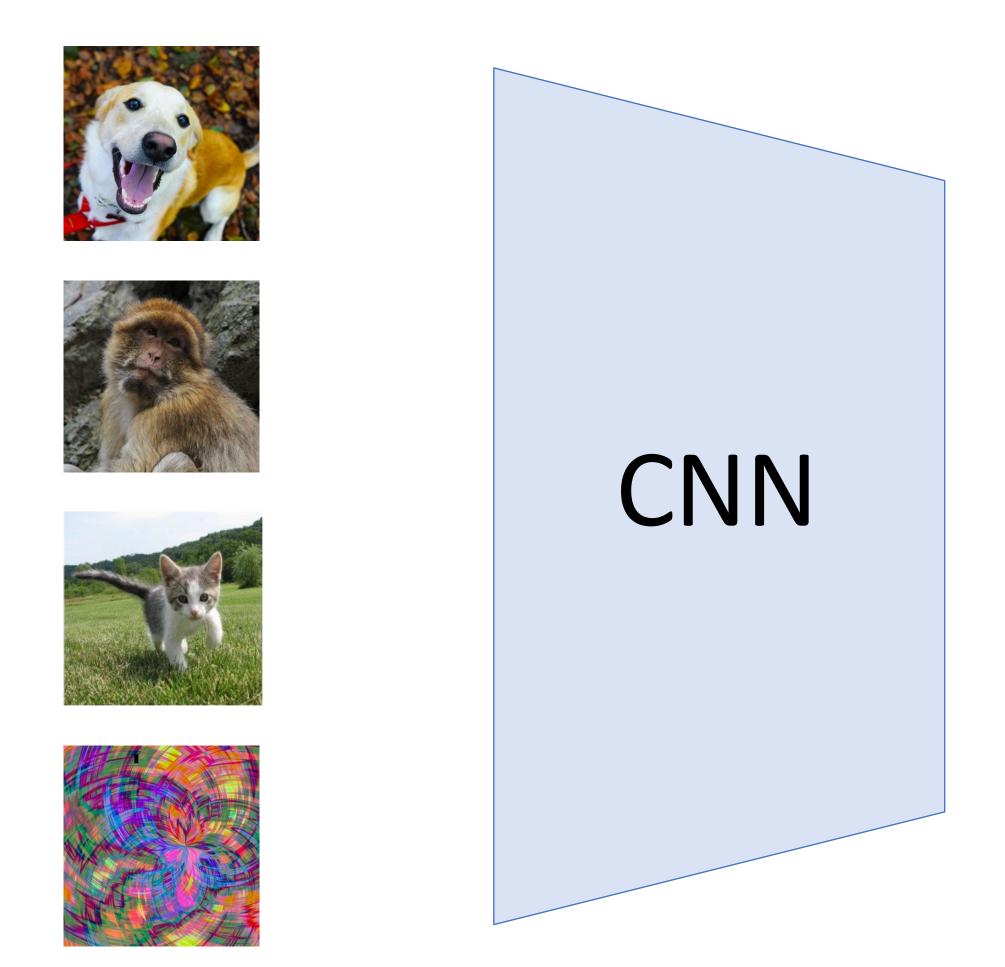
Caron et al, "Deep Clustering for Unsupervised Learning of Visual Features", ECCV 2018 Caron et al, "Unsupervised Pre-Training of Image Features on Non-Curated Data", ICCV 2019 Yan et al, "ClusterFit: Improving Generalization of Visual Representations", CVPR 2020 Caron et al, "Unsupervised Learning of Visual Features by Contrasting Cluster Assignments", NeurIPS 2020



(2) Run many images through CNN, get their final-layer features

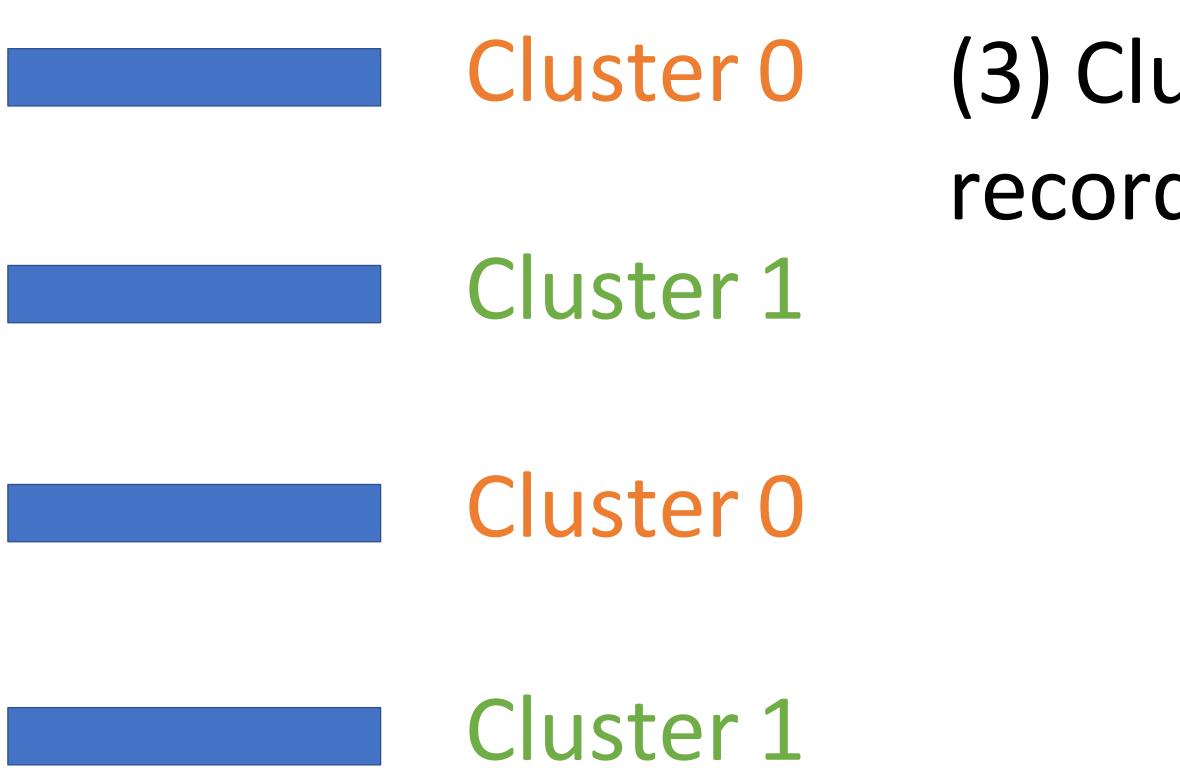
Caron et al, "Deep Clustering for Unsupervised Learning of Visual Features", ECCV 2018 Caron et al, "Unsupervised Pre-Training of Image Features on Non-Curated Data", ICCV 2019 Yan et al, "ClusterFit: Improving Generalization of Visual Representations", CVPR 2020 Caron et al, "Unsupervised Learning of Visual Features by Contrasting Cluster Assignments", NeurIPS 2020



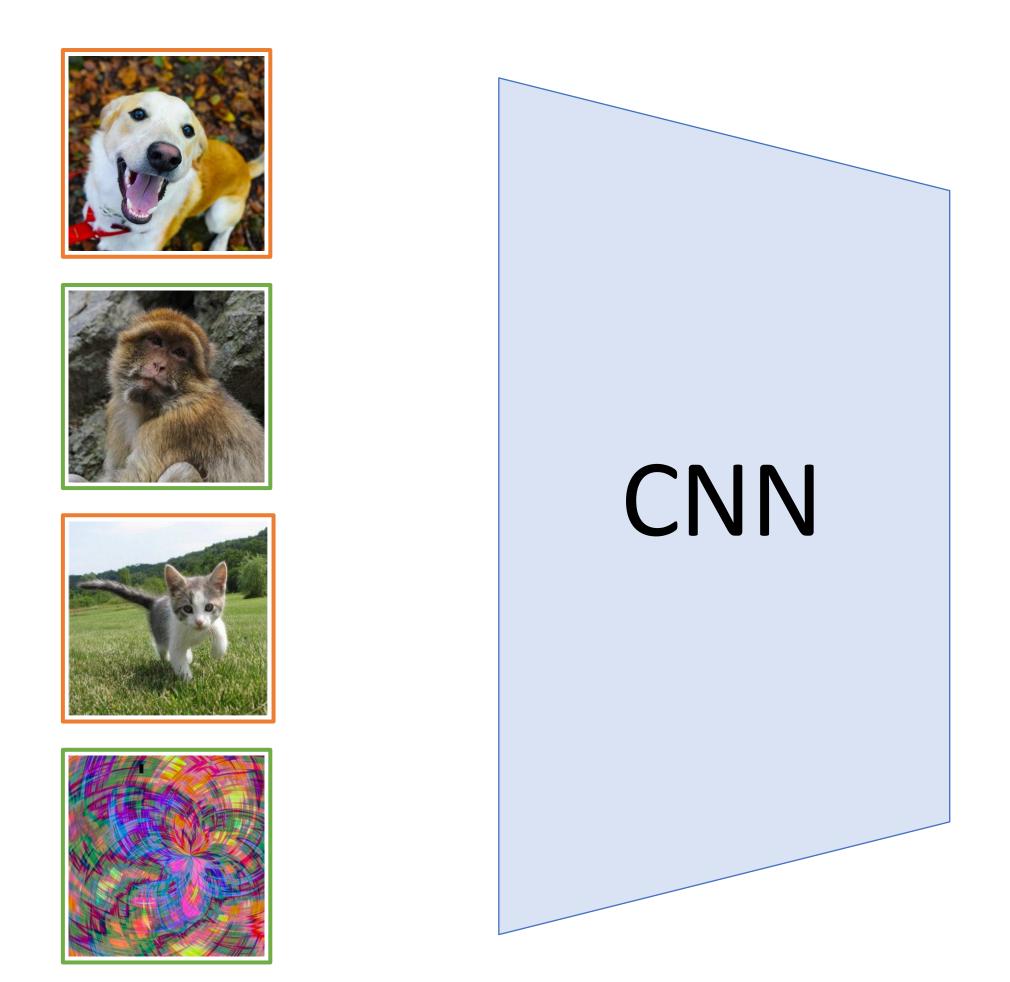


(2) Run many images through CNN, get their final-layer features

Caron et al, "Deep Clustering for Unsupervised Learning of Visual Features", ECCV 2018 Caron et al, "Unsupervised Pre-Training of Image Features on Non-Curated Data", ICCV 2019 Yan et al, "ClusterFit: Improving Generalization of Visual Representations", CVPR 2020 Caron et al, "Unsupervised Learning of Visual Features by Contrasting Cluster Assignments", NeurIPS 2020



(3) Cluster the features with K-Means; record cluster for each feature

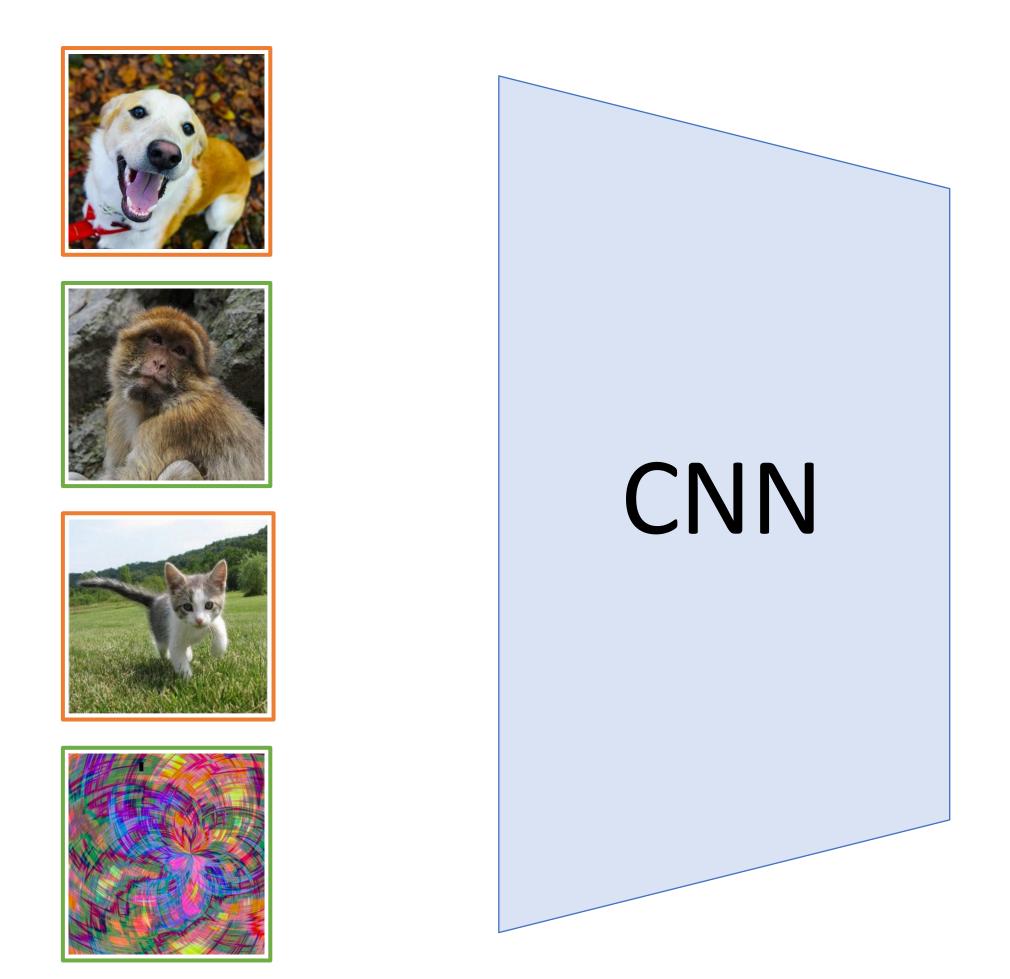


(2) Run many images through CNN, get their final-layer features

Caron et al, "Deep Clustering for Unsupervised Learning of Visual Features", ECCV 2018 Caron et al, "Unsupervised Pre-Training of Image Features on Non-Curated Data", ICCV 2019 Yan et al, "ClusterFit: Improving Generalization of Visual Representations", CVPR 2020 Caron et al, "Unsupervised Learning of Visual Features by Contrasting Cluster Assignments", NeurIPS 2020

(3) Cluster the features with K-Means; record cluster for each feature

(4) Use cluster assignments as pseudolabels for each image; train the CNN to predict cluster assignments



(2) Run many images through CNN, get their final-layer features

Caron et al, "Deep Clustering for Unsupervised Learning of Visual Features", ECCV 2018 Caron et al, "Unsupervised Pre-Training of Image Features on Non-Curated Data", ICCV 2019 Yan et al, "ClusterFit: Improving Generalization of Visual Representations", CVPR 2020 Caron et al, "Unsupervised Learning of Visual Features by Contrasting Cluster Assignments", NeurIPS 2020

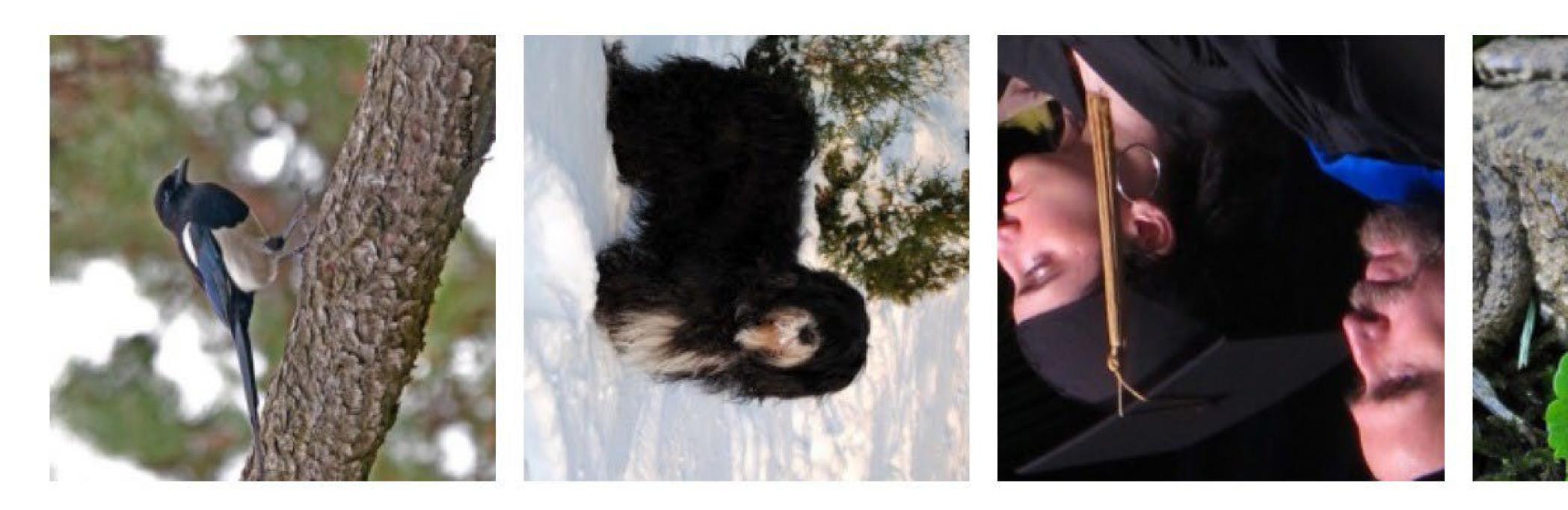


(5) Repeat: GOTO (2)

(3) Cluster the features with K-Means; record cluster for each feature

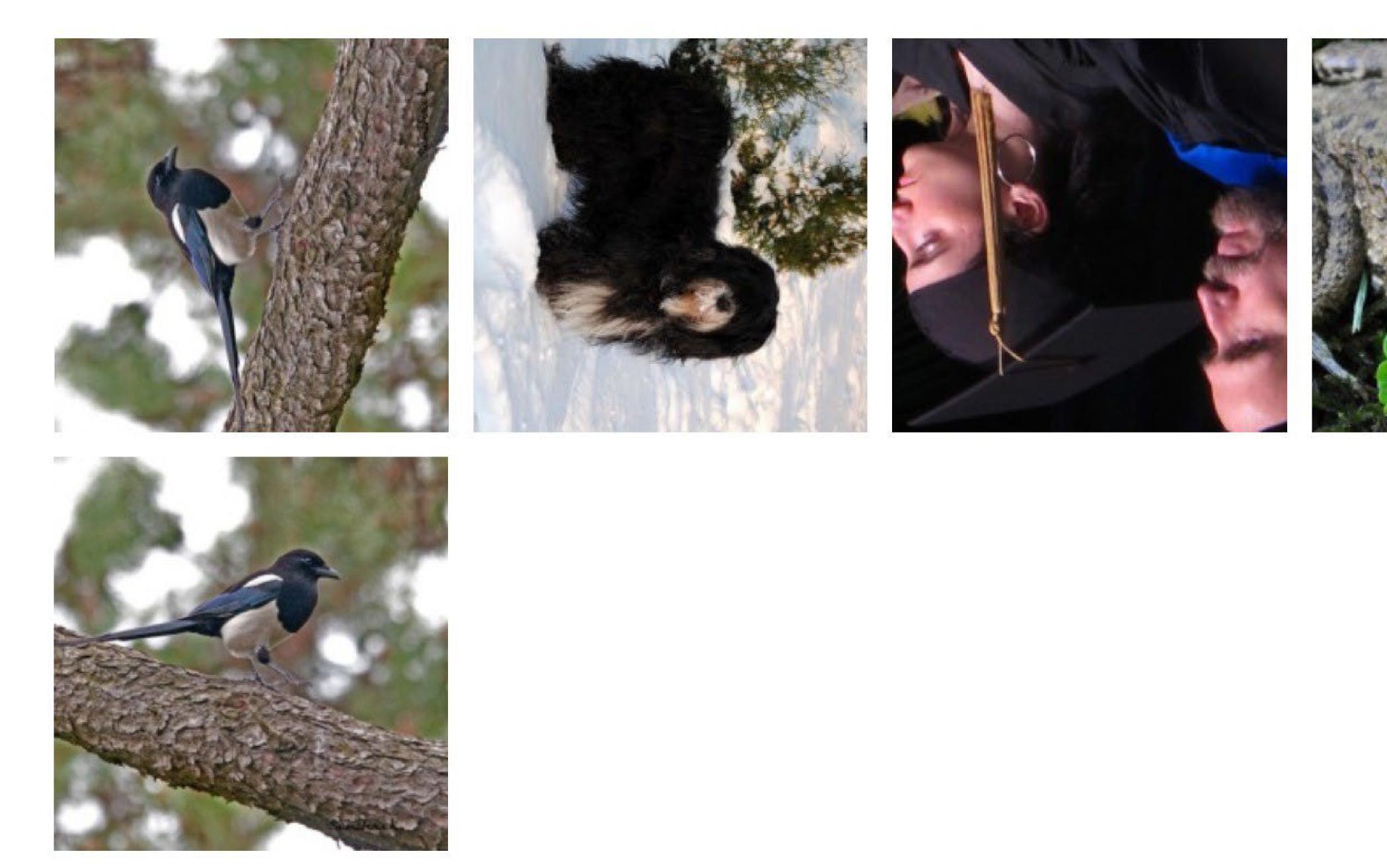
(4) Use cluster assignments as pseudolabels for each image; train the CNN to predict cluster assignments

RotNet: Predict Rotation



Gidaris et al, "Unsupervised representation learning by predicting image rotations", ICLR 2018

4-way classification task: How much was each image rotated? (0, 90, 180, or 270 degrees)

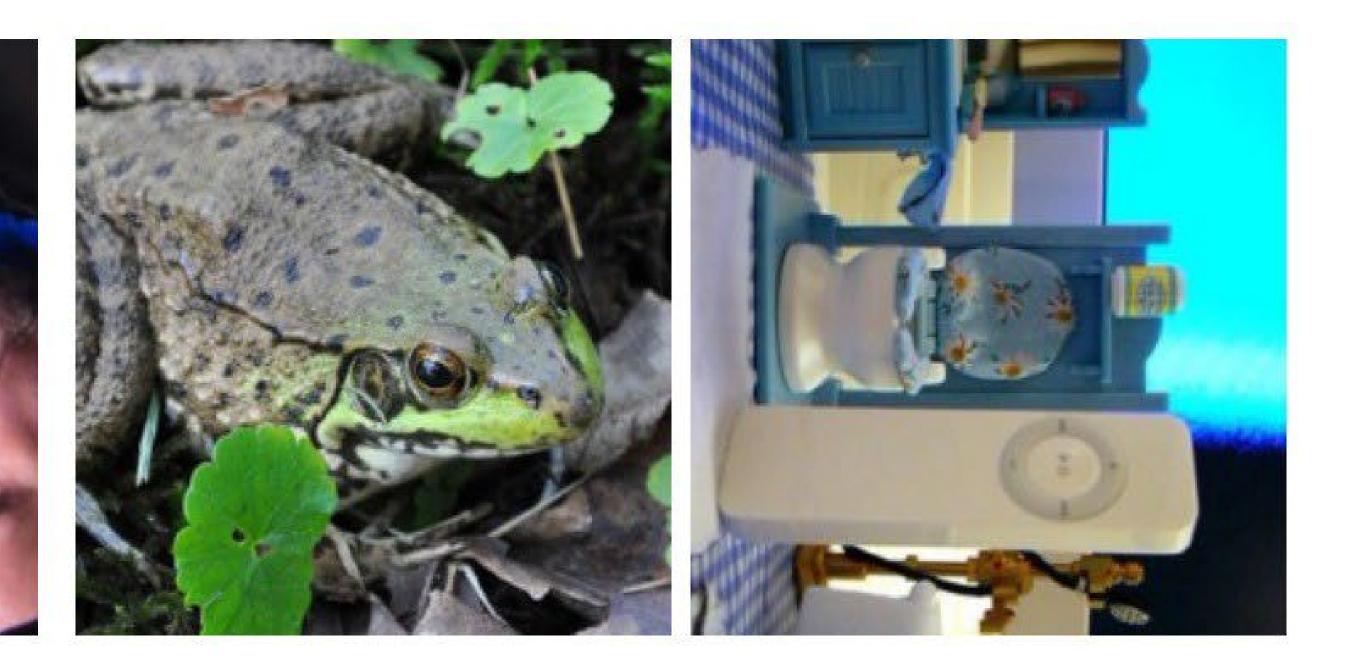


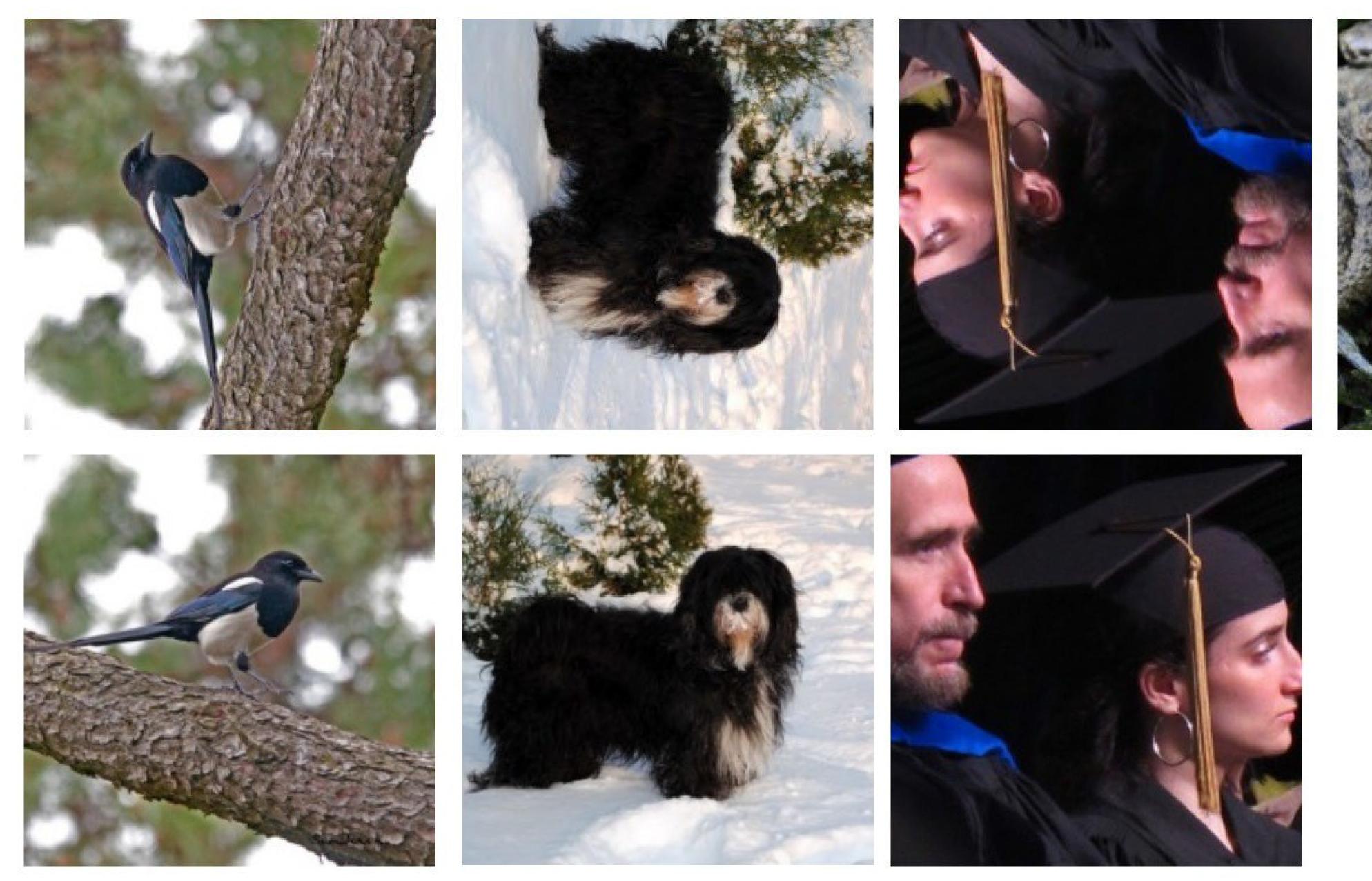
90

Gidaris et al, "Unsupervised representation learning by predicting image rotations", ICLR 2018

90

Gidaris et al, "Unsupervised representation learning by predicting image rotations", ICLR 2018





90

Gidaris et al, "Unsupervised representation learning by predicting image rotations", ICLR 2018

270

180

90

Gidaris et al, "Unsupervised representation learning by predicting image rotations", ICLR 2018

270

180

Gidaris et al, "Unsupervised representation learning by predicting image rotations", ICLR 2018

Summary:

- Pretext tasks focus on "visual common sense", e.g., predict rotations, inpainting, rearrangement, and colorization.
- The models are forced learn good features about natural images, e.g., semantic representation of an object category, in order to solve the pretext tasks.
- We often do not care about the performance of these pretext tasks, but rather how useful the learned features are for downstream tasks (classification, detection, segmentation).

pretext tasks via image transformations

Summary: pretext tasks via image transformations

- Pretext tasks focus on "visual common sense" o e.g., predict rotations, inpainting, rearrangement, and colorization.
- We often do not care about the performance of these pretext tasks o but rather how useful the learned features are for downstream tasks (classification, detection, segmentation).
- Problems: \circ (1) coming up with individual pretext tasks is tedious \circ (2) the learned representations may not be general.

