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Supervised Learning is Expensive ...
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* Train a model on 1 million images -> label 1 million images

->

» |Labels aren’'t magically given to you need human effort

e How much will it cost?

/ (1,000,000 images) (Small to medium sized dataset)\
X (10 seconds/image) (Fast annotation)
X (1/3600 hours/second)
X (S15 / hour) (Minimum wage)

\ X (3 annotators / image) (for consensus / removing noise)/

= SlZSk without considering overhead / admin costs ...



Recap: Representation Learning “"x2vec”

o A representation of a data domain X is a function f : X’ — RY (an encoder)
that assigns a feature vector to each input in that domain.

o A representation of a datapoint is a vector z € R® with z = f(x).

Data space Representation space
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Why Learn Representations?

“Generally speaking, a good representation is one that makes a subsequent learning task easier.”

- Goodfellow et al. “Deep Learning”. 2016
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Otten, what we will be “tested” on is not what we were trained on.



Why Learn Representations?

“Generally speaking, a good representation is one that makes a subsequent learning task easier.”

- Goodfellow et al. “Deep Learning”. 2016
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Linear adaptation: freeze f, train a new linear map to new target data



Why Learn Representations?

“Generally speaking, a good representation is one that makes a subsequent learning task easier.”

- Goodfellow et al. “Deep Learning”. 2016
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Finetuning: initialize t' as 1, then continue training on new target data



Why Learn Representations?

“Generally speaking, a good representation is one that makes a subsequent learning task easier.”

- Goodfellow et al. “Deep Learning”. 2016

Pretraining Adapting Testing

Genre recognition . Preference prediction i Preference prediction
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Learning from examples

(aka supervised learning)

Training data

{atV 4D}
{4} —
{x(i’))j y(S)}




Learning without examples

(includes unsupervised learning / self-supervised learning)

{z!?} — Learner | — ?




Learning without examples

(includes unsupervised learning / self-supervised learning)

Embeddings

{37(1)} Clusters
1 (2) I — [Learner

Metrics




Two Basic Approaches:

(1) Compression

Learning Learning
Method Principle
Autoencoding  Compression
Contrastive Compression
Clustering Compression
Future prediction  Prediction
Imputation Prediction
Pretext tasks Prediction

(2) Prediction

Short Summary

Remove redundant information
Achieve 1invariance to viewing transtormations
Quantize continuous data into discrete categories

Predict the future
Predict missing data

Predict abstract properties ot your data



Some examples of the "Compression” Approach:



Recap: Autoencoder

Data space Representation space Data space
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Clustering

Data
O Encoder
'% — Learner — [ X = {l,... Kk}
—
: .2
C M -.-
L - s X {l,... k} —
O I.=.l
C .'. »

Data

Clusters




Clustering

“bird” * WWhat's the best representation
that humans have come up with so
far?

“bird” ® | anguage!

e \Words are the atoms of language

* Clustering is the problem of

“emple”  Making up new words for things




Clustering Algorithm: k-means

* Map datapoints to integers (i.e. cluster)

* In such a way that each datapoint is as close as possible to the mean of
the cluster it is assigned to

—7.9 — .l — 2.5 il 2.9 .0




The "Compression” Approach
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The "Prediction” Approach for Representation Learning

Label

Data
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Data prediction

aka “self-supervised learning”
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Self-Supervised Learning

Build methods that learn from “raw’ data (inputs only) — no labels!

* Unsupervised Learning:

o older terminology ... model isn't told what to predict

 Self-Supervised Learning:

o model is trained to predict some natural occurring signal rather than predicting labels

* Semi-Supervised Learning:

o train jointly with some labeled data and a lot of unlabeled data.



Selt-Supervised Learnin

* It you don't have labels,
make labels.

* Convert "unsupervised problem
into “supervised”

» Cook up labels (prediction targets)
from the data itself

o This is often called a “pretext” task

Claim:

Training a model for “pretext’ task can
lead to very good representations




SSL: “Pretext then transfer”

Step 1: Pretrain a D

network on a Encoder: Decoder: Loss:
retext task that L(y,x)

doesn’t require -

supervision Input Image: Features: ¢ x Prediction: y

Step 2: Transfer
encoder to
downstream
tasks via linear
classifiers, KNN,
finetuning

Downstream tasks:

Image classification,

object detection,
emantic segmentation

Encoder:

Input Image: atures: @ x



Some Examples of Pretext Tasks

Class Future frame Next pixel

Pretext task: prediction prediction prediction

Model
schematic:




Examples of Pretext Tasks

Generative: Discriminative: Multimodal:

Predict part of the input Predict something about Use some signal in addition
signal the input signal to RGB images

e Autoencoders Context prediction Video

(sparse, denoising, Rotation 2D

NENNEe) Clustering Sound

Autoregressive Contrastive
GANS

Colorization
Inpainting

Language




Context Prediction

Model predicts relative location of
two patches from the same image.
Discriminative pretraining task

Intuition: Requires understanding
objects and their parts

Doersch et al, "Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



Context Prediction

Model predicts relative location of
two patches from the same image.
Discriminative pretraining task

Intuition: Requires understanding
objects and their parts

Doersch et al, "Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



Context Prediction Classification over 8 positions

]
Model predicts relative location of T
two patches from the same image. S

Discriminative pretraining task
/ Concatenate \
] ]

Intuition: Requires understanding
objects and their parts —

CNN Shared CNN
Weights

Doersch et al, "Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



Extension: Solving Jigsaw Puzzles

Permutation Set

index permutation

64 72.4,68,3.2,5,1.7

Noroozi and Favoro, “Unsupervised learning of visual representations by solving jigsaw puzzles”, ECCV 2016

Rather than predict relative position of two patches, instead
predict permutation to “unscramble” 9 shuffled patches
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Reorder patches according to
the selected permutation
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Context Encoders: Learning by Inpainting

Input Image

Encoder: Decoder:

P Y
/\

Pathak et al, “Context Encoders: Feature Learning by Inpainting”, CVPR 2016



Pathak et al,

ontext Encoders: Learning by Inpainting

Input Image

Encoder:

P

“Context Encoders: Feature Learning by Inpainting”, CVPR 2016

Decoder:

P

Predict Missing Pixels

Human Artist



Context Encoders: Learning by Inpainting

Input Image

Encoder:

—

Decoder:

P
=

Pathak et al, “Context Encoders: Feature Learning by Inpainting”, CVPR 2016

Y
\

Predict Missing Pixels

L2 Loss
(Best for feature learning)



Context Encoders: Learning by Inpainting

Input Image Predict Missing Pixels

Encoder: Decoder:

P Y
/\

L2 + Adversarial Loss
(Best for nice images)

Pathak et al, “Context Encoders: Feature Learning by Inpainting”, CVPR 2016



Intuition: A model must be able to identify objects to be able to colorize them

Input: Grayscale Image Output: Color Image

Zhang et al, “Colorful Image Colorization”, ECCV 2016




Colorization

Lightness L Color ab Lab Image

convl convZ2 conv3 conv4 convbh convo conv/ conv8
a trous / dilated a trous / dilated

256

| 128

256 312 < s 212 512

.l / / — — ;

I 99— S ¥
| 64 32 32 5 P i, ¥ 32
128

(a,b) probability
distribution

Zhang et al, “Colorful Image Colorization”, ECCV 2016



Pretext task: video coloring

ldea: model the temporal coherence of colors in videos

reference frame how should | color these frames?

Source: Vondrick et al., 2018



Pretext task: video coloring

ldea: model the temporal coherence of colors in videos

reference frame how should | color these frames?

Hypothesis: learning to color video frames should allow model to learn to

track regions or objects without labels!
Source: Vondrick et al., 2018




Learning to color videos

Reference Frame Input Frame

DN < W ' ‘L Learning objective:

% | Establish mappings
g% between reference and
target frames in a

learned feature space.

Use the mapping as
“pointers” to copy the
correct color (LAB).

Reference Colors Target Colors

Source: Vondrick et al., 2018




Learning to color videos

Grayscale Video Embeddings
Reference A Reference
Frame @ Colors
Target P Predicted
Frame A Colors

attention map on the reference
frame

exp (f1f;)

Aij - —
Dk €XD (fgfj)

Source: Vondrick et al., 2018



Learning to color videos

Grayscale Video Embeddings
Reference A Reference
Frame @ Colors
Target P Predicted
Frame A Colors

attention map on the reference predicted color = weighted
frame sum of the reference color

exp (f ;) _
Ajj = ——2 07 =Y Ajjc
>k exp (fi f5) & ; :

Source: Vondrick et al., 2018



Learning to color videos

Grayscale Video Embeddings

Reference A ] Aj b Reference

Frame @ 15 Colors

HEEEA 1
Target = T | Predicted
Frame © A o Afj ¢ Ay. Colors
attention map on the reference predicted color = weighted loss between predicted color

frame sum of the reference color and ground truth color

eXP(fgfj) o L minZ[,( L, C;)
A = = > Ajjc AN
>k exp (fi f5) & ; J o

Source: Vondrick et al., 2018




Colorizing videos (qualitative)

reference frame target frames (gray) predicted color
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Source: Google Al blog post