Which SSL Method is best?

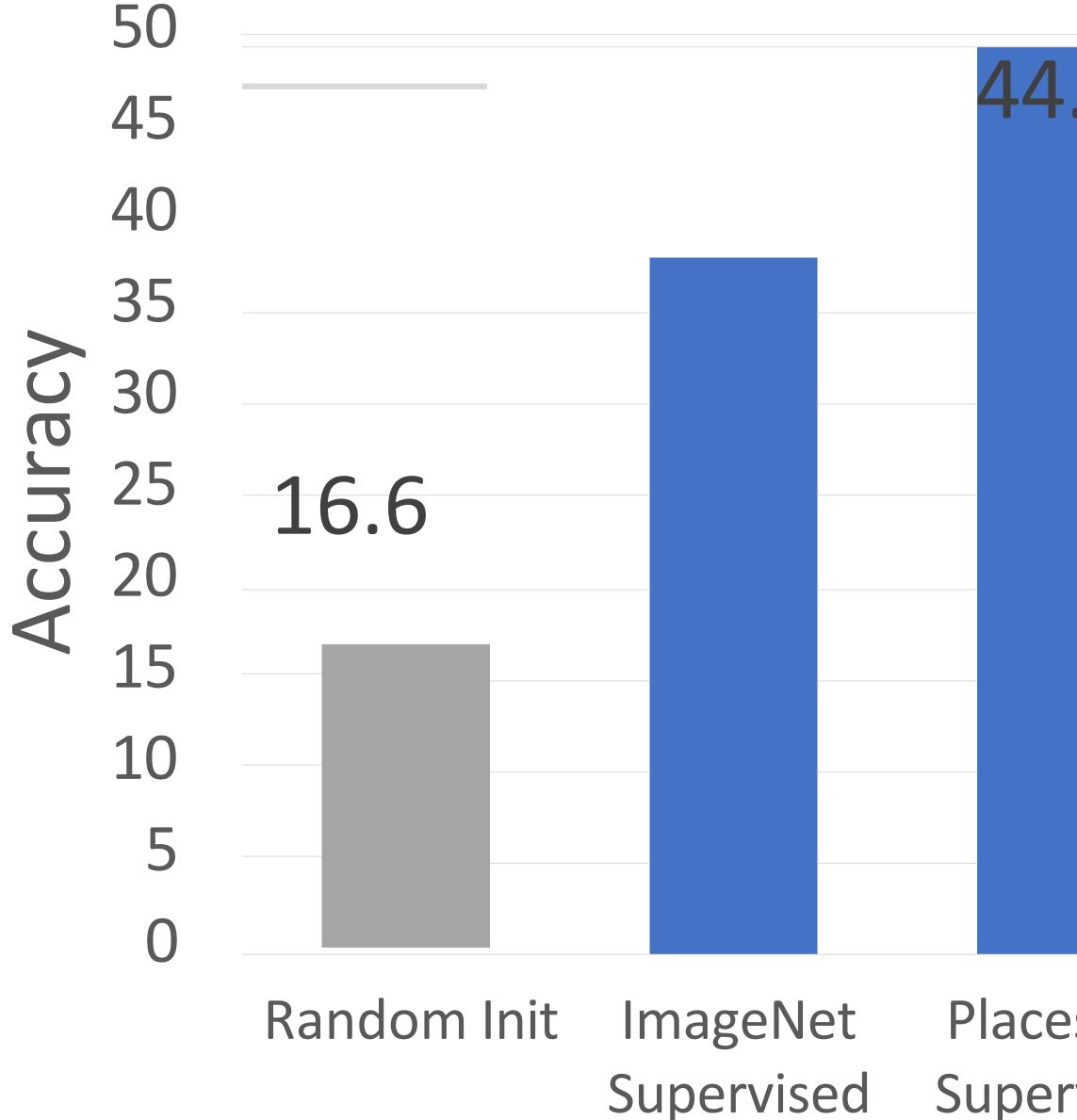
- Many choices in experimental setup, huge variations from paper to paper: - CNN architecture? AlexNet, ResNet50, something else?
- Pretraining dataset? ImageNet, or something else?
- Downstream task? ImageNet classification, detection, something else?
- Pretraining hyperparameters? Learning rates, training iterations, data augmentation?
- Transfer learning protocol? transfer learning?

Fair evaluation of SSL methods is very hard ... No theory, so we need to rely on experiments !!!

- Linear probe? From which layer? How to train linear models? SGD, something else? - Transfer learning hyperparameters? Data augmentation or BatchNorm during

- Fine-tune? which layer? Linear or nonlinear? Fine-tuning hyperparameters? - KNN? What value of K? Normalization on features?

Which SSL Method is best? Some papers have tried to do fair comparisons of many SSL methods

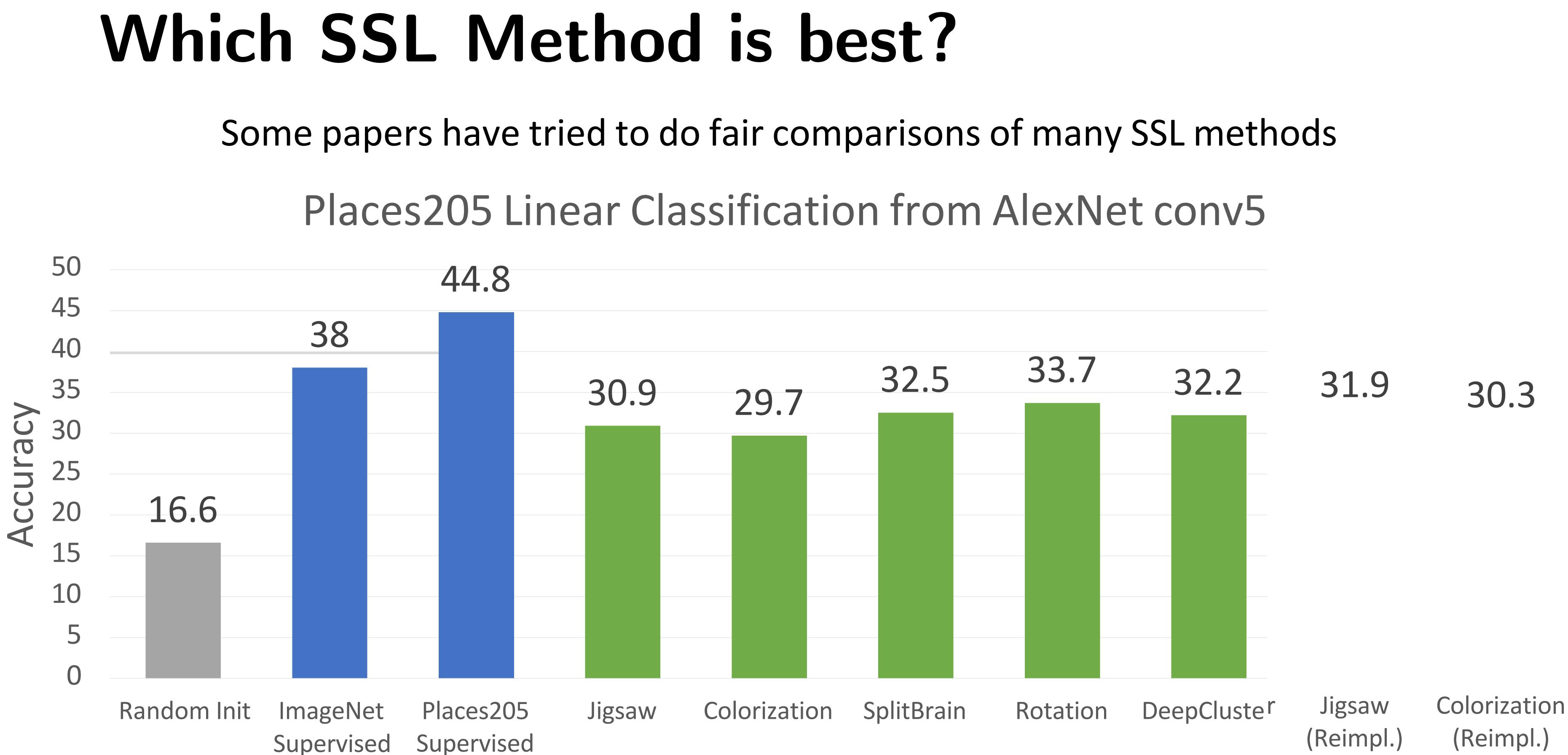


Goyal et al, "Scaling and Benchmarking Self-Supervised Visual Representation Learning", ICCV 2019

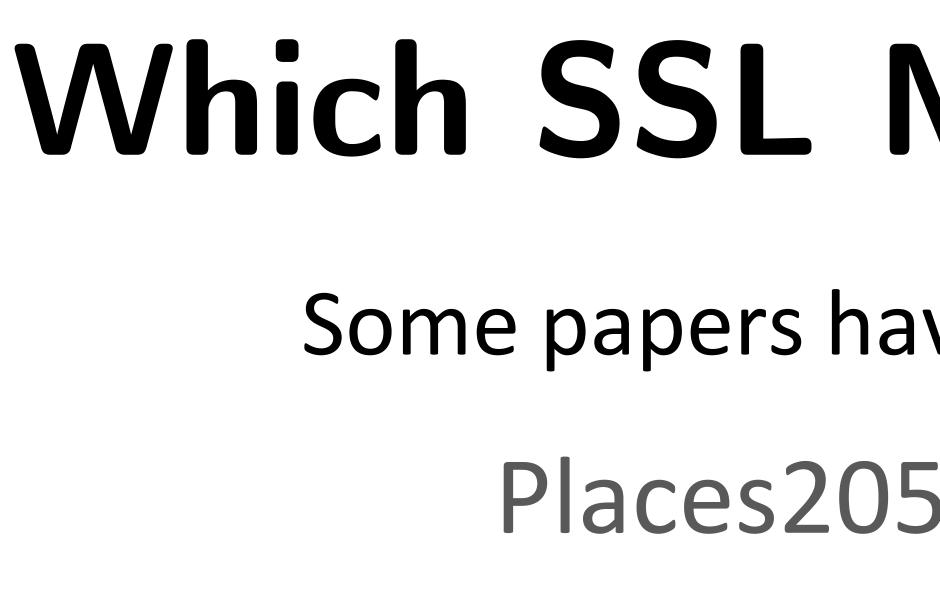
Places205 Linear Classification from AlexNet conv5

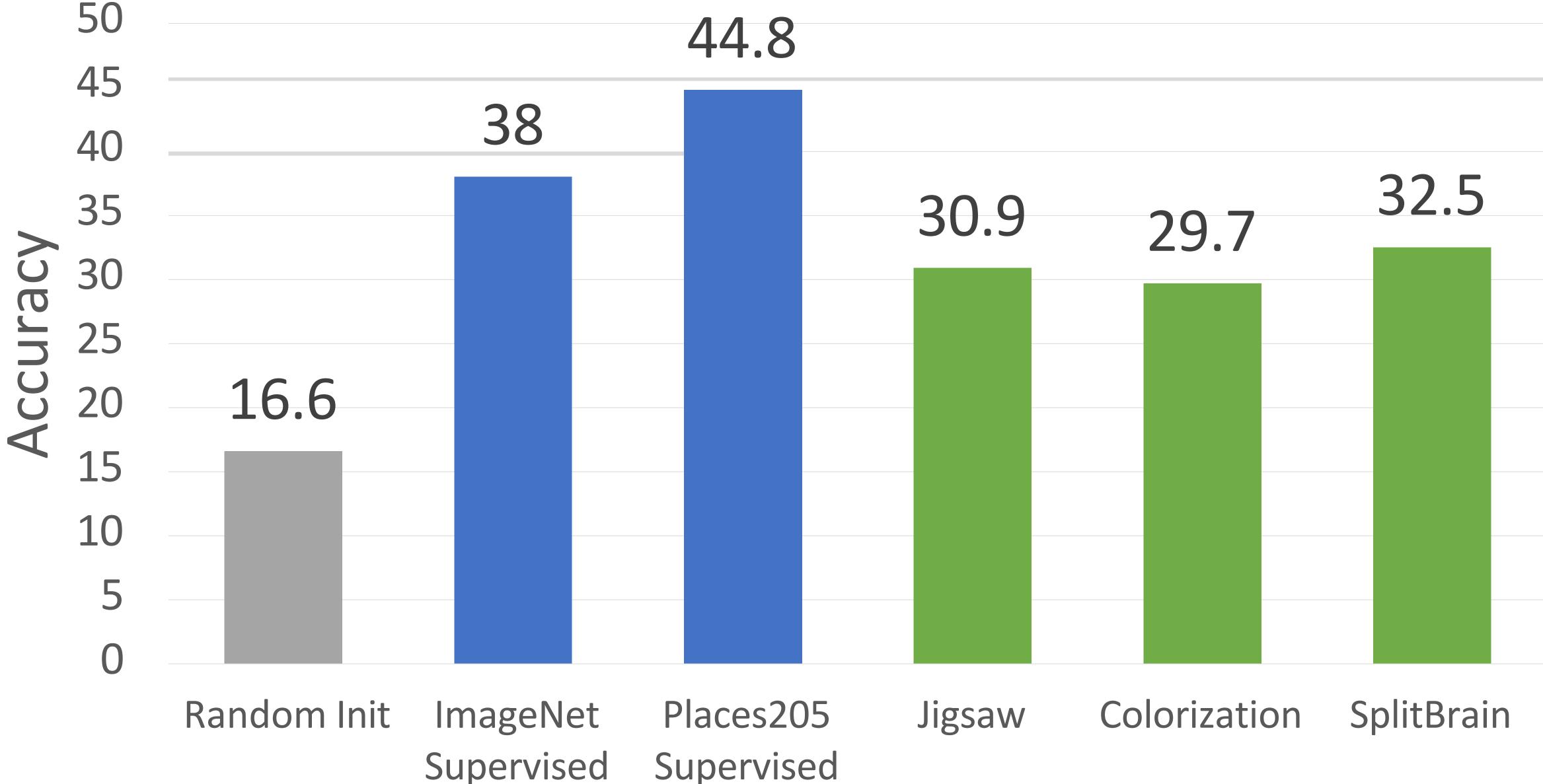
1.8	
-	
<u> </u>	
es205	

Supervised



Goyal et al, "Scaling and Benchmarking Self-Supervised Visual Representation Learning", ICCV 2019





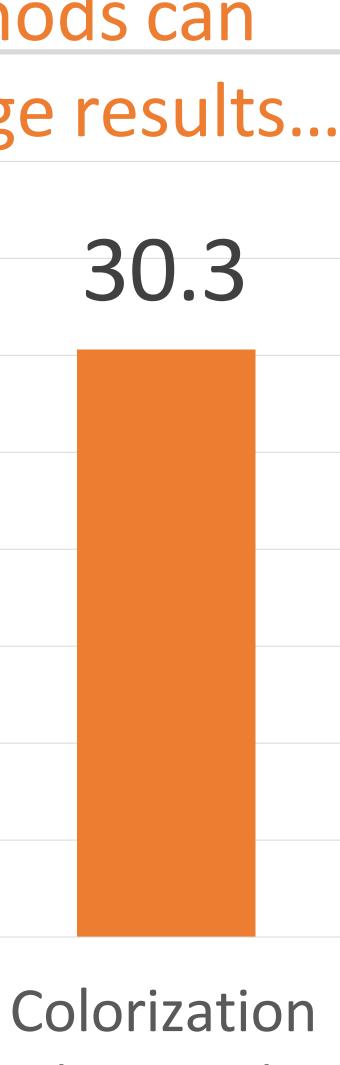
Goyal et al, "Scaling and Benchmarking Self-Supervised Visual Representation Learning", ICCV 2019

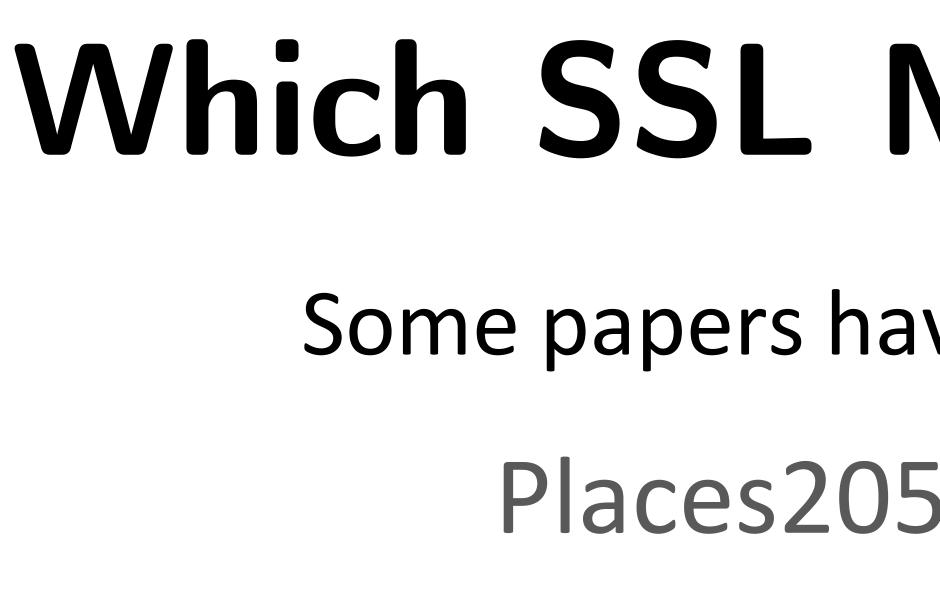
Which SSL Method is best?

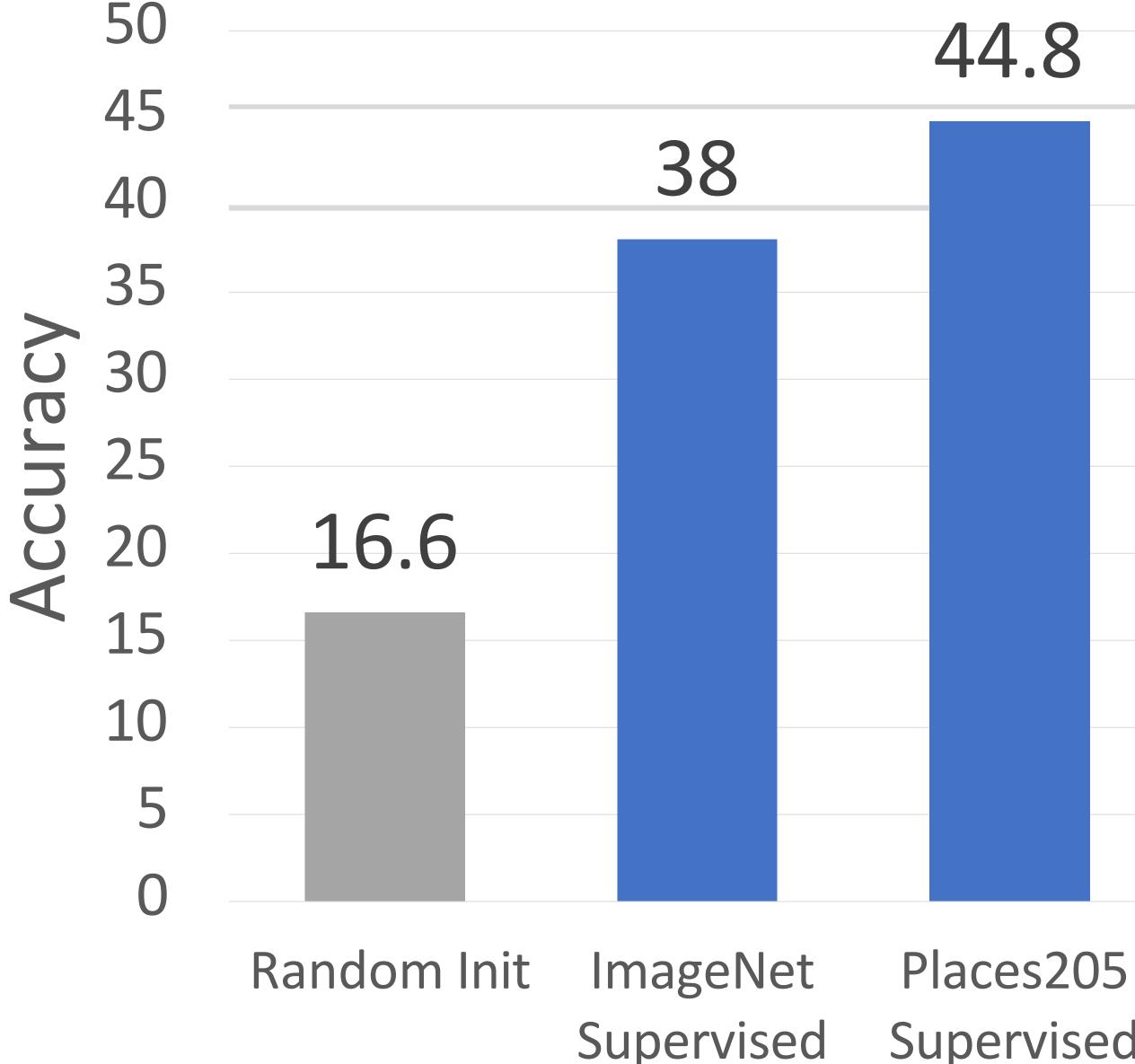
Some papers have tried to do fair comparisons of many SSL methods Places205 Linear Classification from AlexNet conv5 Reimplementing existing methods can slightly change results... 33.7 32.2 31.9

Supervised

DeepCluster Rotation Jigsaw (Reimpl.) (Reimpl.)







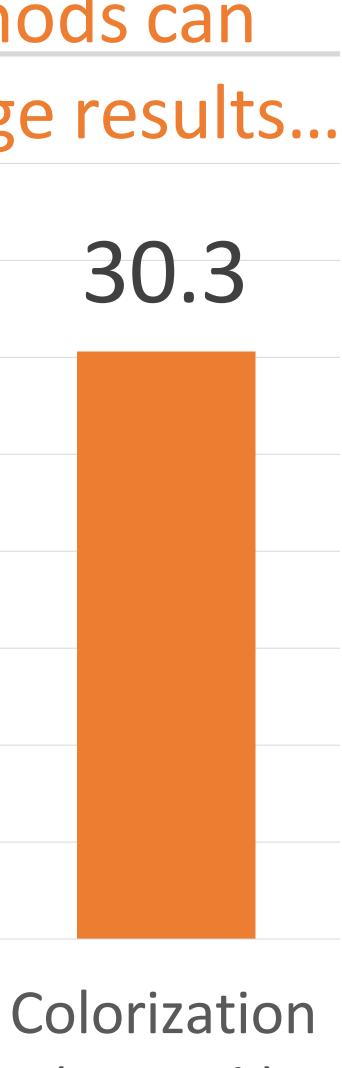
Goyal et al, "Scaling and Benchmarking Self-Supervised Visual Representation Learning", ICCV 2019

Which SSL Method is best?

Some papers have tried to do fair comparisons of many SSL methods Places205 Linear Classification from AlexNet conv5 Reimplementing **Overall, as of 2019 SSL gave worse** existing methods can features than supervised pretraining slightly change results... 33.7 32.5 32.2 31.9 30.9 29.7

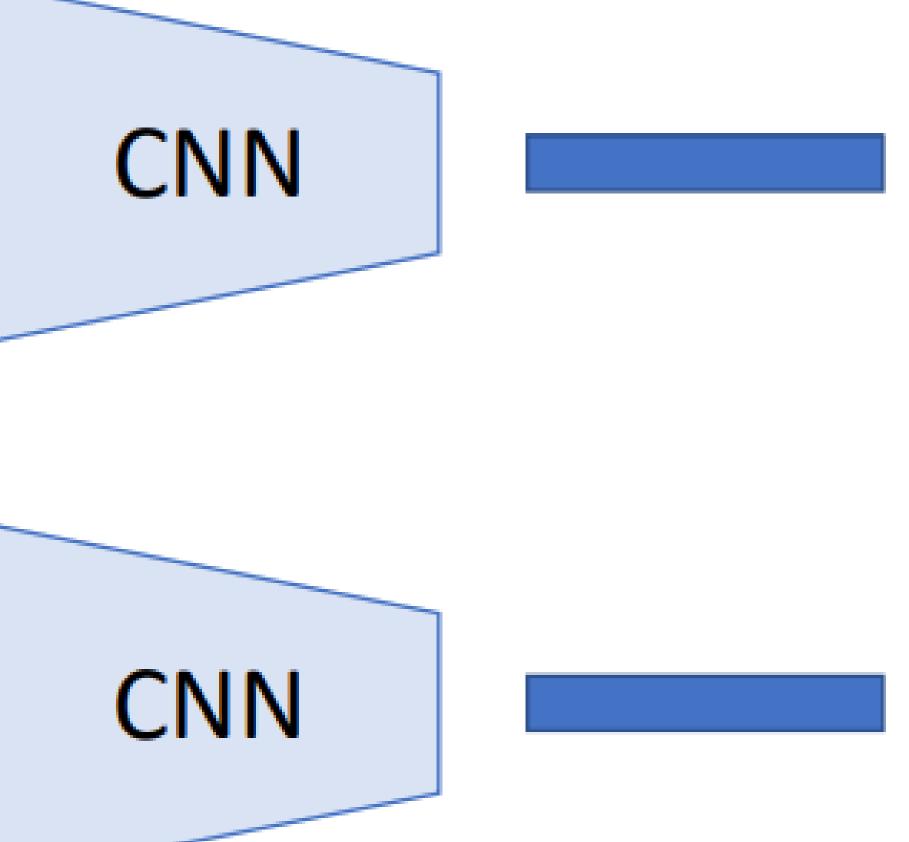
SplitBrain Colorization Jigsaw Supervised

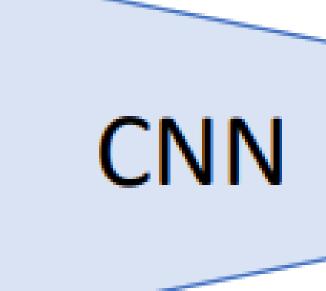
DeepCluster Rotation Jigsaw (Reimpl.) (Reimpl.)



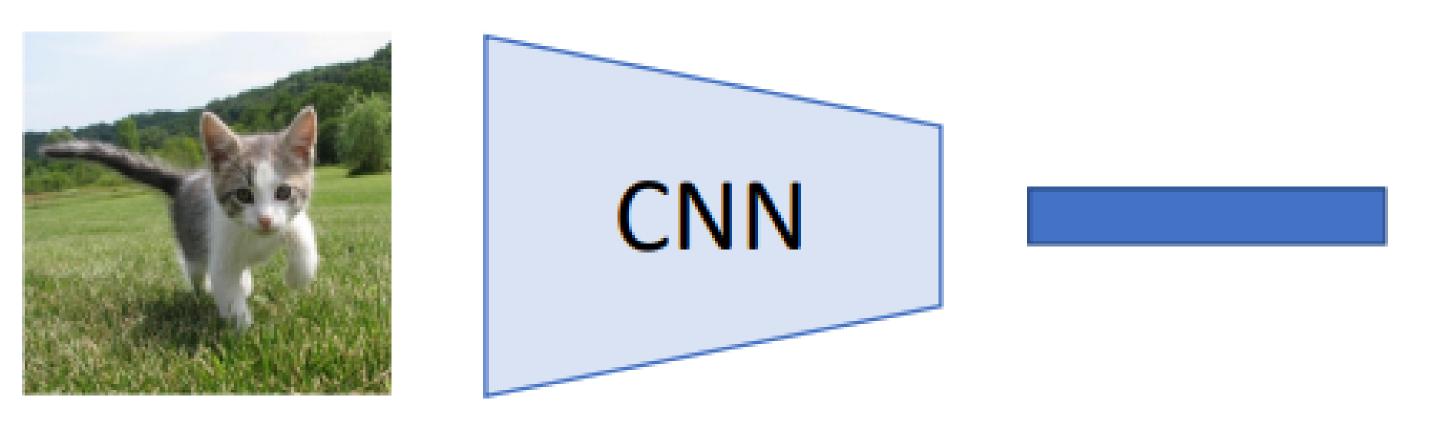
Let's take a step back ...

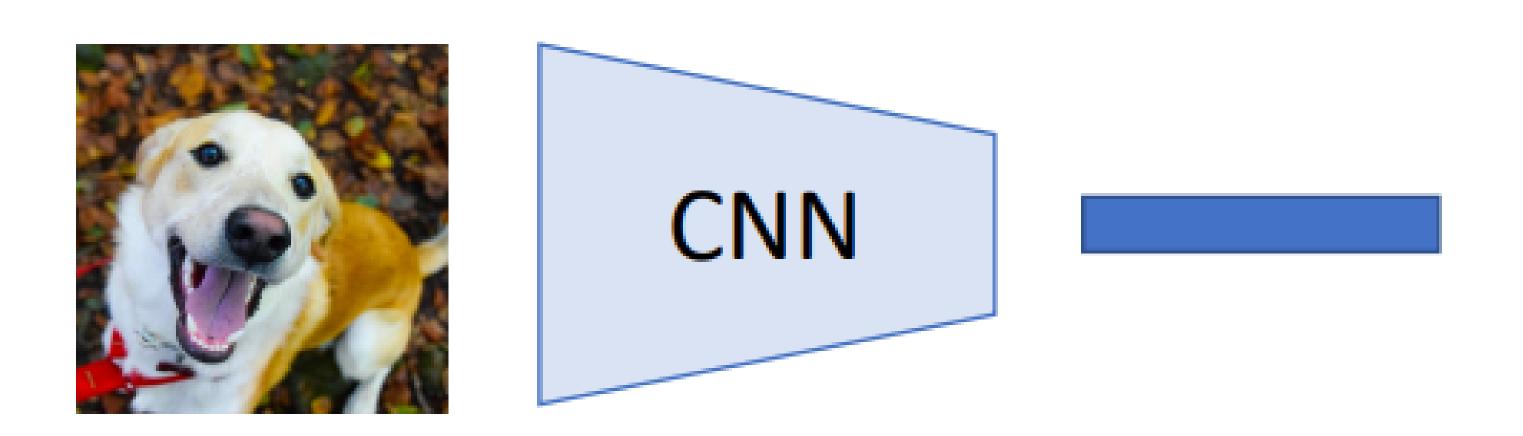
Dissimilar images should have dissimilar features Similar images should have similar features





A simpler idea ...

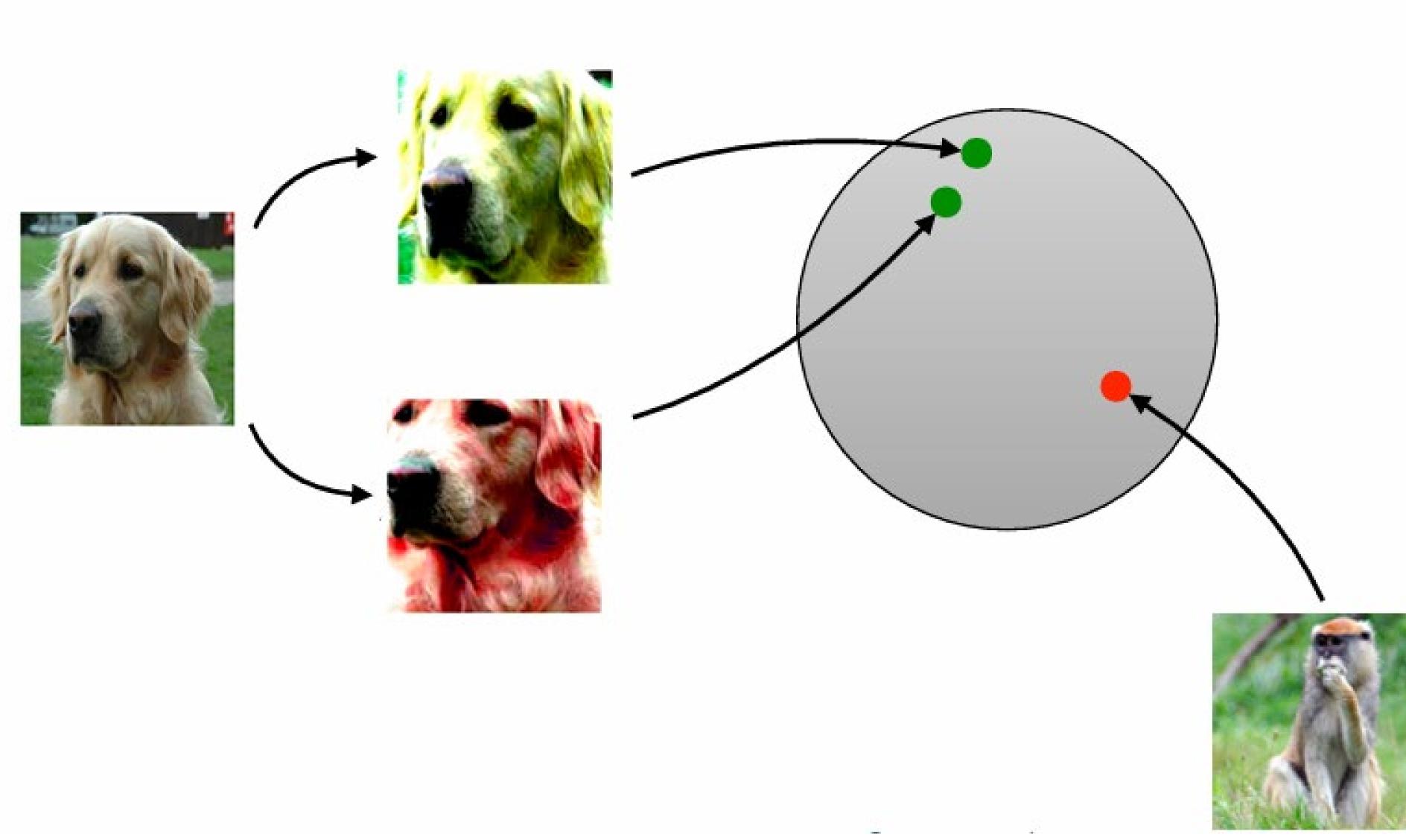




Similarity based Representation Learning

pairs of similar / dissimilar inputs

• Build representations via feedback in terms of similarity:



Background: Metric Learning

- How should we compute similarity between images?
- Idea 1: Euclidean distance in pixel space $||x_1 x_2||_2$ o Images with the same background but different foreground will have very high similarity (e.g. cat in snow vs dog in snow) – BAD!
- Goal: learn a metric where:

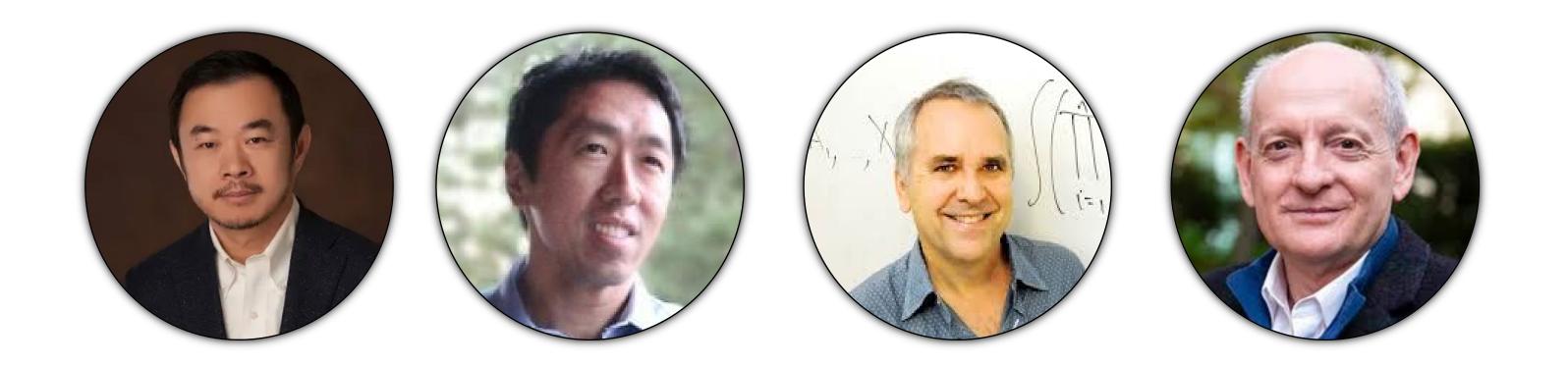
 - Data points that belong together are similar (closer) • Data points that are different are dissimilar (farther)

- In mathematics, a metric space is a set together with a notion of distance
- between its elements, usually called points. The distance is measured by a
- function called a metric or distance function.^[1] Metric spaces are a general
- setting for studying many of the concepts of mathematical analysis and geometry.

Distance metric learning, with application to clustering with side-information

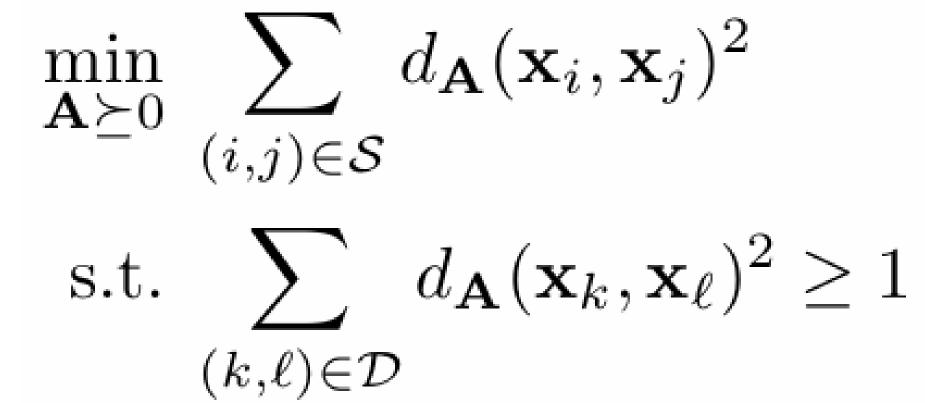
Eric P. Xing, Andrew Y. Ng, Michael I. Jordan and Stuart Russell University of California, Berkeley Berkeley, CA 94720 {epxing,ang,jordan,russell}@cs.berkeley.edu

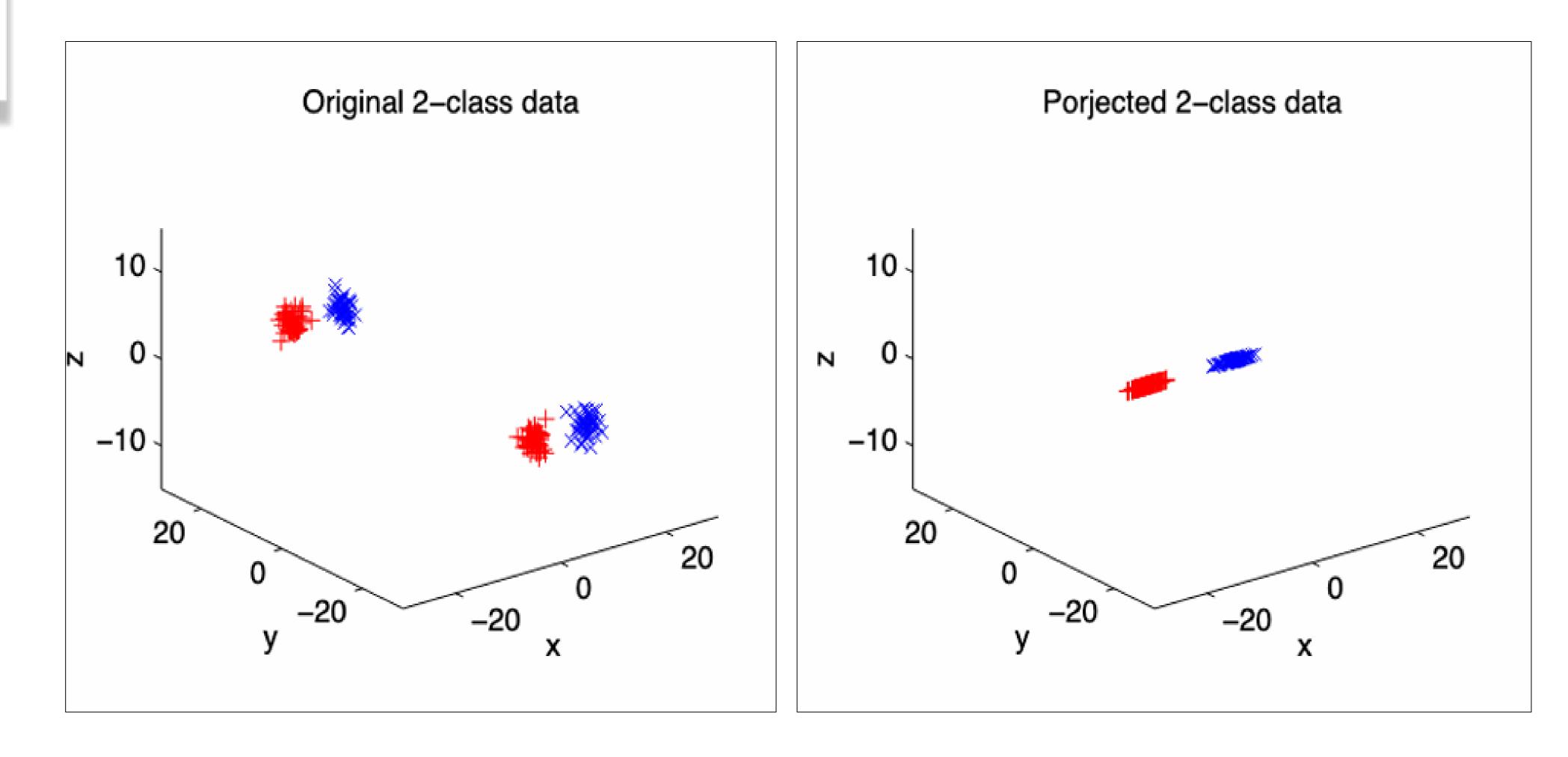
introduced the term and problem in 2003



Many related ideas and follow-up work

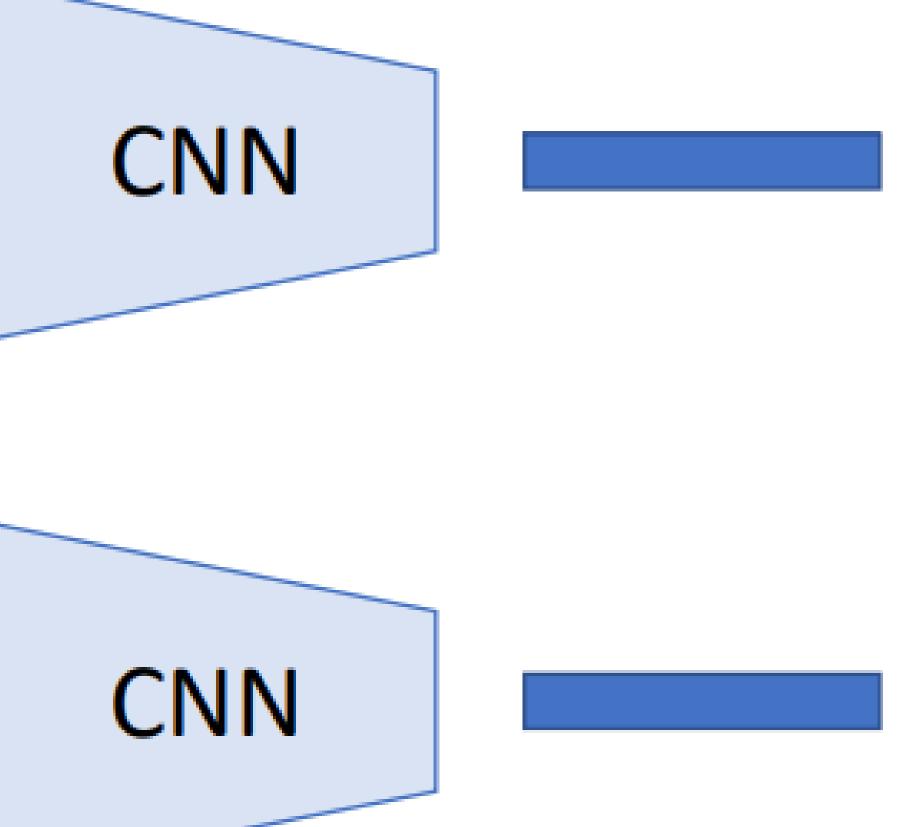
Background: Metric Learning

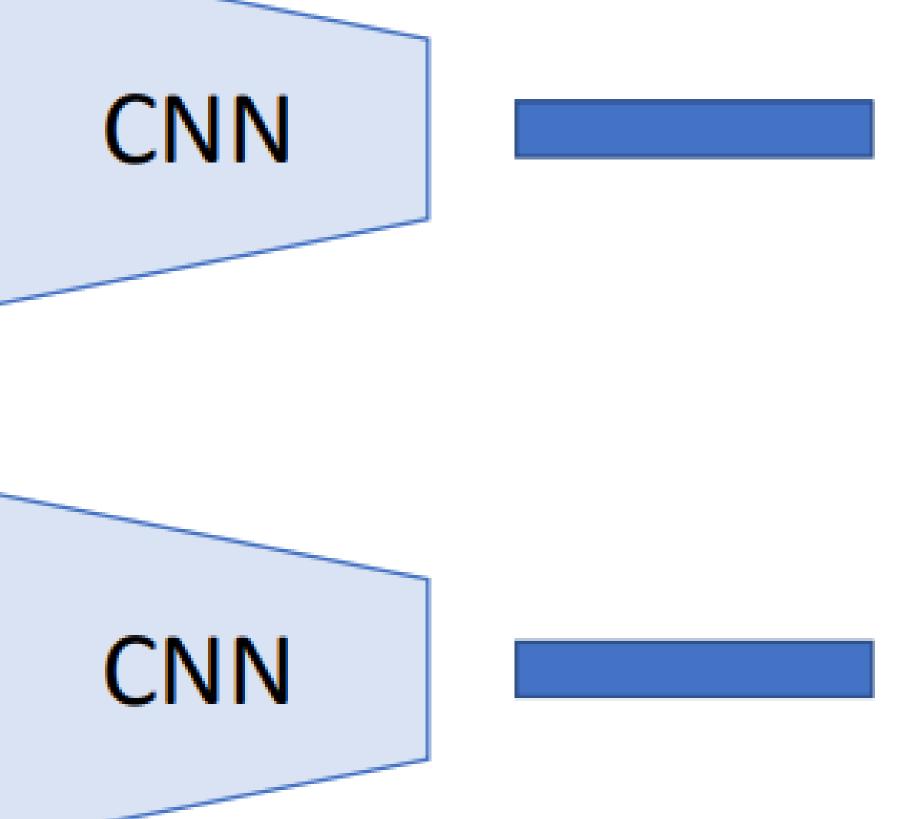




Problem 1:

Similar images should have similar features

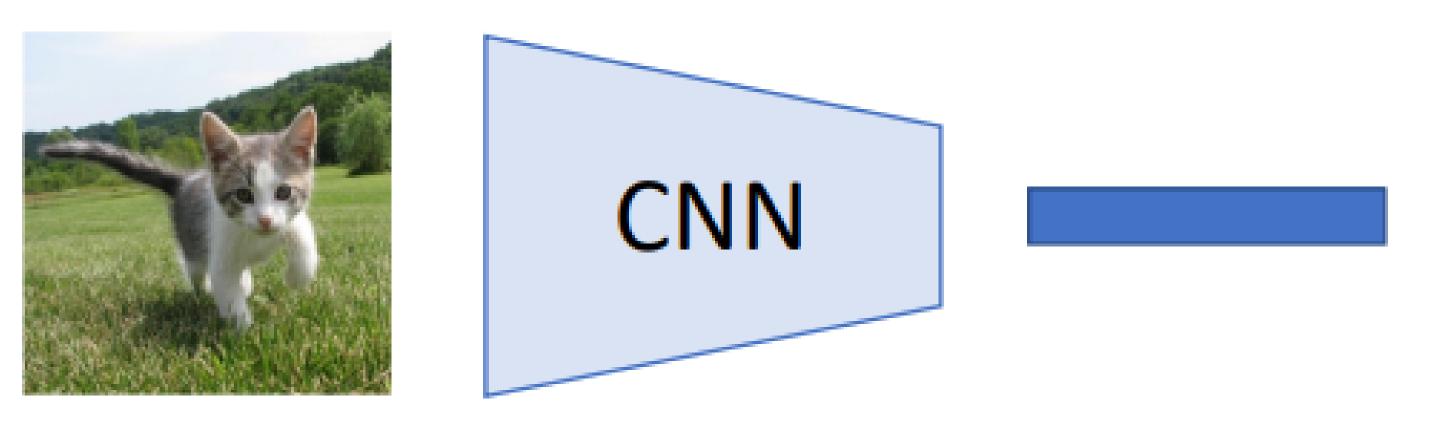


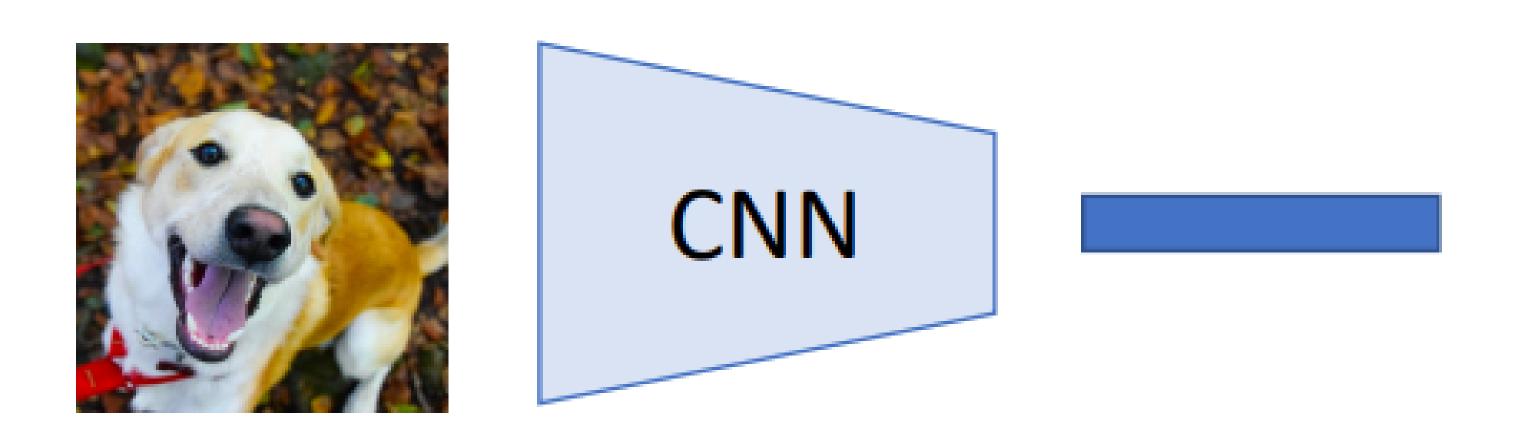


Contrastive Learning

How to compute similarity if we don't have labels for images?

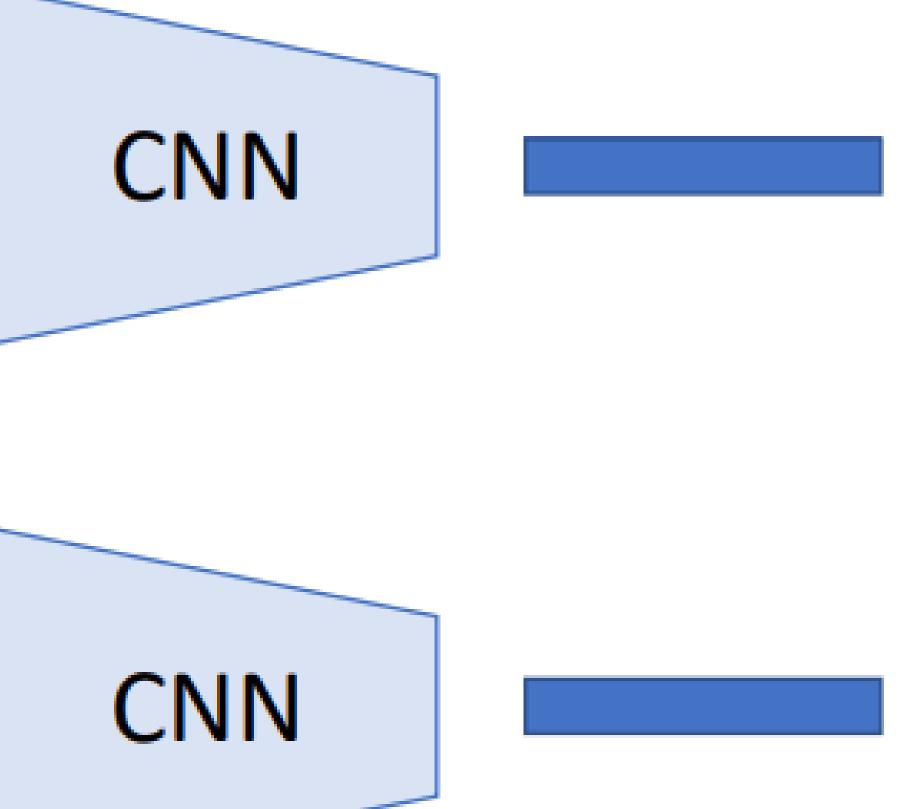
Dissimilar images should have dissimilar features

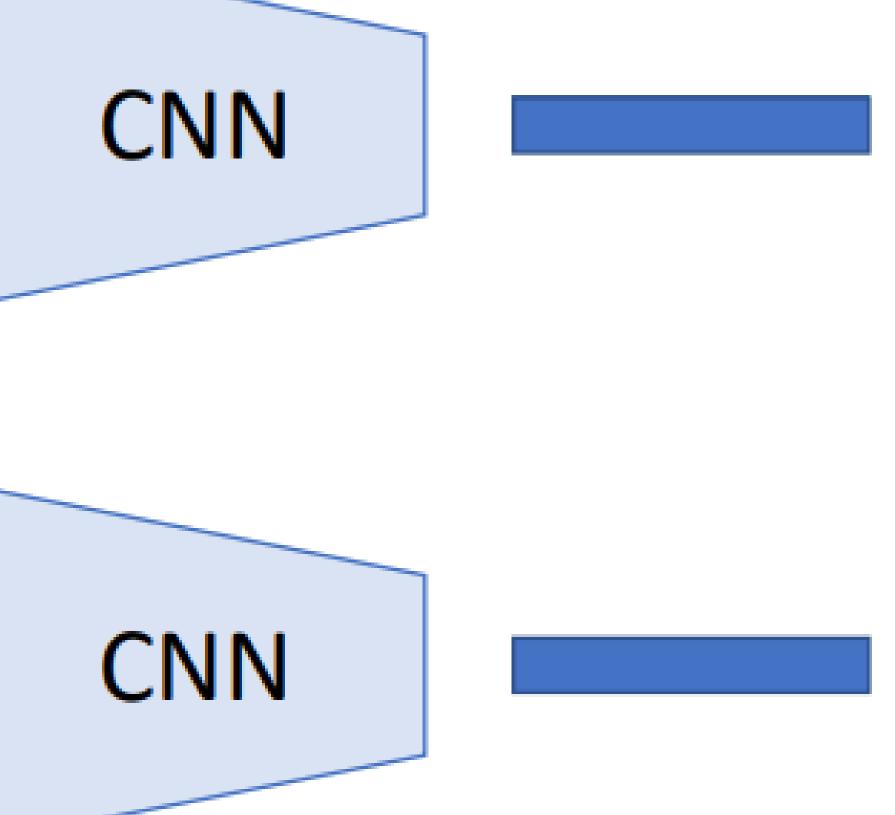




Problem 1: Solution?

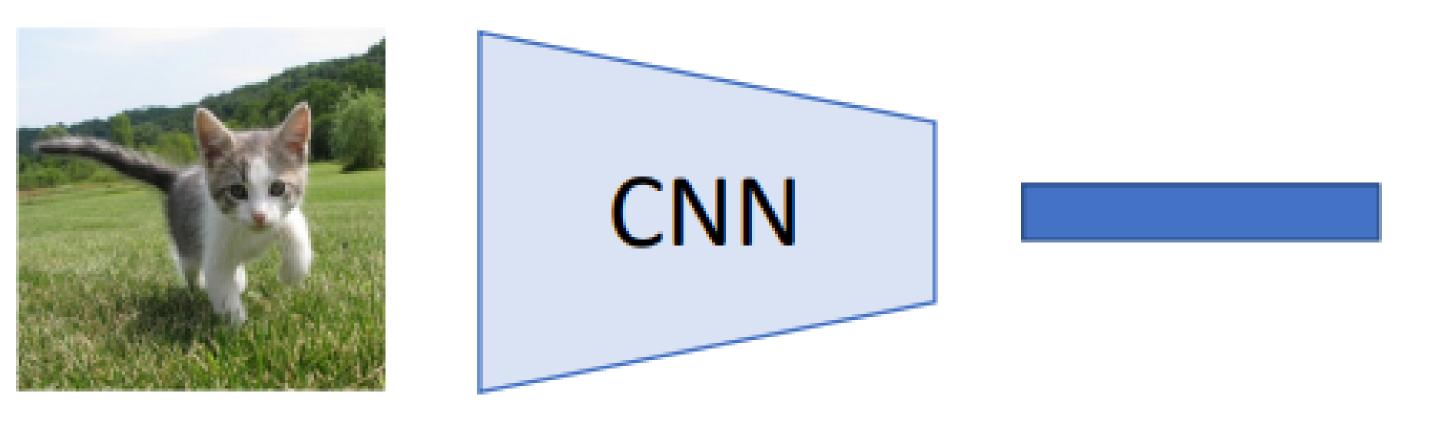
Dissimilar images should have dissimilar features Similar images should have similar features

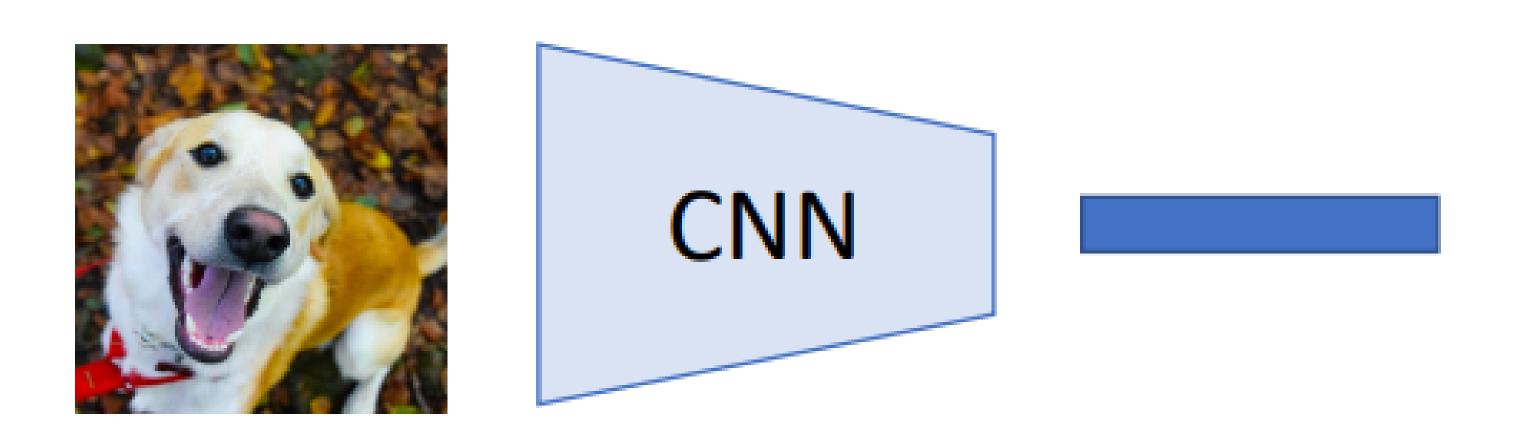




Contrastive Learning

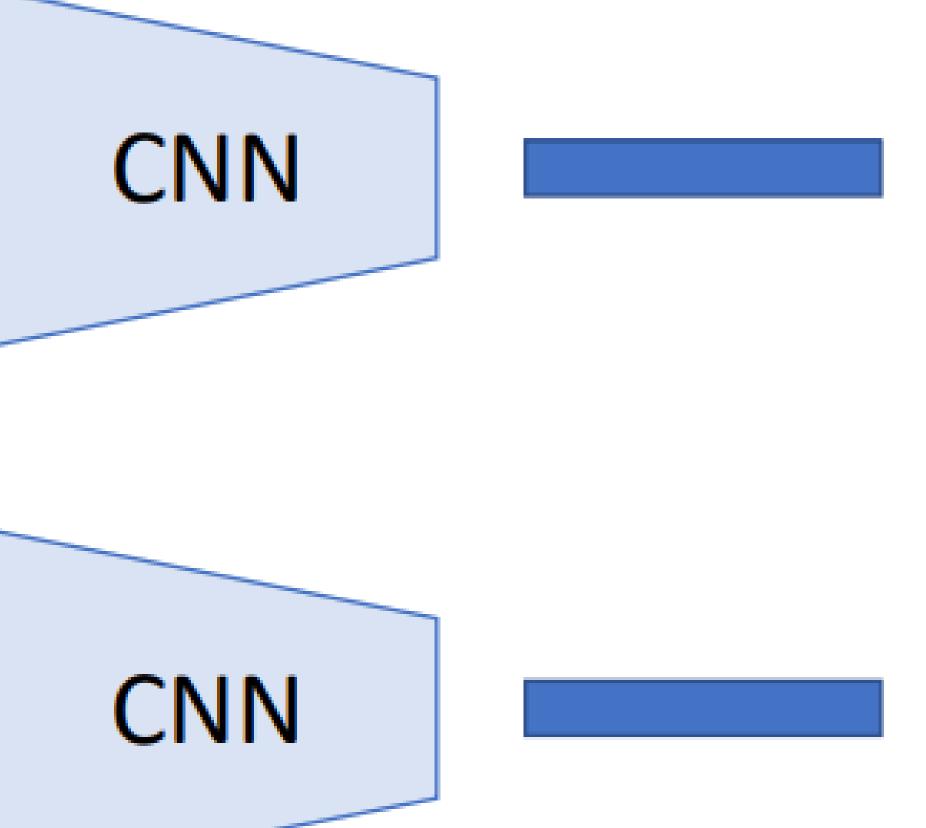
How to compute similarity if we don't have labels for images? Euclidean Distance between features $\|\phi(x_1) - \phi(x_2)\|_2$

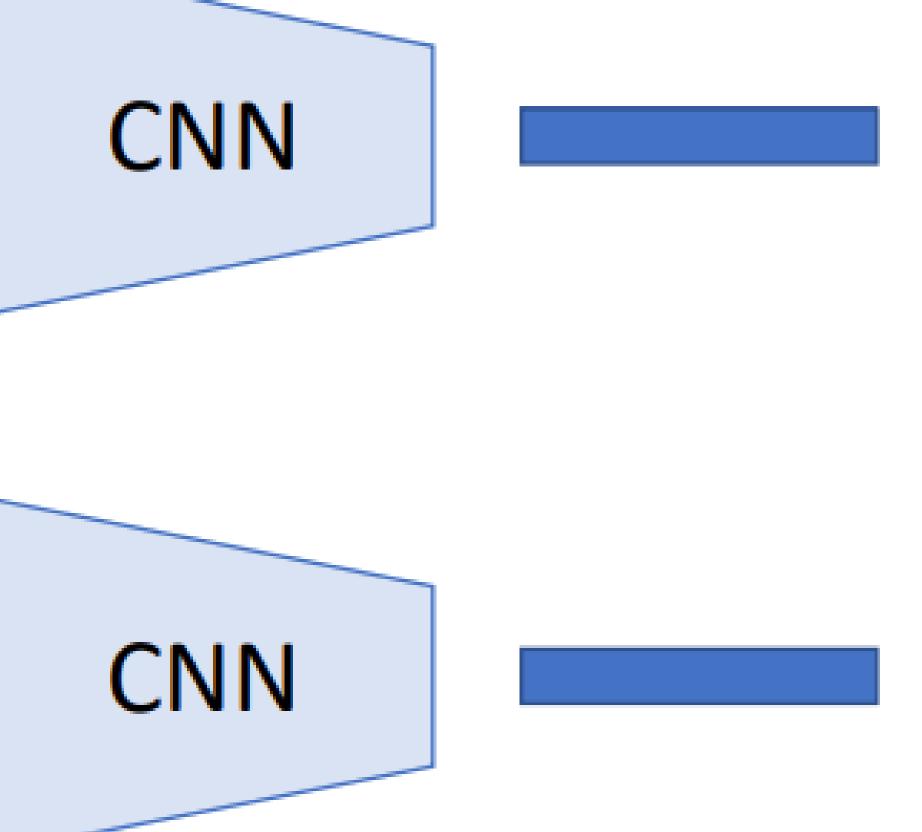




Problem 1:	How to com
Solution?	Euclidean Di
Problem 2:	Objective Fu

Similar images should have similar features

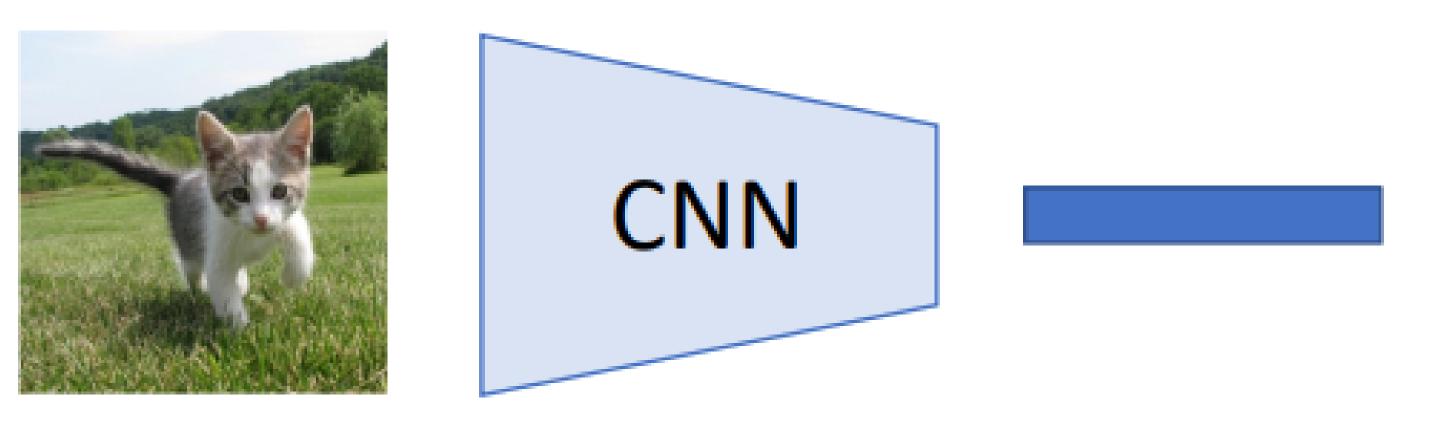


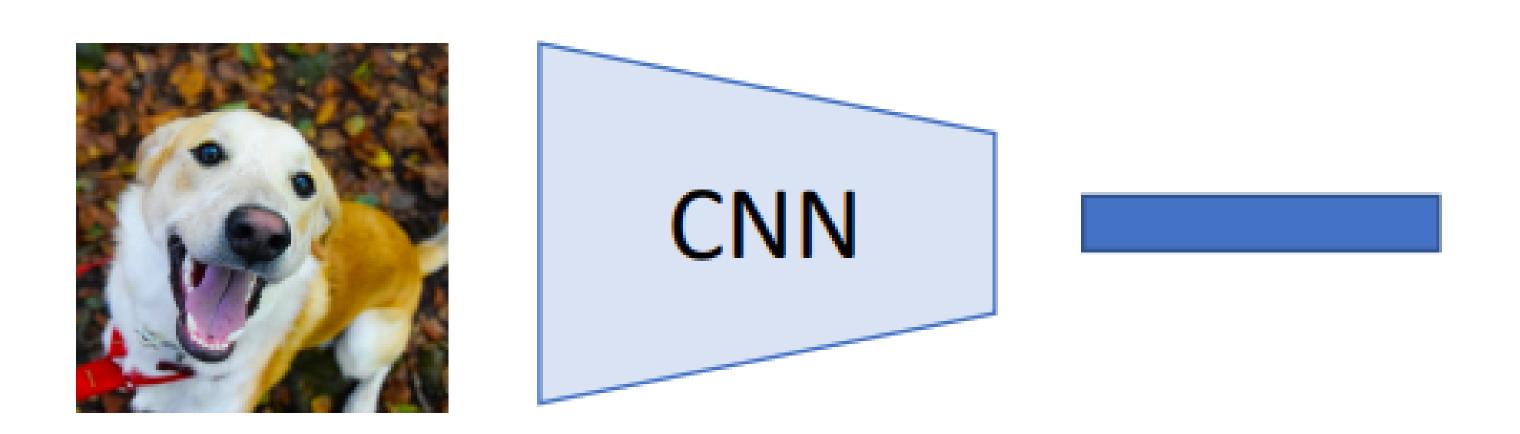


Contrastive Learning

- npute similarity if we don't have labels for images? istance between features $\|\phi(x_1) - \phi(x_2)\|_2$
- unction ?

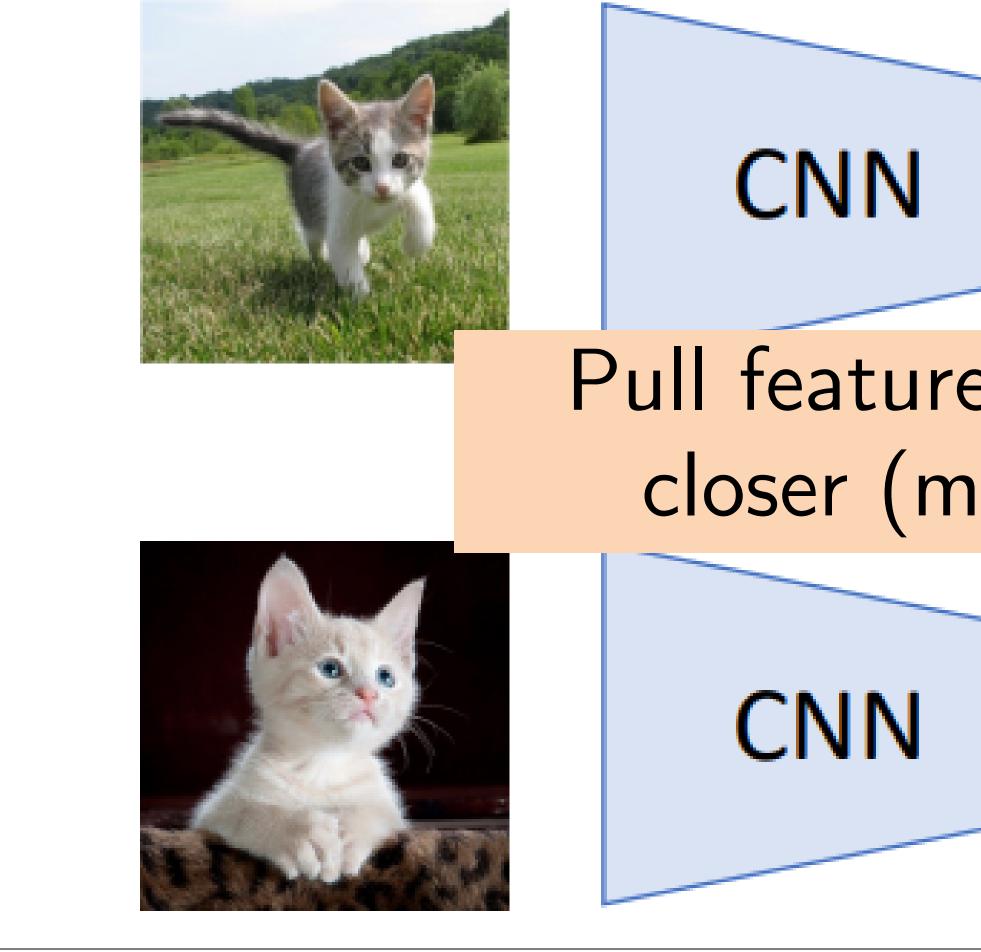
Dissimilar images should have dissimilar features





Problem 1:	How to com
Solution?	Euclidean D
Problem 2:	Objective Fu

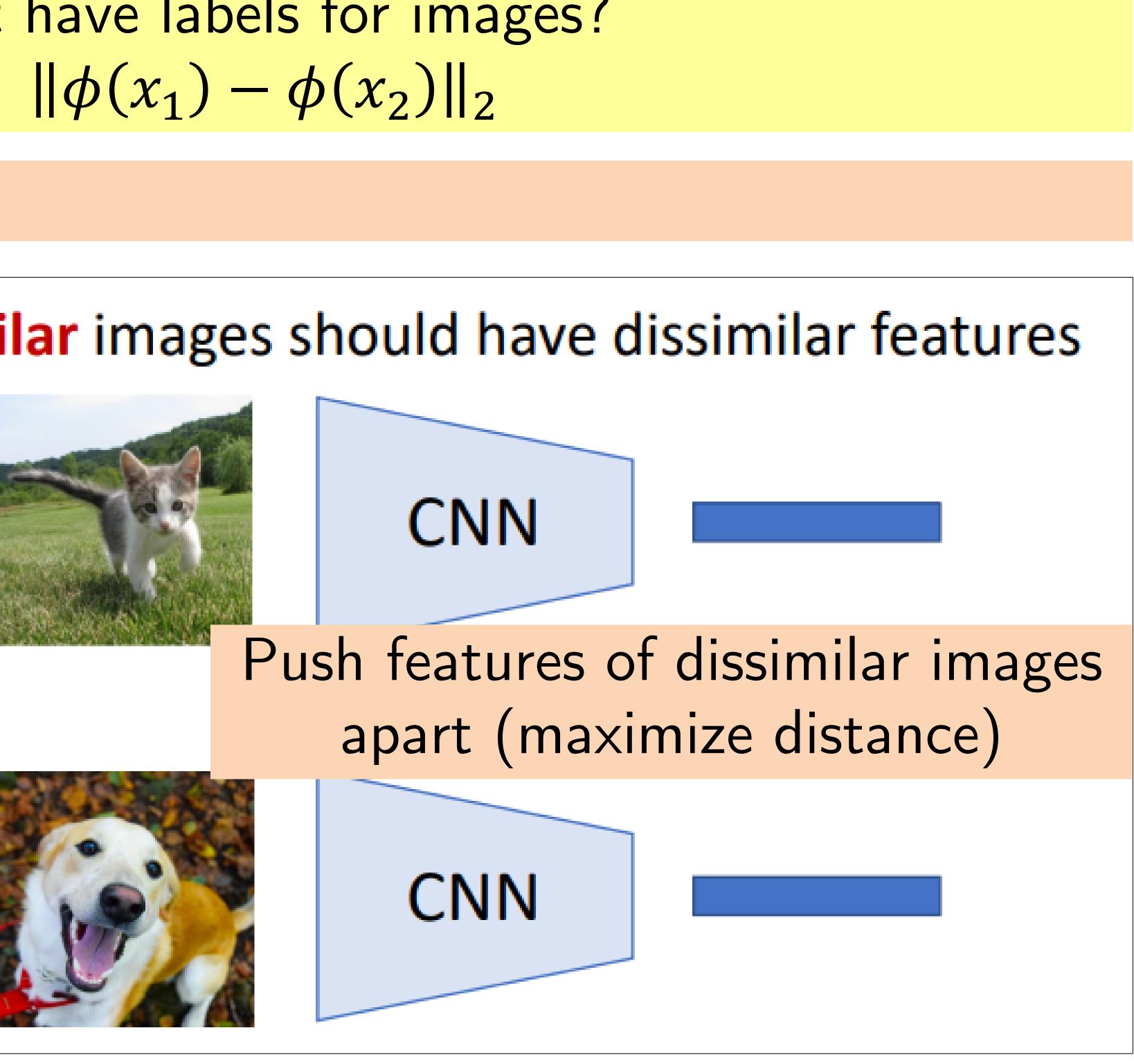
Similar images should have similar features

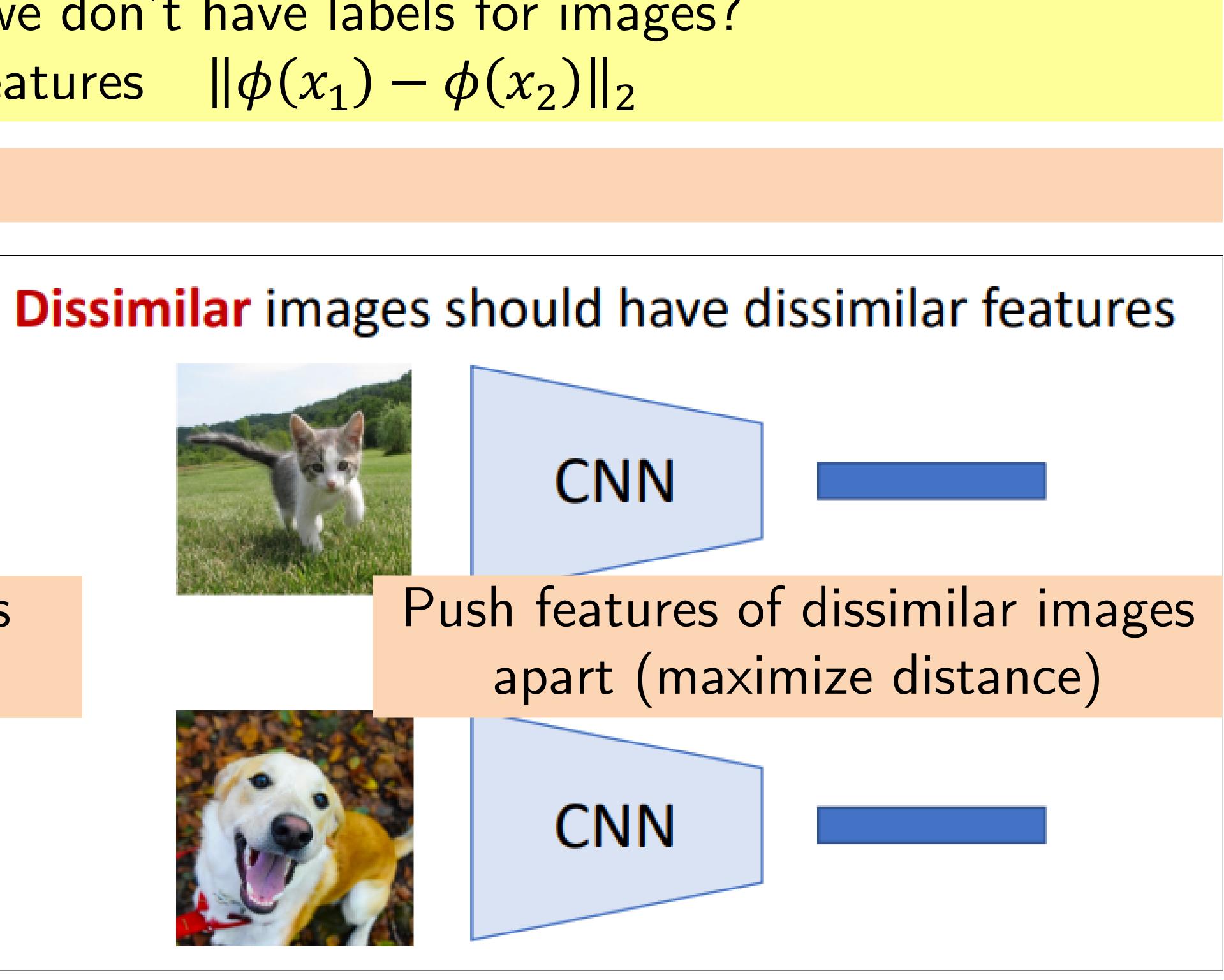


Contrastive Learning

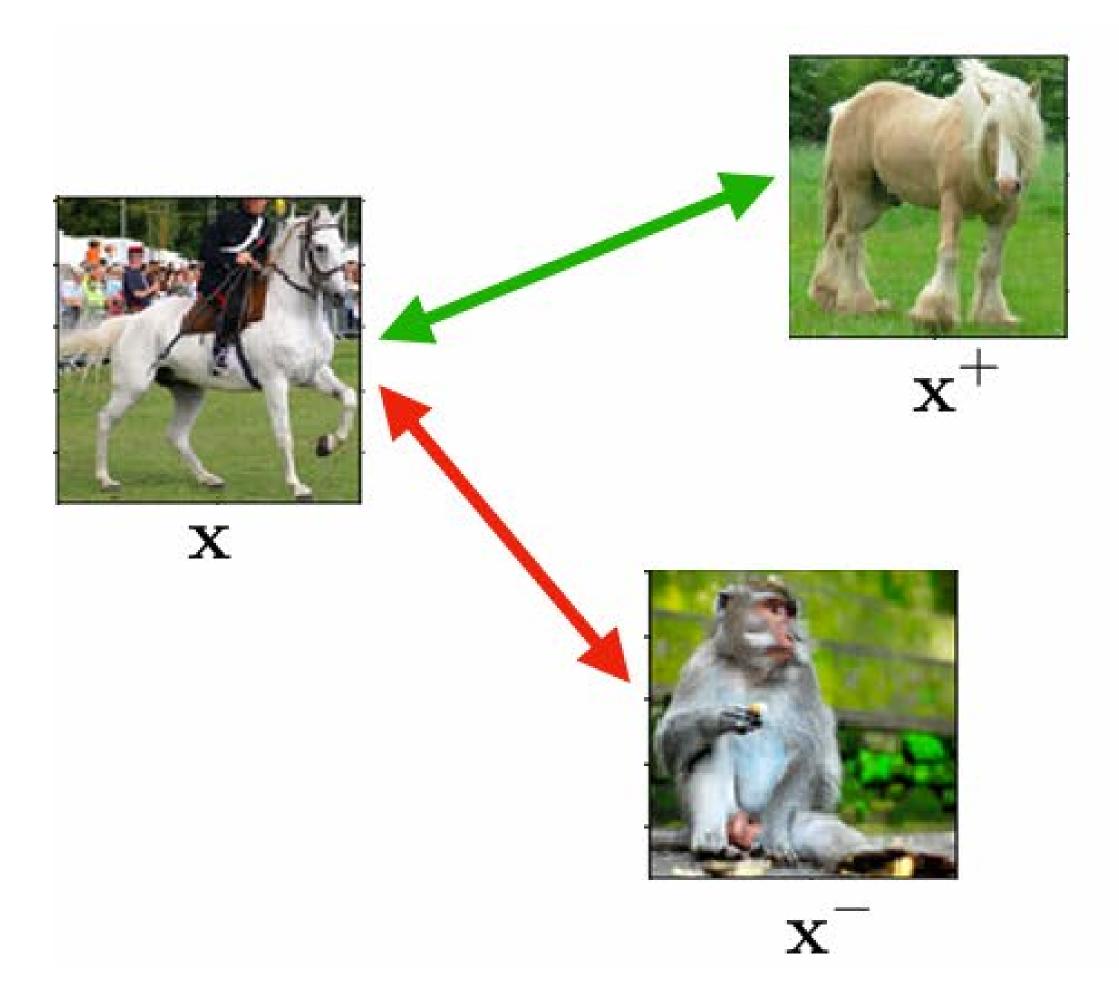
- pute similarity if we don't have labels for images? vistance between features $\|\phi(x_1) - \phi(x_2)\|_2$
- unction ?

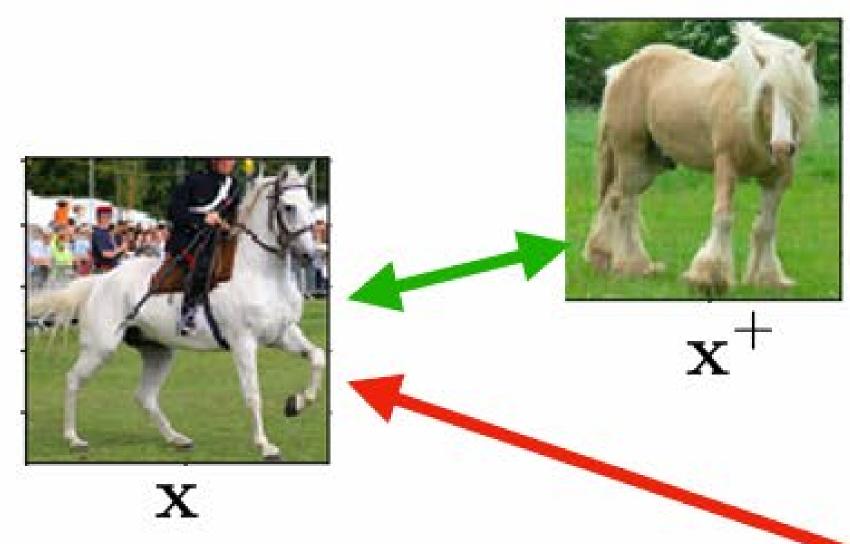
Pull features of similar images closer (minimize distance)

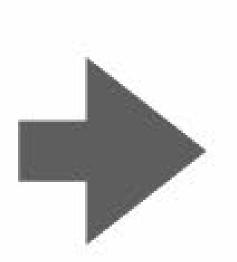




Examples of Contrastive Pairs

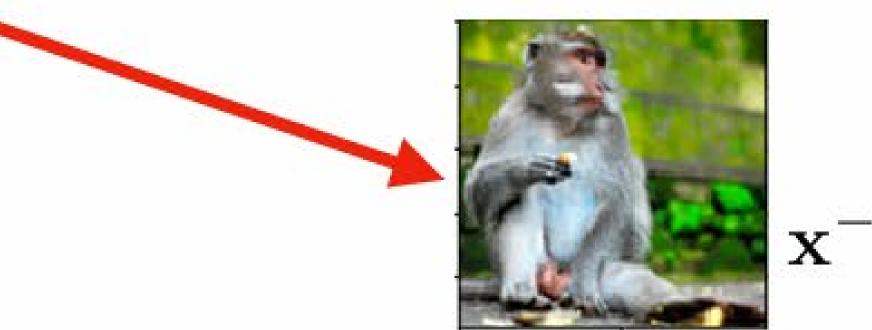


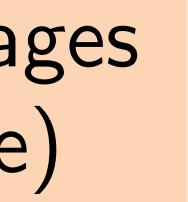




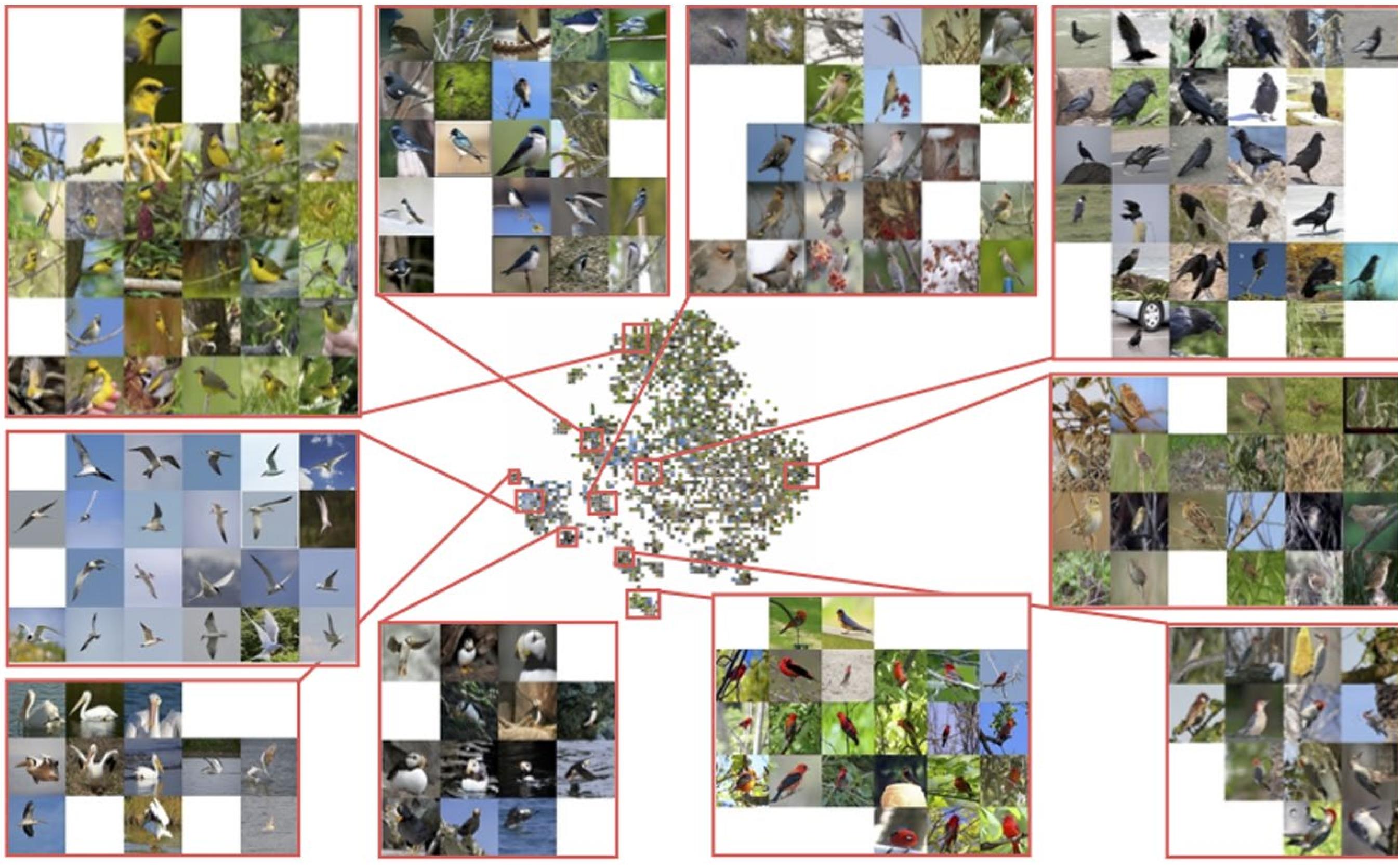
Push features of dissimilar images apart (maximize distance)

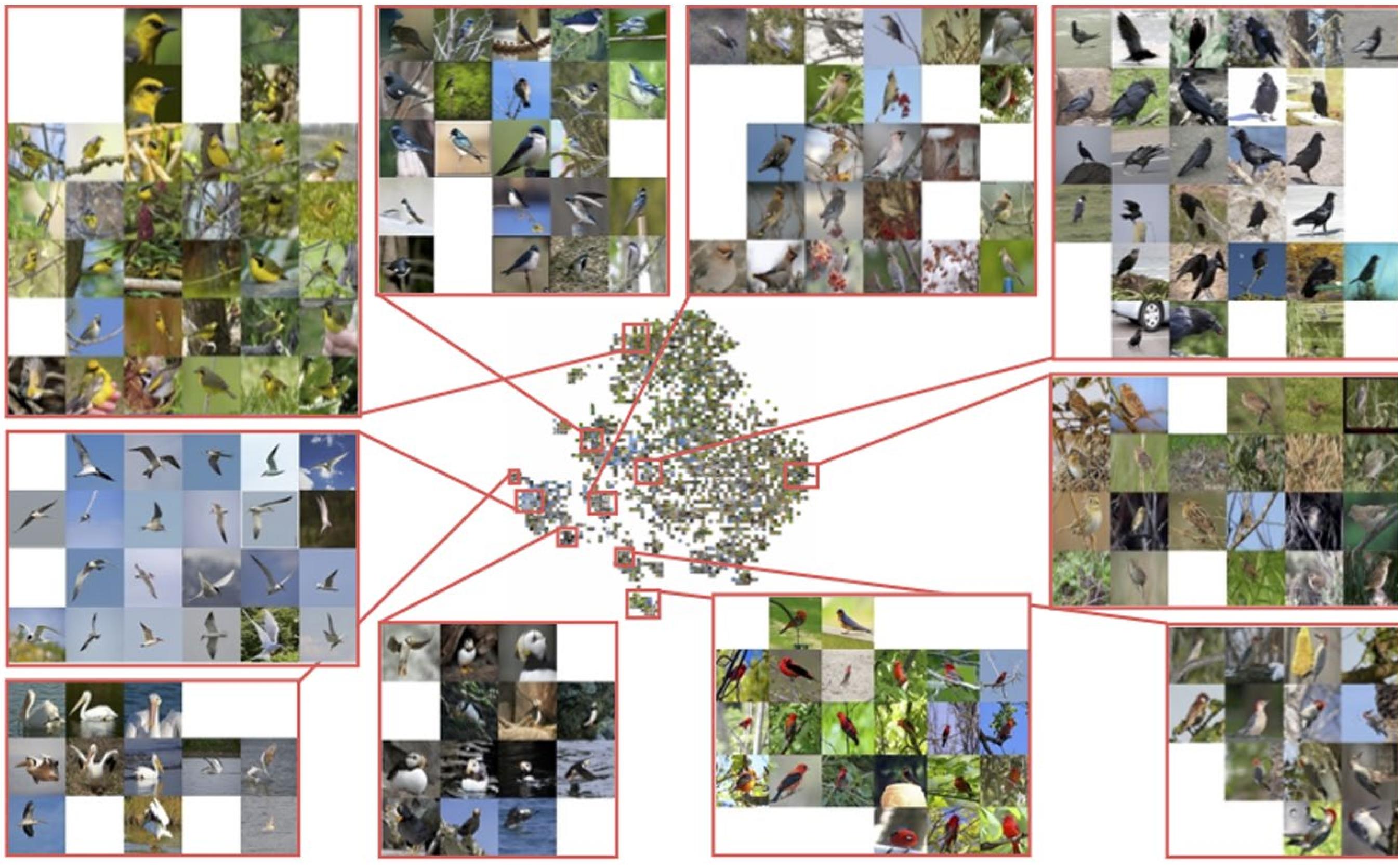
Pull features of similar images closer (minimize distance)

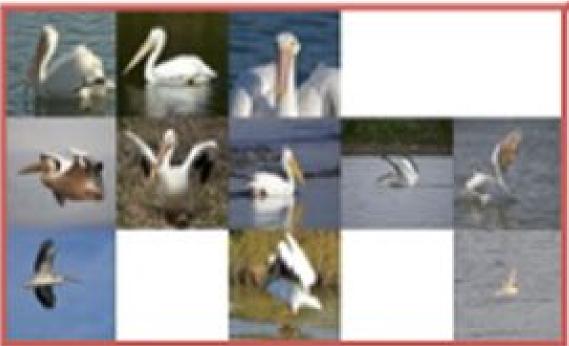




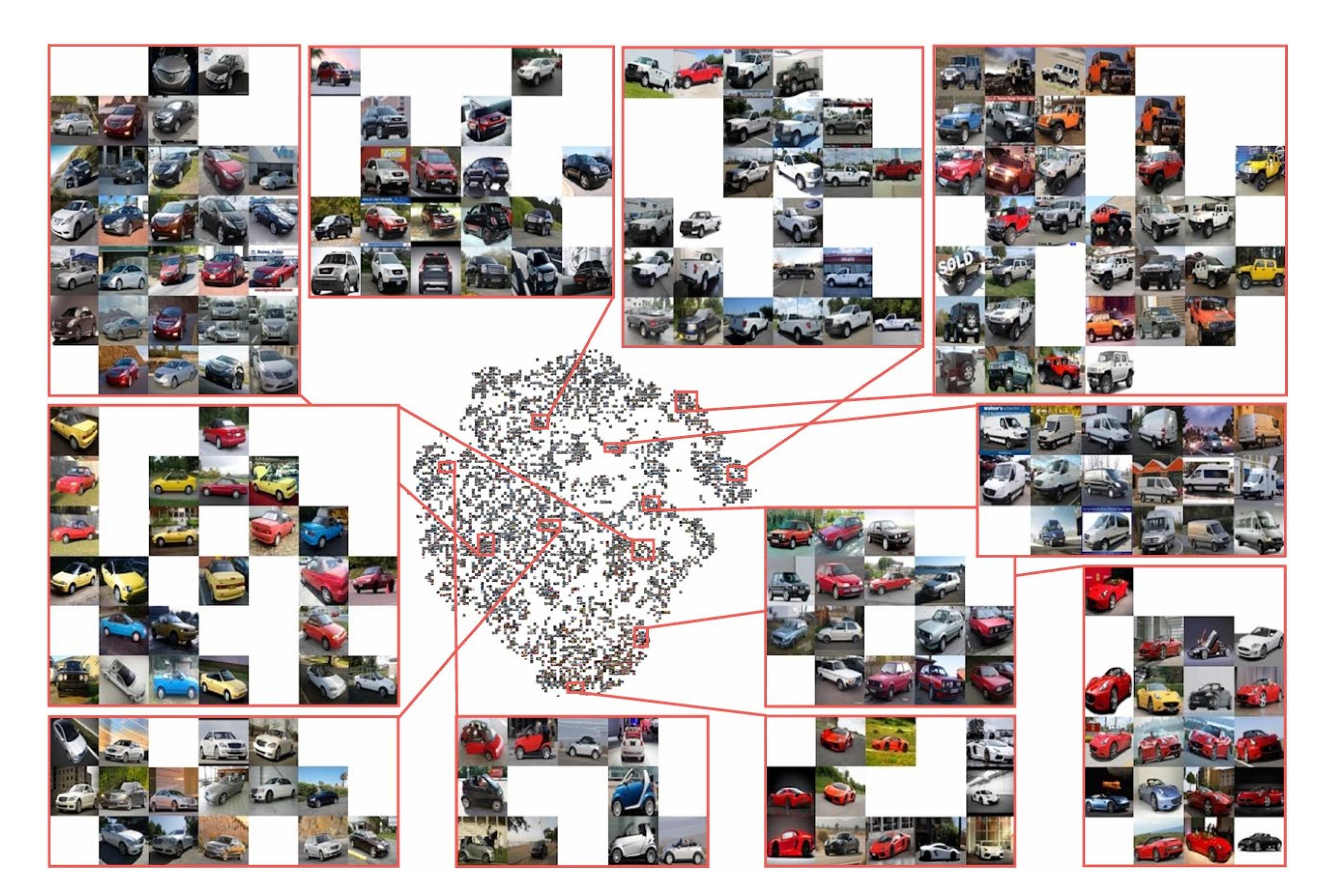
Examples of the Embedding Space







Examples of the Embedding Space



What can you do with this embedding space?

What can you do with this embedding space? ----- Retrieved Results ------Query RETREVAL

- Given a query image (left column), find similar images
- All you have to do is find the nearest neighbors in the embedding space and return the results
- Embedding space now has a notion of "similarity"
 - Similar datapoints are neighbors
 - Dissimilar datapoints are not

results from Song et al. CVPR 2016

What can you do with this embedding space? RETREVAL Retrieval Query

- Given a query image (left column), find similar images
- All you have to do is find the nearest neighbors in the embedding space and return the results
- Embedding space now has a notion of "similarity"
 - Similar datapoints are neighbors
 - Dissimilar datapoints are not

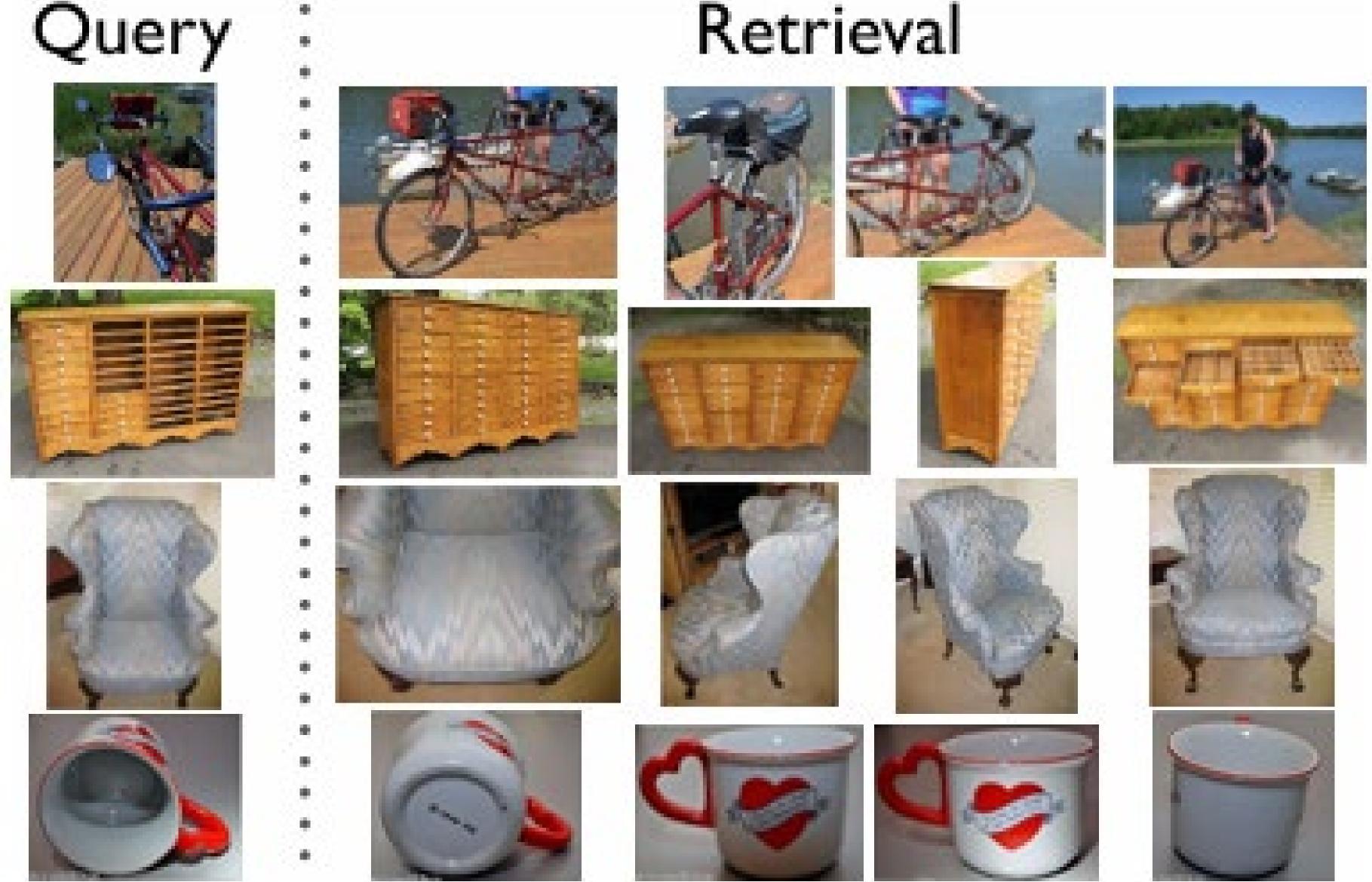


Figure 1: Example retrieval results on our Online Products dataset using the proposed embedding. The images in the first column are the query images.

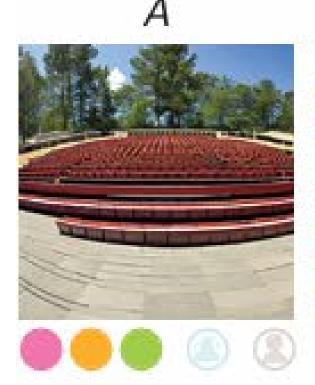
results from Song et al. CVPR 2016

Challenges: "Similarity" is hard ... What makes an image "similar" ?



В





В

Α

Reference

Reference

Reference

В

Reference

Similar in:

- Pose
- Perspective
- Foreground color
 - Number of items
- Object shape 0

figure: Fu*, Tamir*, Sundaram* et al 2023

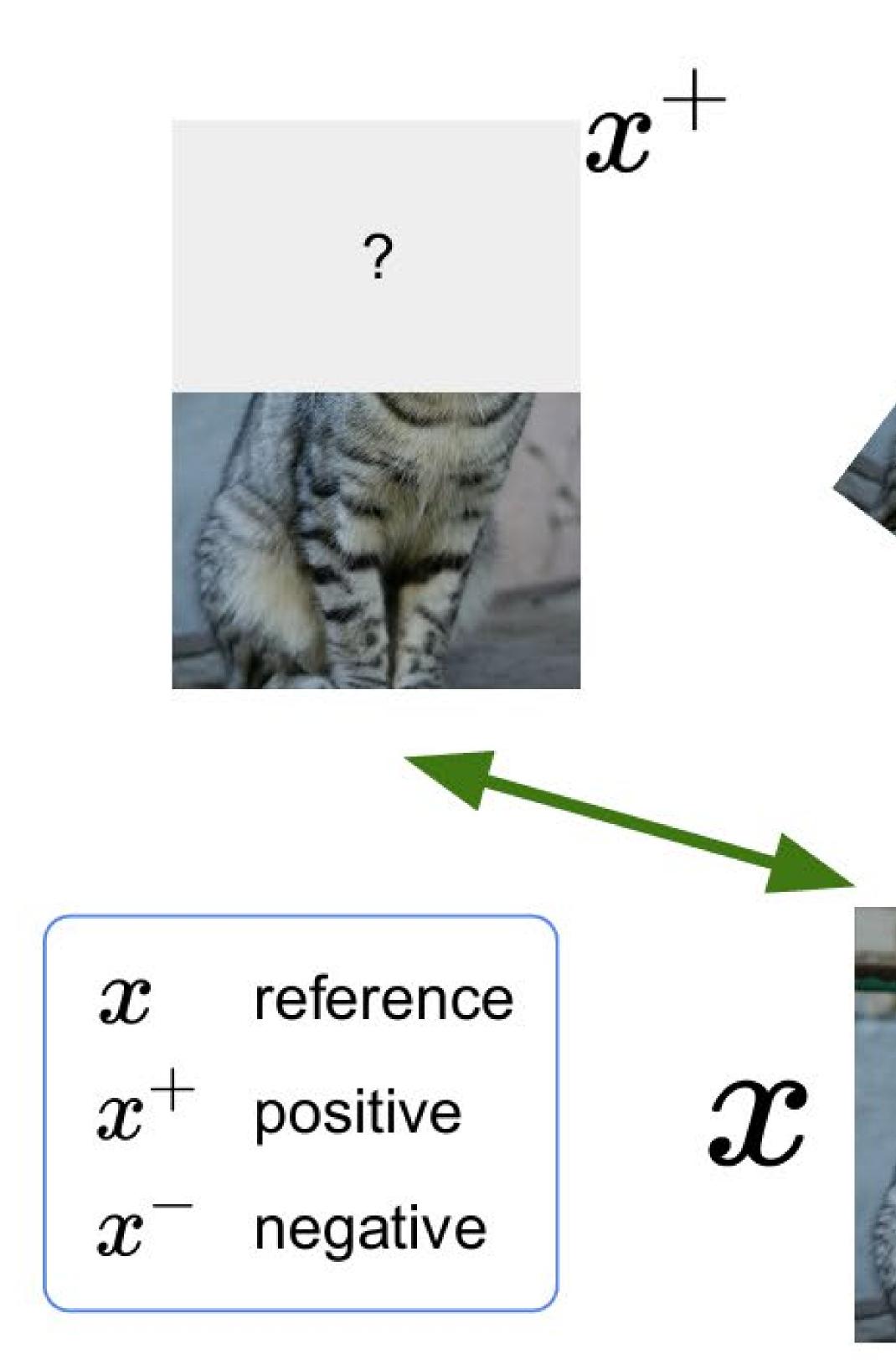
Where can we get pairs of similar and dissimilar images from?

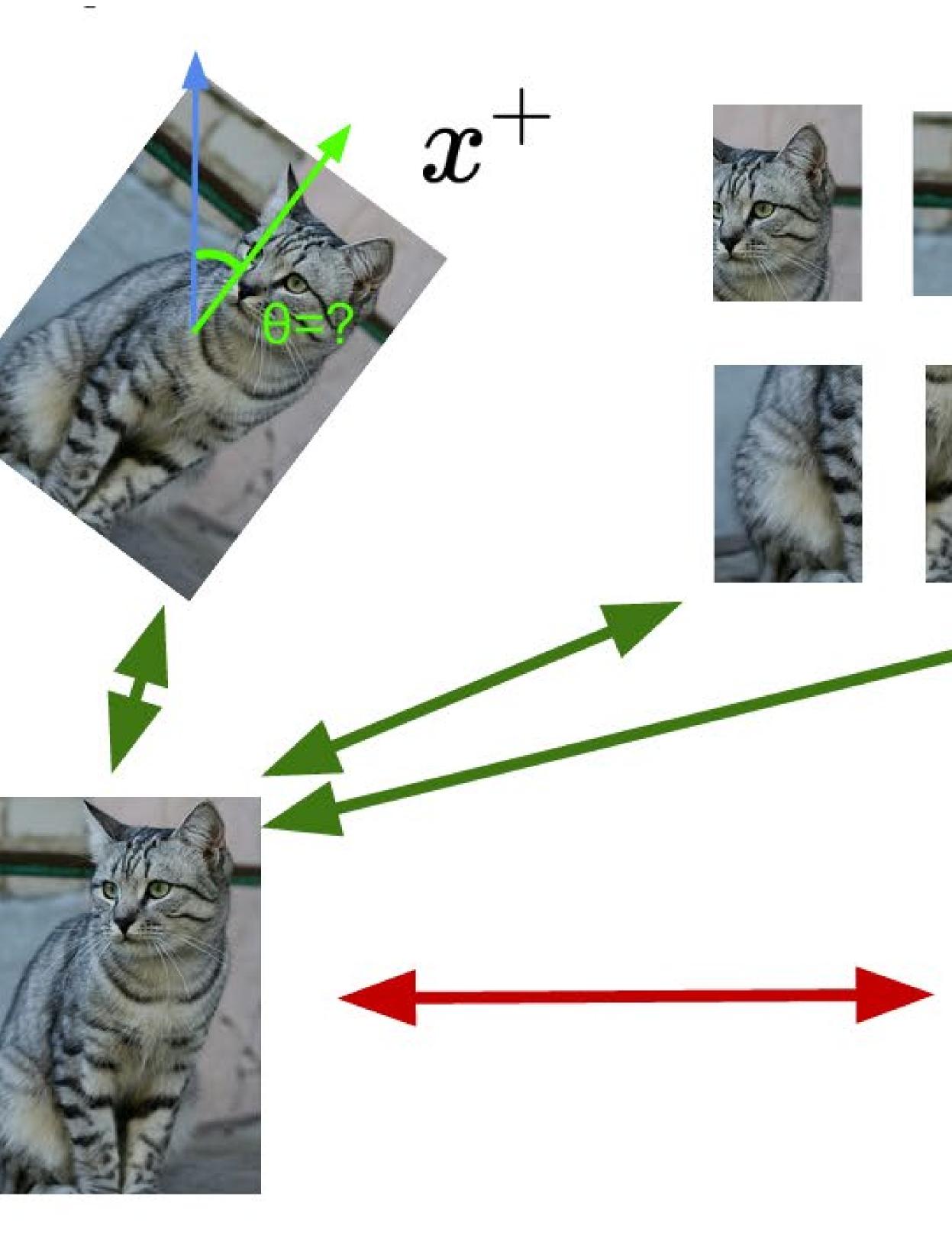
e similar features **Dissimilar** images should have dissimilar features

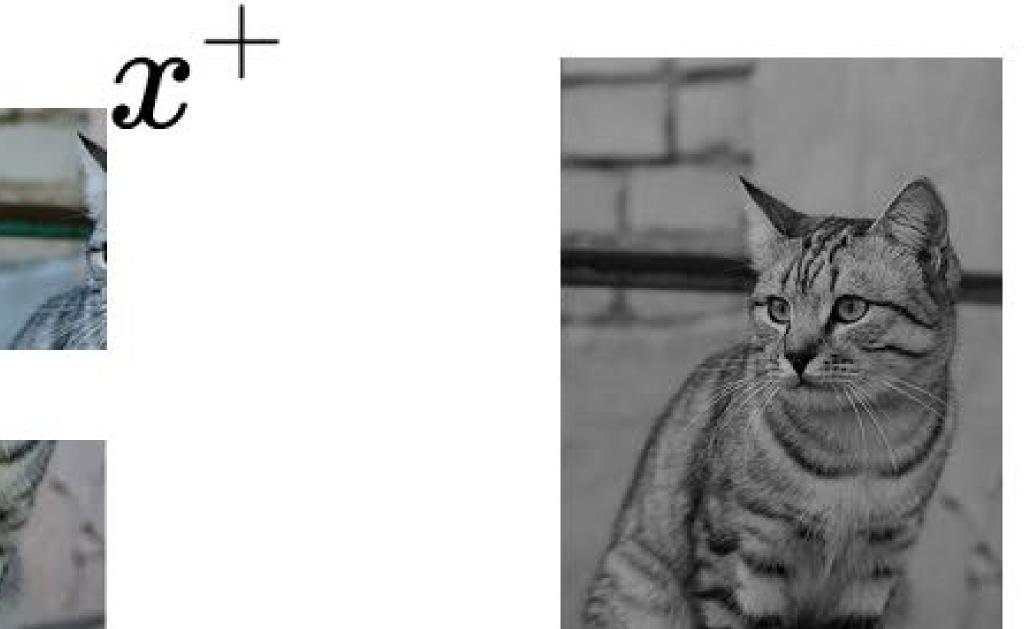
Where can we get pairs of similar and dissimilar images from?

DATA AUGMENTATION

Contrastive Learning with Data Augmentation







x

figure: Ranjay Krishna

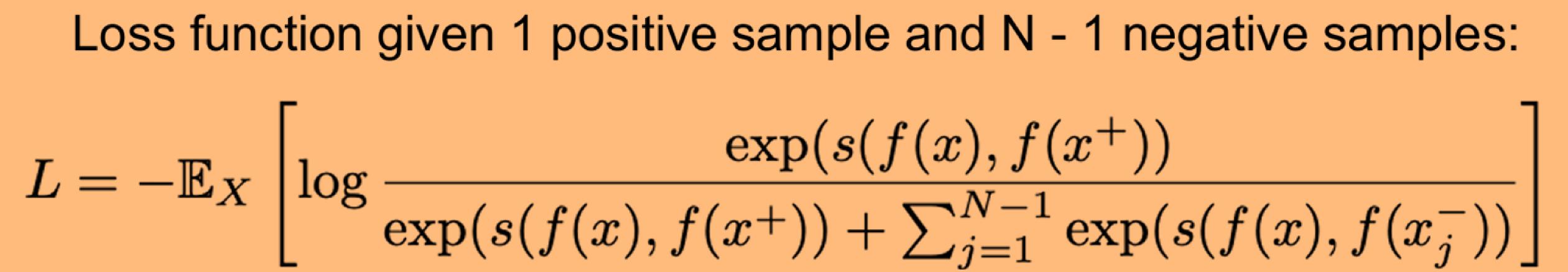
Contrastive Learning Formulation

• We want:

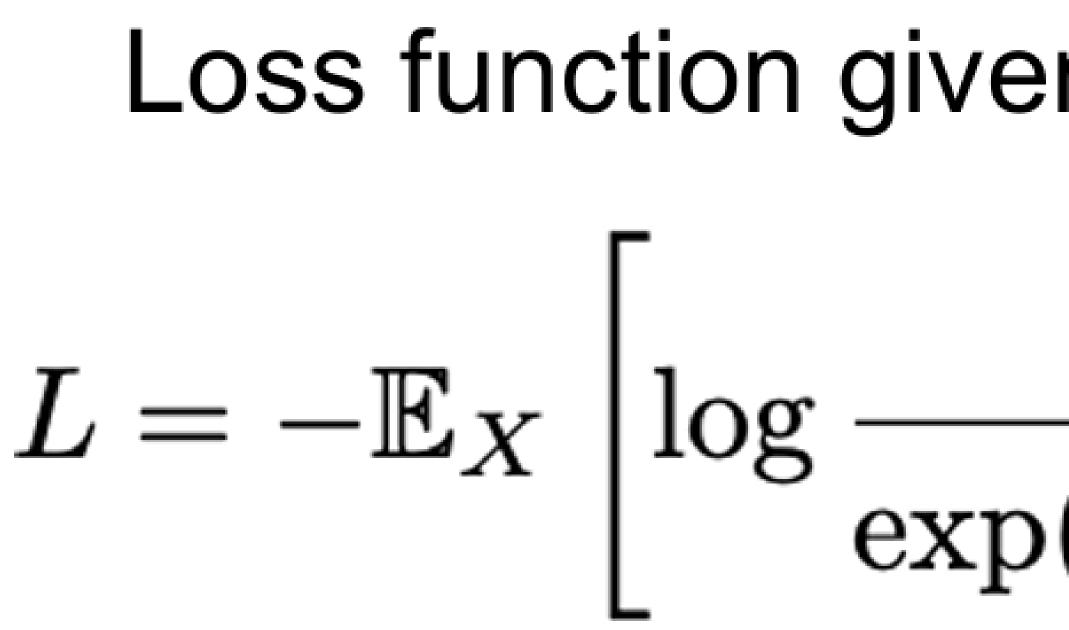
• Objective:

$$\operatorname{score}(f(x), f(x^+)) >> \operatorname{score}(f(x), f$$

x: reference sample; x^+ positive sample; x⁻ negative sample

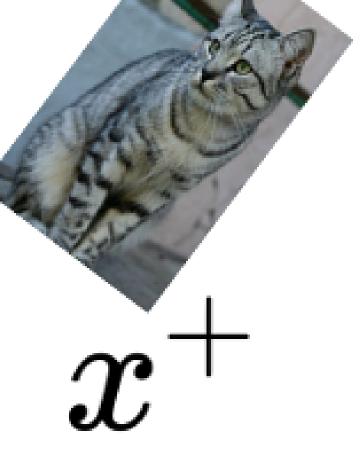


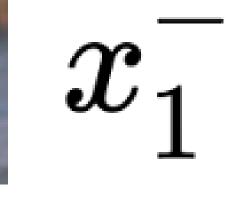
ore $(f(x), f(x^{-}))$



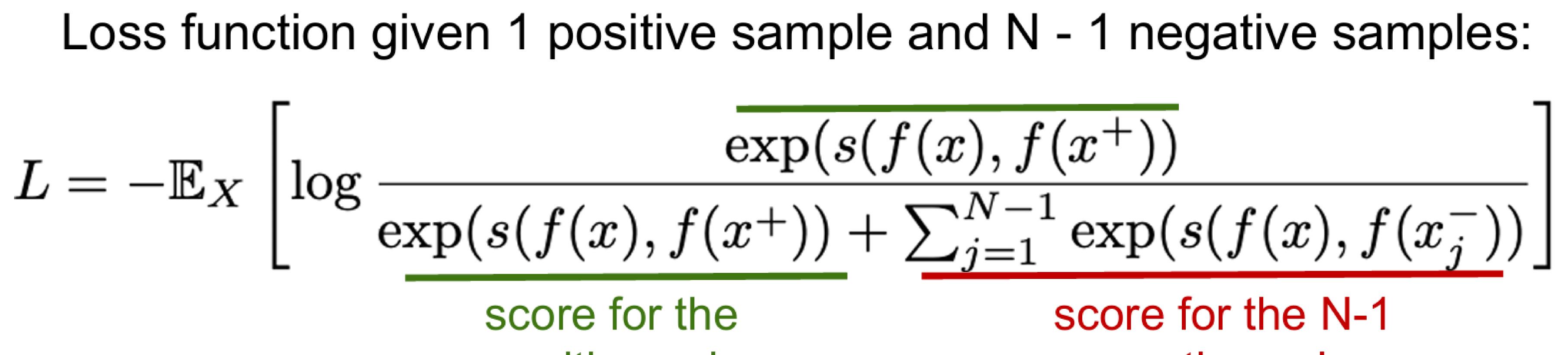
Loss function given 1 positive sample and N - 1 negative samples:

 $L = -\mathbb{E}_X \left[\log \frac{-1}{\exp(s(f(x), f(x^+)))} - \frac{1}{\exp(s(f(x), f(x^+)))} + \sum_{j=1}^{N-1} \exp(s(f(x), f(x_j^-)))} \right]$





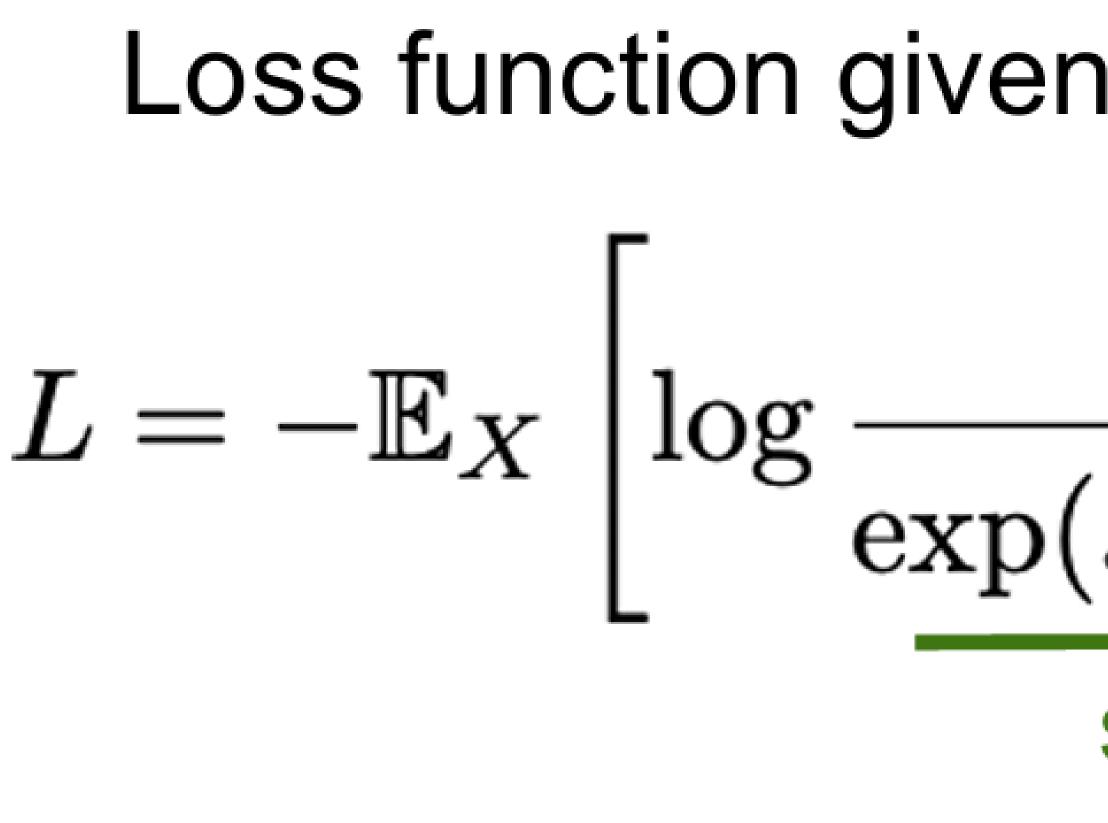
- - -



This seems familiar ...

positive pair

negative pairs



This seems familiar ...

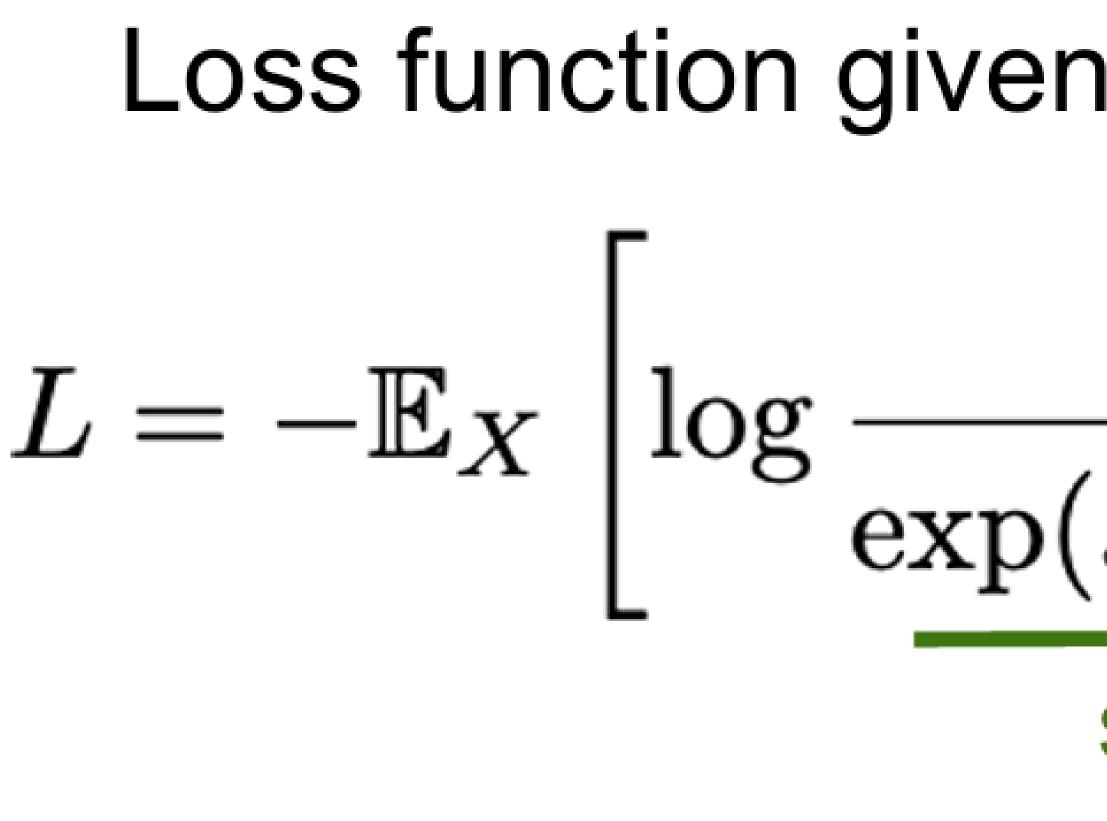
Loss function given 1 positive sample and N - 1 negative samples:

 $L = -\mathbb{E}_X \left[\log \frac{-1}{\exp(s(f(x), f(x^+)))} + \sum_{j=1}^{N-1} \exp(s(f(x), f(x_j^-)))} \right]$

score for the positive pair

Cross entropy loss for a N-way softmax classifier! I.e., learn to find the positive sample from the N samples

score for the N-1 negative pairs



This seems familiar ...

Very similar to a softmax classifier We want to compare the reference image against all other positive and negative images. We can exponentiate and normalize these scores like we did with the softmax classifier.

Loss function given 1 positive sample and N - 1 negative samples:

 $L = -\mathbb{E}_X \left[\log \frac{-1}{\exp(s(f(x), f(x^+)))} + \sum_{j=1}^{N-1} \exp(s(f(x), f(x_j^-)))} \right]$

score for the positive pair

Cross entropy loss for a N-way softmax classifier! I.e., learn to find the positive sample from the N samples

score for the N-1 negative pairs

Constrastive Learning Loss

- $L = -\mathbb{E}_X \left[\log \frac{\exp(s(f(x), f(x^+)))}{\exp(s(f(x), f(x^+)) + \sum_{j=1}^{N-1} \exp(s(f(x), f(x_j^-))))} \right]$
 - Commonly known as the InfoNCE loss (van den Oord et al., 2018) A lower bound on the mutual information between f(x) and $f(x^{+})$
 - $MI[f(x), f(x^+)] \log(N) \ge -L$
 - The larger the negative sample size (N), the tighter the bound

Loss function given 1 positive sample and N - 1 negative samples:

SimCLR: A Simple Framework for Contrastive learning

Cosine similarity as the score function:

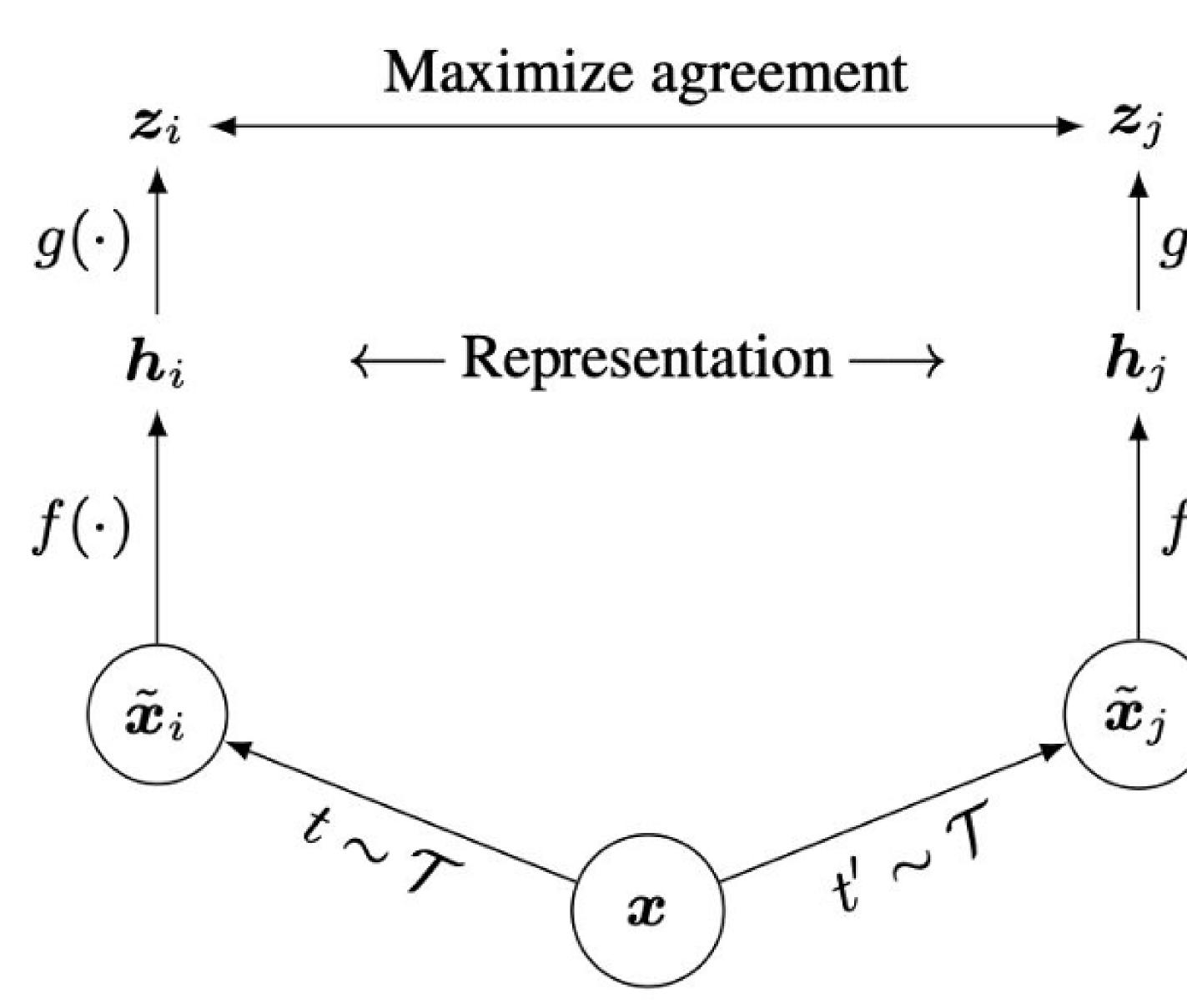
$$s(u,v) = rac{1}{||v|}$$

Use a projection network *h(·)* to project features to a space where contrastive learning is applied

Generate positive samples through data augmentation:

random cropping, random color lacksquaredistortion, and random blur.

- u||||v|

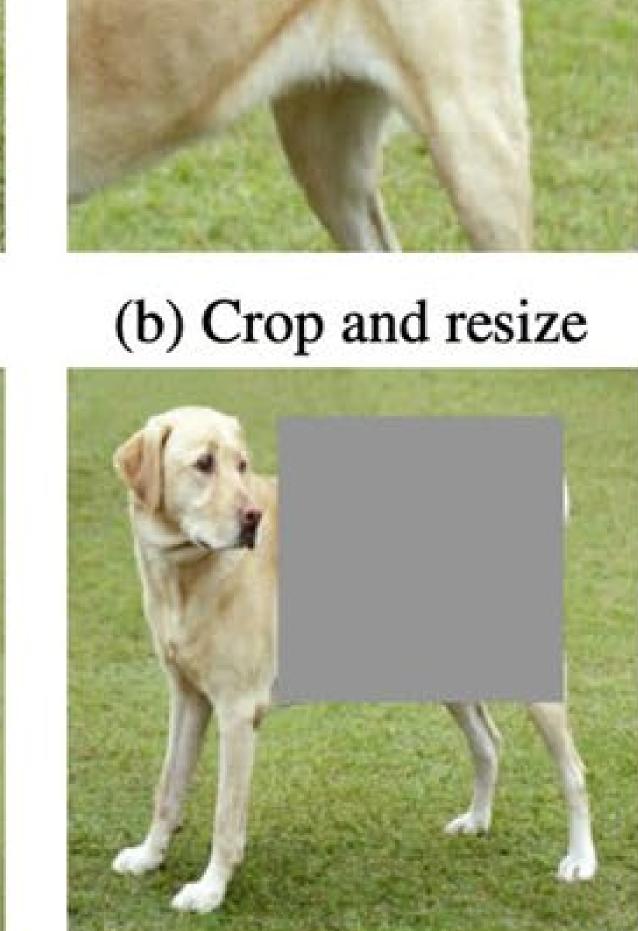


Source: Chen et al., 2020

SimCLR:

Data Augmentation Strategies

(a) Original



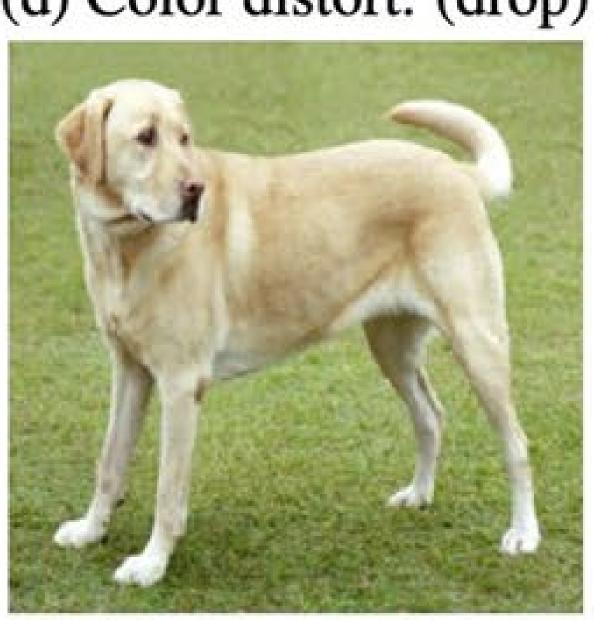


(f) Rotate $\{90^\circ, 180^\circ, 270^\circ\}$

(g) Cutout

(c) Crop, resize (and flip) (d) Color distort. (drop) (e) Color distort. (jitter)

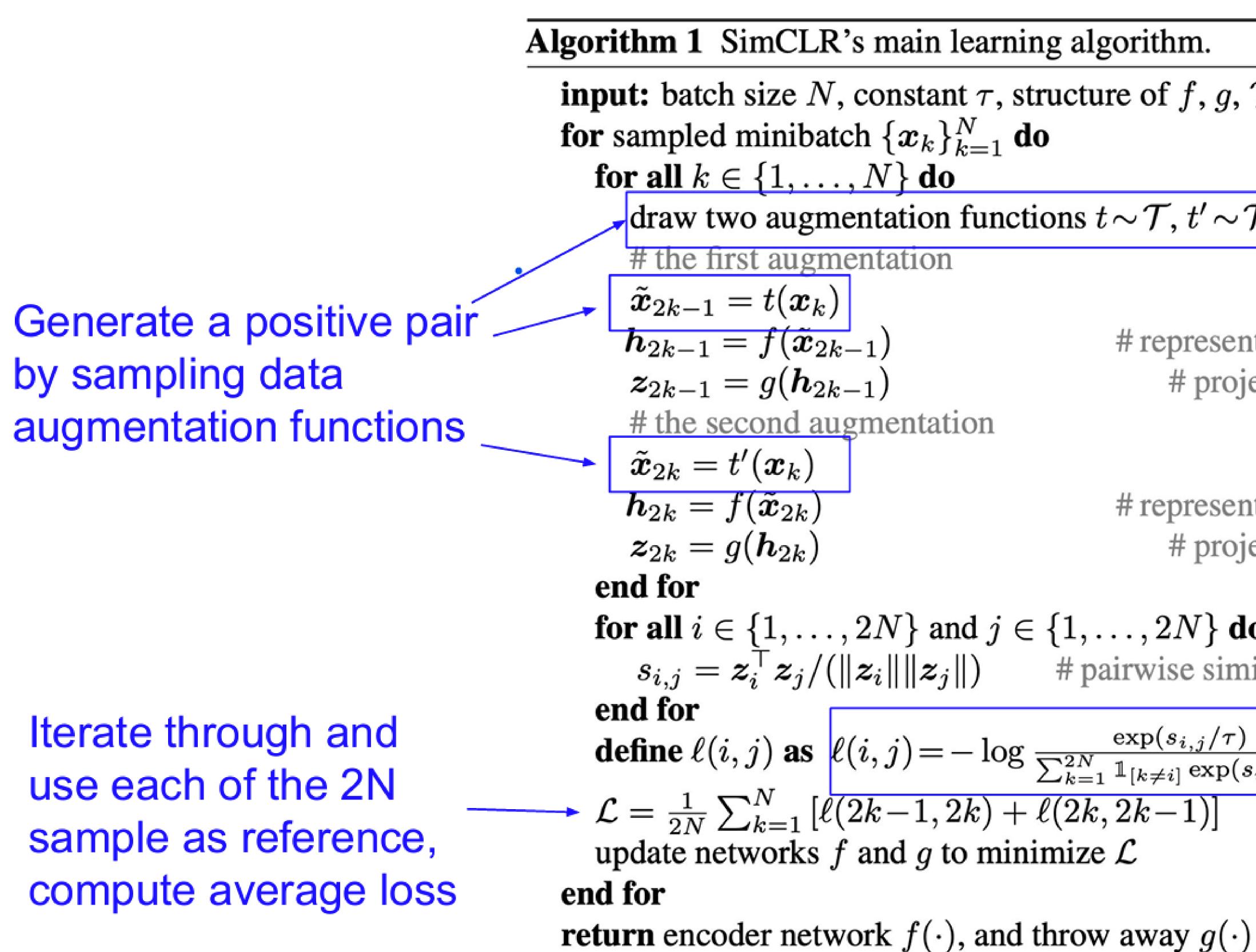
(h) Gaussian noise



(i) Gaussian blur

(j) Sobel filtering Source: Chen et al., 2020

SimCLR:



Algorithm Sketch

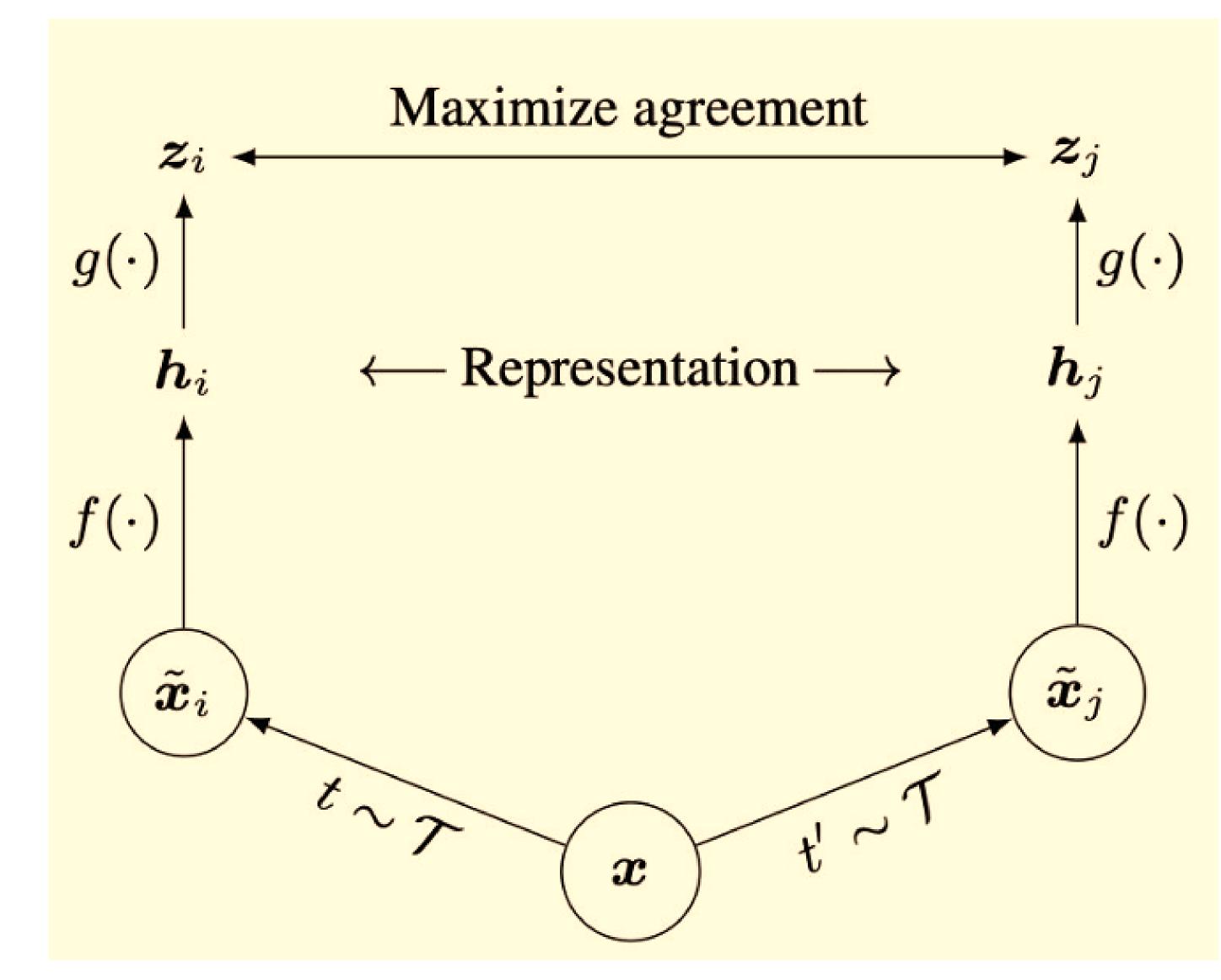
Algorithm 1 SimCLR's main learning algorithm.

input: batch size N, constant τ , structure of f, g, \mathcal{T} . for sampled minibatch $\{x_k\}_{k=1}^N$ do for all $k \in \{1, ..., N\}$ do

draw two augmentation functions $t \sim T$, $t' \sim T$

the first augmentation

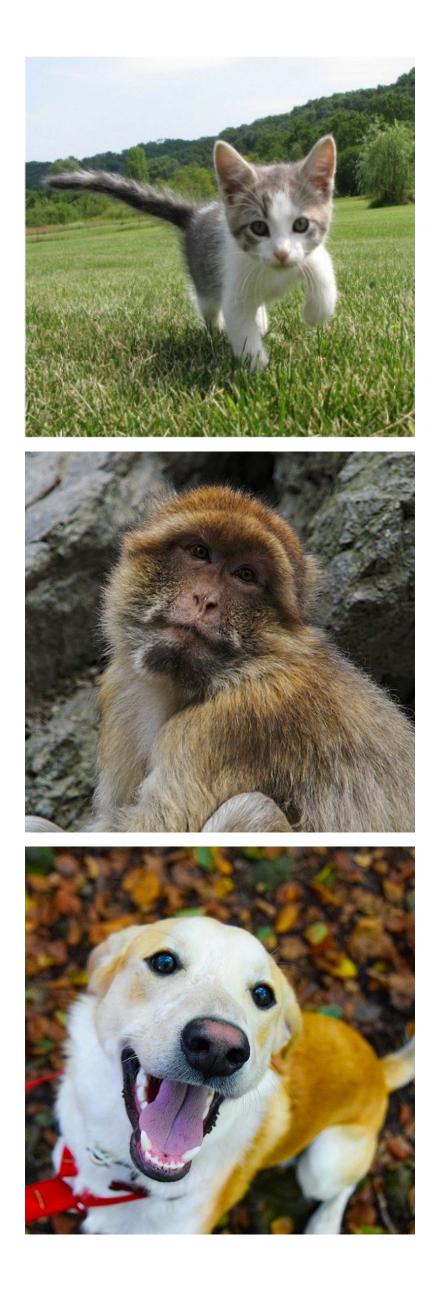
$$2k-1 = t(\boldsymbol{x}_k)$$
 # representation
 $2k-1 = f(\tilde{\boldsymbol{x}}_{2k-1})$ # representation
 $2k-1 = g(\boldsymbol{h}_{2k-1})$ # projection
the second augmentation
 $2k = t'(\boldsymbol{x}_k)$ # representation
 $2k = f(\tilde{\boldsymbol{x}}_{2k})$ # representation
 $kk = g(\boldsymbol{h}_{2k})$ # projection
for
all $i \in \{1, \dots, 2N\}$ and $j \in \{1, \dots, 2N\}$ do
 $k,j = \boldsymbol{z}_i^T \boldsymbol{z}_j / (||\boldsymbol{z}_i|| ||\boldsymbol{z}_j||)$ # pairwise similarity
for
the $\ell(i, j)$ as $\ell(i, j) = -\log \frac{\exp(s_{i,j}/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k \neq i]} \exp(s_{i,k}/\tau)}$
 $\frac{1}{2N} \sum_{k=1}^{N} [\ell(2k-1, 2k) + \ell(2k, 2k-1)]$
the networks f and g to minimize \mathcal{L}



InfoNCE loss: Use all non-positive samples in the batch as x⁻

Source: Chen et al., 2020

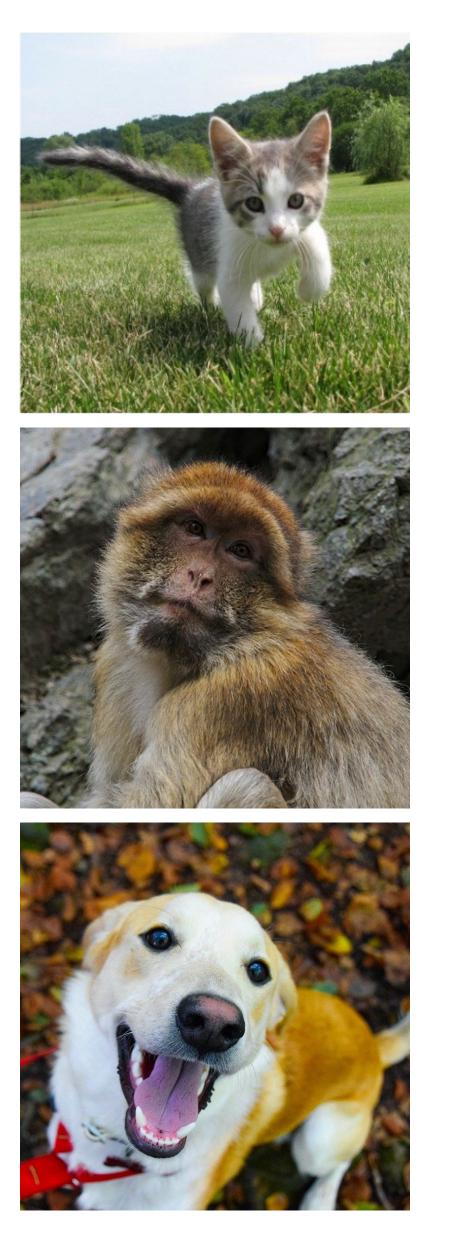
Batch of N images

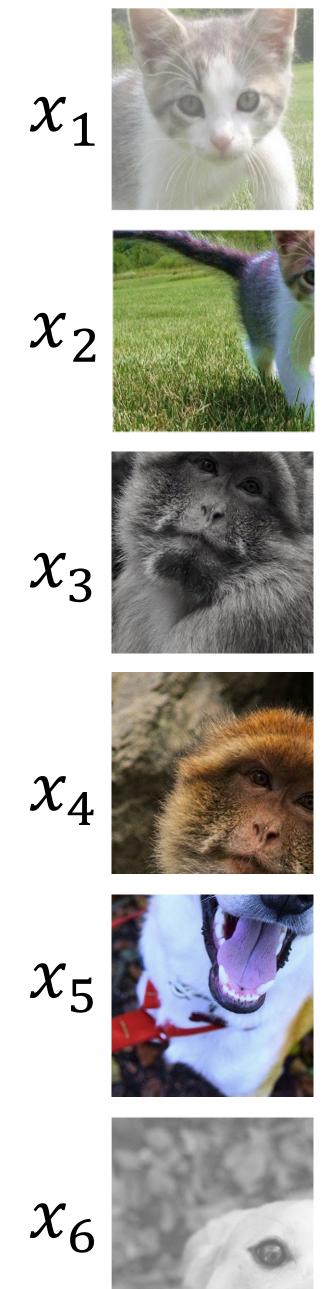


Hadsell et al, "Dimensionality Reduction by Learning and Invariant Mapping", CVPR 2006 Wu et al, "Unsupervised Feature Learning by Non-Parametric Instance-Level Discrimination", CVPR 2018 Van den Oord et al, "Representation Learning with Contrastive Predictive Coding", NeurIPS 2018

Hjelm et al, "Learning deep representations by mutual information estimation and maximization", ICLR 2019 Bachman et al, "Learning Representations by Maximizing Mutual Information Across Views", NeurIPS 2019 Henaff et al, "Data-Efficient Image Recognition with Contrastive Predictive Coding", ICML 2020

Batch of Two augmentations for each image N images

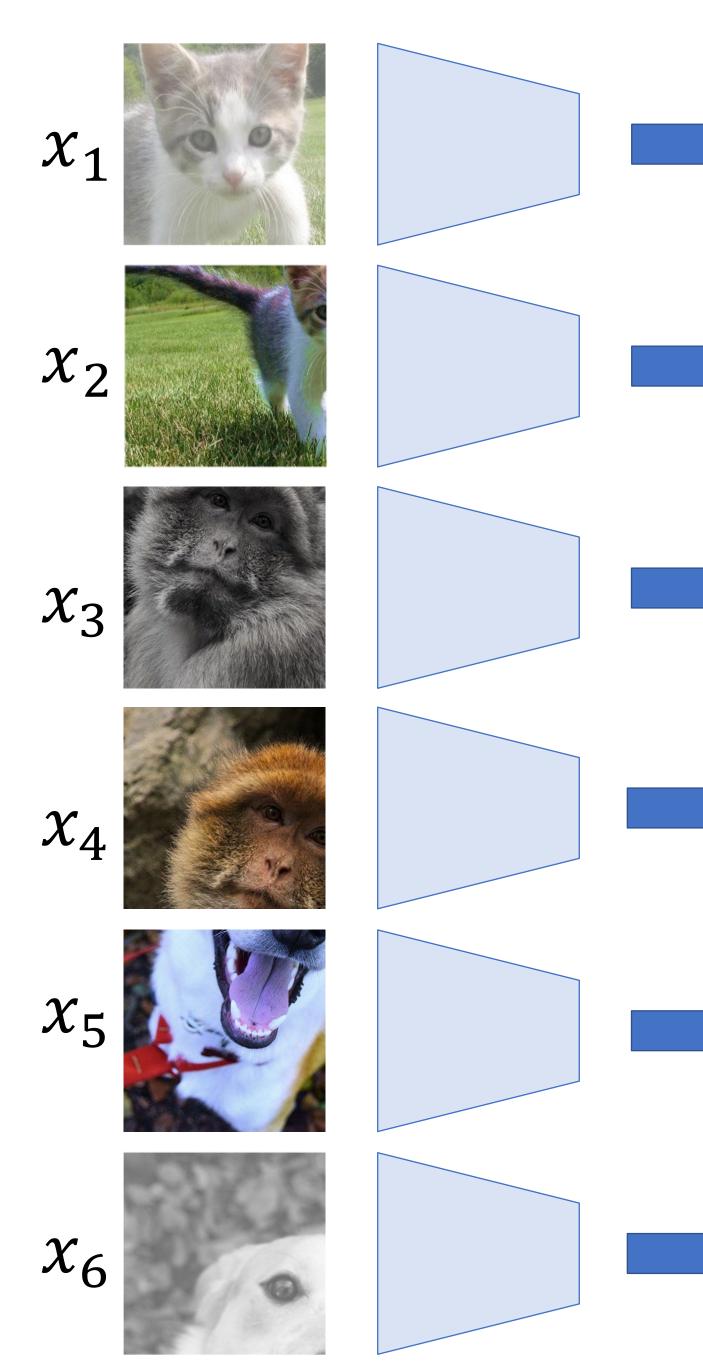




Hadsell et al, "Dimensionality Reduction by Learning and Invariant Mapping", CVPR 2006 Wu et al, "Unsupervised Feature Learning by Non-Parametric Instance-Level Discrimination", CVPR 2018 Van den Oord et al, "Representation Learning with Contrastive Predictive Coding", NeurIPS 2018

Hjelm et al, "Learning deep representations by mutual information estimation and maximization", ICLR 2019 Bachman et al, "Learning Representations by Maximizing Mutual Information Across Views", NeurIPS 2019 Henaff et al, "Data-Efficient Image Recognition with Contrastive Predictive Coding", ICML 2020

Batch of Two augmentations for each image N images

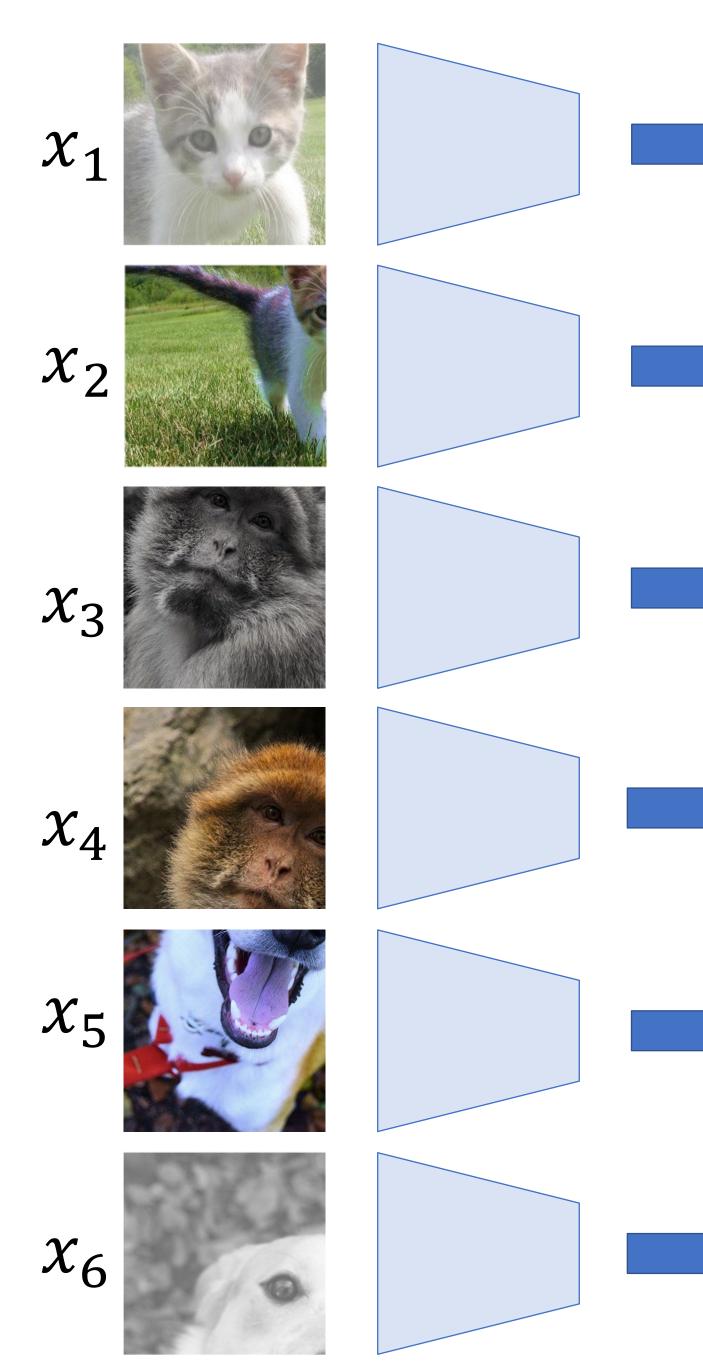


Hadsell et al, "Dimensionality Reduction by Learning and Invariant Mapping", CVPR 2006 Wu et al, "Unsupervised Feature Learning by Non-Parametric Instance-Level Discrimination", CVPR 2018 Van den Oord et al, "Representation Learning with Contrastive Predictive Coding", NeurIPS 2018

Extract features

> Hjelm et al, "Learning deep representations by mutual information estimation and maximization", ICLR 2019 Bachman et al, "Learning Representations by Maximizing Mutual Information Across Views", NeurIPS 2019 Henaff et al, "Data-Efficient Image Recognition with Contrastive Predictive Coding", ICML 2020

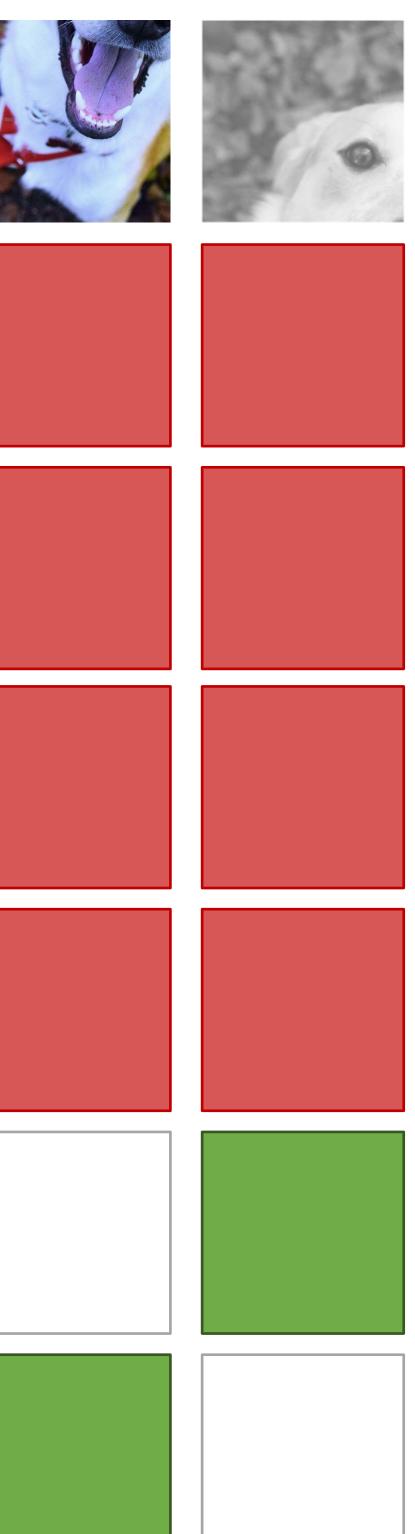
Batch ofTwo augmentationsN imagesfor each image



Hadsell et al, "Dimensionality Reduction by Learning and Invariant Mapping", CVPR 2006 Wu et al, "Unsupervised Feature Learning by Non-Parametric Instance-Level Discrimination", CVPR 2018 Van den Oord et al, "Representation Learning with Contrastive Predictive Coding", NeurIPS 2018

Extract features

> Hjelm et al, "Learning deep representations by mutual information estimation and maximization", ICLR 2019 Bachman et al, "Learning Representations by Maximizing Mutual Information Across Views", NeurIPS 2019 Henaff et al, "Data-Efficient Image Recognition with Contrastive Predictive Coding", ICML 2020



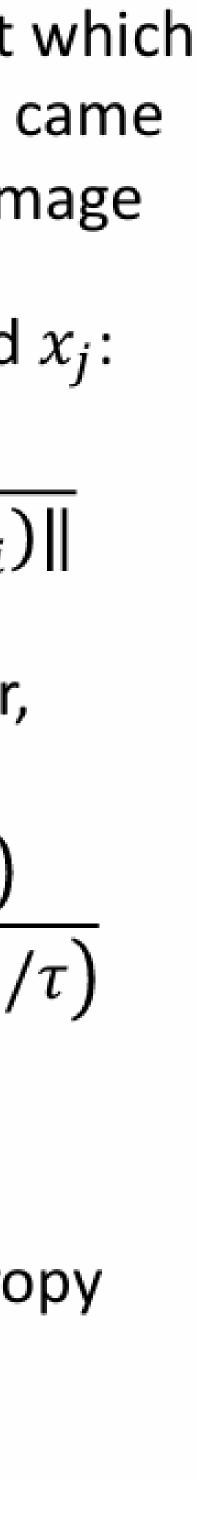
Each image tries to predict which of the *other* 2N-1 images came from the same original image

Similarity between x_i and x_j : $s_{i,j} = \frac{\phi(x_i)^T \phi(x_j)}{\|\phi(x_i)\| \cdot \|\phi(x_i)\|}$

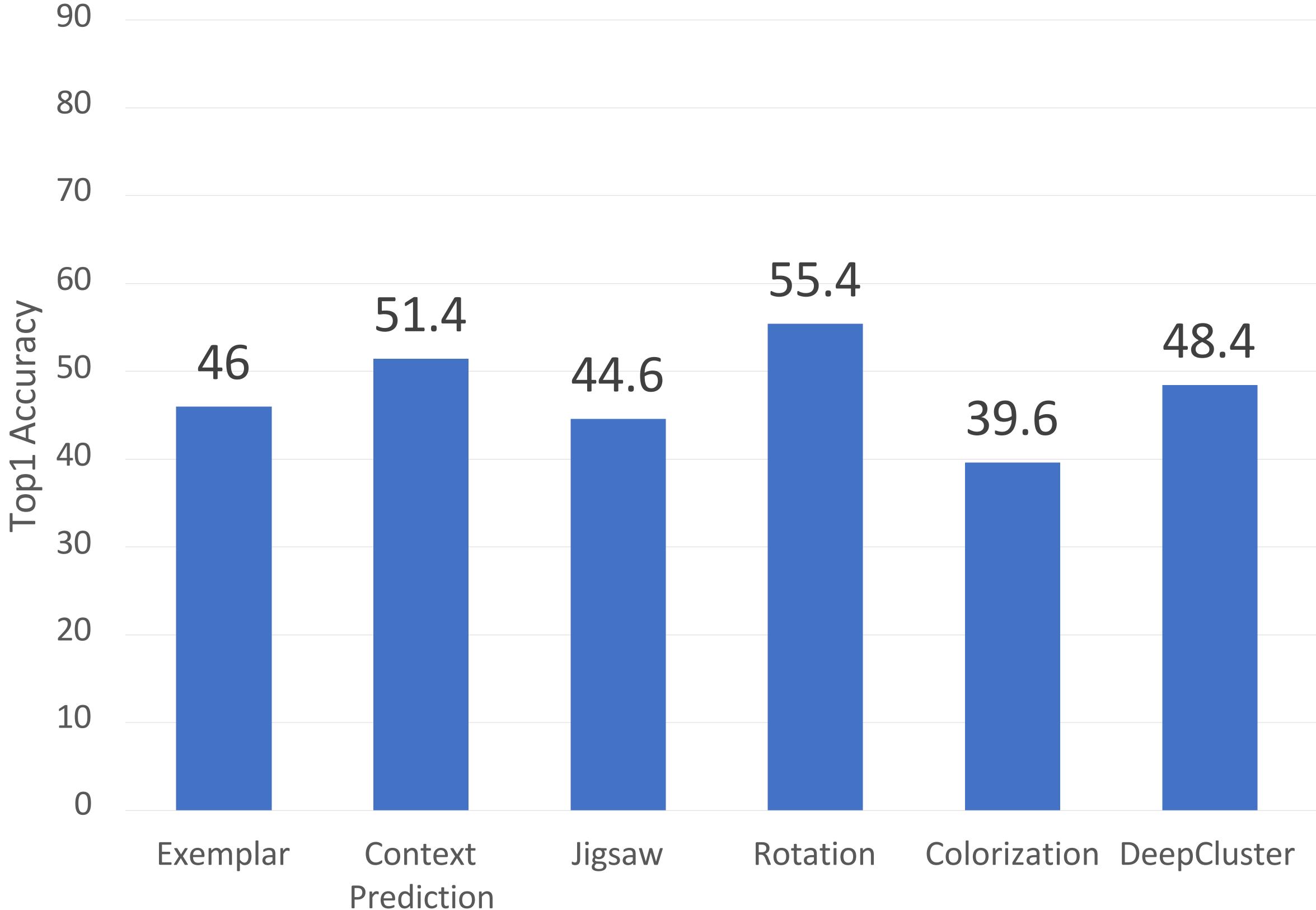
If (x_i, x_j) is a positive pair, then loss for x_i is:

$$L_{i} = -\log \frac{\exp(s_{i,j}/\tau)}{\sum_{\substack{k=1\\k\neq i}}^{2N} \exp(s_{i,k})}$$
(τ is a temperature)

Interpretation: Cross-entropy loss over the other 2N-1 elements in the batch!



ImageNet Linear Classification from SSL Features



He et al, "Momentum Contrast for Unsupervised Visual Representation Learning", CVPR 2020 Chen et al, "A Simple Framework for Contrastive Learning of Visual Representations", ICML 2020 Chen et al, "An Empirical Study of Training Self-Supervised Vision Transformers", ICCV 2021

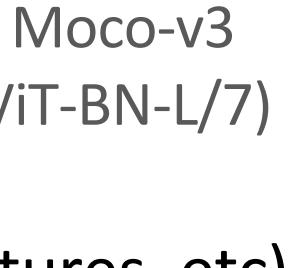
MoCo SimCLR SimCLR (ResNet50) (ResNet50x4) (ViT-BN-L/7) (ResNet50)

69.3

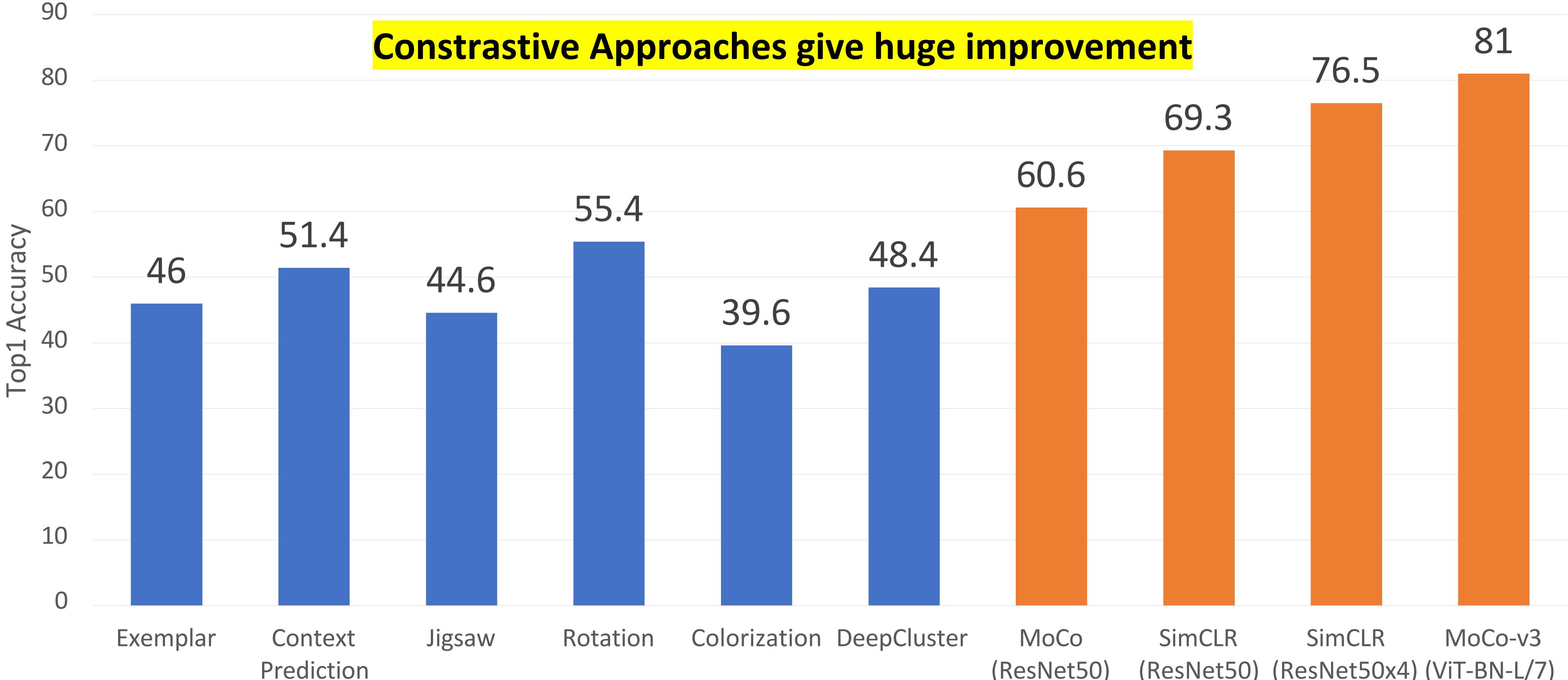
60.6

(Lots of caveats here ... different architectures, etc)

April 6, 2022



ImageNet Linear Classification from SSL Features

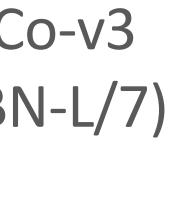


He et al, "Momentum Contrast for Unsupervised Visual Representation Learning", CVPR 2020 Chen et al, "A Simple Framework for Contrastive Learning of Visual Representations", ICML 2020 Chen et al, "An Empirical Study of Training Self-Supervised Vision Transformers", ICCV 2021

(ResNet50) (ResNet50) (ResNet50x4) (ViT-BN-L/7)

(Lots of caveats here ... different architectures, etc)

April 6, 2022



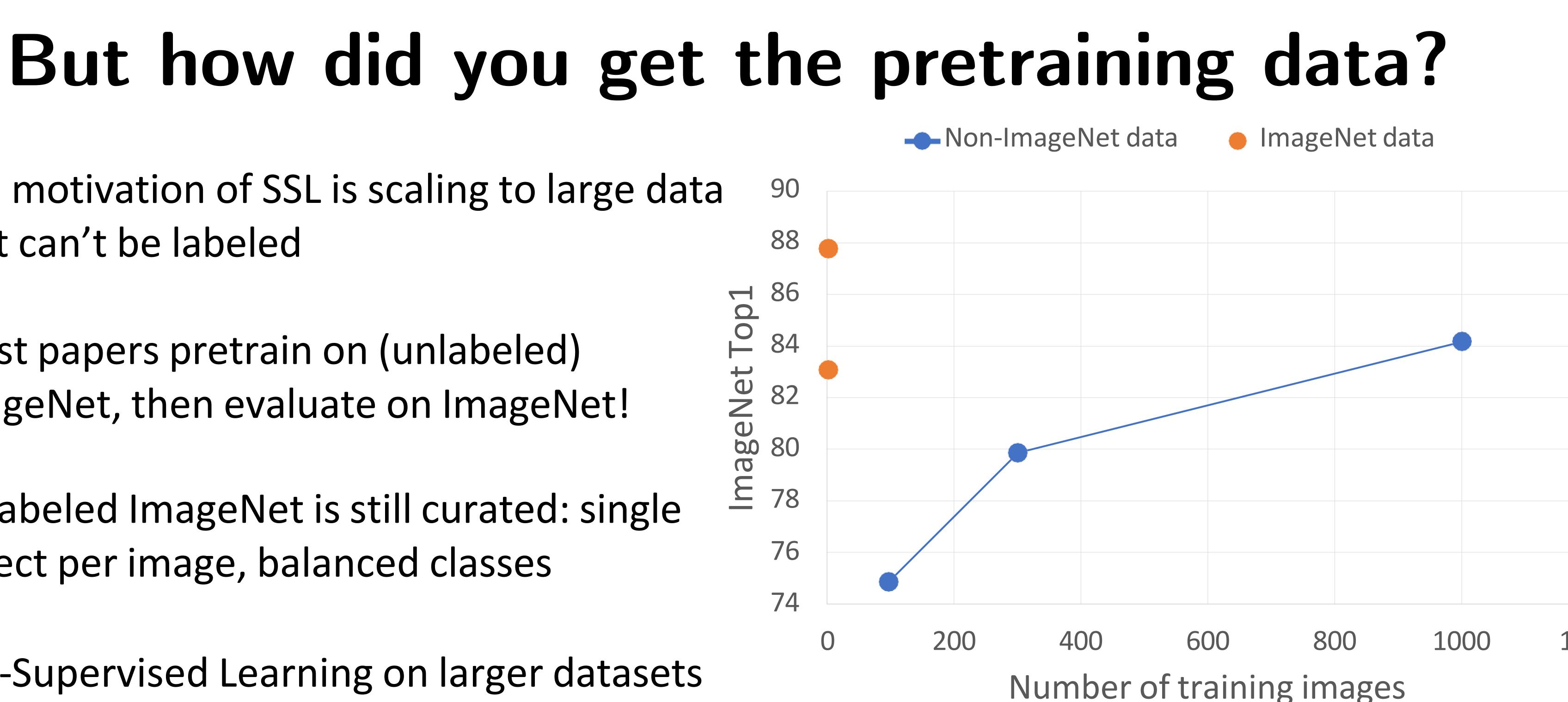
The motivation of SSL is scaling to large data that can't be labeled

Most papers pretrain on (unlabeled) ImageNet, then evaluate on ImageNet!

Unlabeled ImageNet is still curated: single object per image, balanced classes

Self-Supervised Learning on larger datasets hasn't been as successful as NLP

Idea: What if we go beyond isolated images?



Caron et al, "Unsupervised pre-training of images features on non-curated data", ICCV 2019 Chen et al, "Big self-supervised models are strong semi-supervised learners", NeurIPS 2020 Dosovitskiy et al, "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale", ICLR 2021 Goyal et al, "Self-supervised Pretraining of Visual Features in the Wild", arXiv 2021 He et al, "Masked Autoencoders are Scalable Vision Learners", arXiv 2021

1200

Multimodal Self-Supervised Learning Don't learn from isolated images -- take images together with some **context**

Video: Image together with adjacent video frames

Agrawal et al, "Learning to See by Moving", ICCV 2015 Wang et al, "Unsupervised Learning of Visual Representations using Videos", ICCV 2015 Pathak et al, "Learning Features by Watching Objects Move", CVPR 2017

Sound: Image with audio track from video

Owens et al, "Ambient Sound Provides Supervision for Visual Learning", ECCV 2016 Arandjelovic and Zisserman, "Look, Listen and Learn", ICCV 2017

3D: Image with depth map or point cloud

Xie et al, "PointContrast: Unsupervised Pre-training for 3D Point Cloud Understanding", ECCV 2020 Zhang et al, "Self-supervised pretraining of 3D features on any point-cloud", CVPR 2021

Language: Image with natural-language text

Sariyildiz et al, "Learning Visual Representations with Caption Annotations", ECCV 2020 Desai and Johnson, "VirTex: Learning Visual Representations from Textual Annotations", CVPR 2021 Radford et al, "Learning Transferable Visual Models form Natural Language Supervision", ICML 2021 Jia et al, "Scaling up Visual and Vision-Language Representation Learning with Noisy Text Supervision", ICLR 2021 Desai et al, "RedCaps: Web-curated Image-Text data created by the people, for the people", NeurIPS 2021

Next time: Multimodal (Self-Supervised) Learning