Colorizing videos (qualitative)

reference frame target frames (gray) predicted color

Source: Google Al blog post



Tracking emerges from colorization

Propagate segmentation masks using learned attention

Source: Google Al blog post



Tracking emerges from colorization

Propagate pose keypoints using learned attention
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Source: Google Al blog post



Deep Clustering

(1) Randomly initialize a CNN

\

CNN

s

Caron et al, “Deep Clustering for Unsupervised Learning of Visual Features”, ECCV 2018

Caron et al, “Unsupervised Pre-Training of Image Features on Non-Curated Data”, ICCV 2019

Yan et al, “ClusterFit: Improving Generalization of Visual Representations”, CVPR 2020

Caron et al, “Unsupervised Learning of Visual Features by Contrasting Cluster Assignments®, NeurlPS 2020



Deep Clustering

(1) Randomly initialize a CNN

(2) Run many images through
CNN, get their final-layer features

Caron et al, “Deep Clustering for Unsupervised Learning of Visual Features”, ECCV 2018

Caron et al, “Unsupervised Pre-Training of Image Features on Non-Curated Data”, ICCV 2019

Yan et al, “ClusterFit: Improving Generalization of Visual Representations”, CVPR 2020

Caron et al, “Unsupervised Learning of Visual Features by Contrasting Cluster Assignments®, NeurlPS 2020



Deep Clustering

(1) Randomly initialize a CNN

Cluster O (3) Cluster the features with K-Means;

record cluster for each feature
Cluster 1

Cluster O

Cluster 1

(2) Run many images through
CNN, get their final-layer features

Caron et al, “Deep Clustering for Unsupervised Learning of Visual Features”, ECCV 2018

Caron et al, “Unsupervised Pre-Training of Image Features on Non-Curated Data”, ICCV 2019

Yan et al, “ClusterFit: Improving Generalization of Visual Representations”, CVPR 2020

Caron et al, “Unsupervised Learning of Visual Features by Contrasting Cluster Assignments®, NeurlPS 2020



Deep Clustering

(1) Randomly initialize a CNN

ClusterO  (3) Cluster the features with K-Means;
record cluster for each feature

Cluster 1

Cluster O

(4) Use cluster assighments as pseudo-
Cluster 1 labels for each image; train the CNN to
predict cluster assignments

(2) Run many images through
CNN, get their final-layer features

Caron et al, “Deep Clustering for Unsupervised Learning of Visual Features”, ECCV 2018

Caron et al, “Unsupervised Pre-Training of Image Features on Non-Curated Data”, ICCV 2019

Yan et al, “ClusterFit: Improving Generalization of Visual Representations”, CVPR 2020

Caron et al, “Unsupervised Learning of Visual Features by Contrasting Cluster Assignments®, NeurlPS 2020



Deep Clustering

(1) Randomly initialize a CNN

ClusterO  (3) Cluster the features with K-Means;
record cluster for each feature

Cluster 1

Cluster O

(4) Use cluster assighments as pseudo-
Cluster 1 labels for each image; train the CNN to
predict cluster assignments

(2) Run many images through
CNN, get their final-layer features

Caron et al, “Deep Clustering for Unsupervised Learning of Visual Features”, ECCV 2018

Caron et al, “Unsupervised Pre-Training of Image Features on Non-Curated Data”, ICCV 2019

Yan et al, “ClusterFit: Improving Generalization of Visual Representations”, CVPR 2020

Caron et al, “Unsupervised Learning of Visual Features by Contrasting Cluster Assignments”, NeurlPS 2020

(5) Repeat: GOTO (2)



RotNet: Predict Rotation

4-way classification task: How much was each image rotated? (0, 90, 180, or 270 degrees)

Gidaris et al, “Unsupervised representation learning by predicting image rotations”, ICLR 2018
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4-way classification task: How much was each image rotated? (0, 90, 180, or 270 degrees)

Gidaris et al, “Unsupervised representation learning by predicting image rotations”, ICLR 2018



RotNet: Predict Rotation

4-way classification task: How much was each image rotated? (0, 90, 180, or 270 degrees)

Gidaris et al, “Unsupervised representation learning by predicting image rotations”, ICLR 2018



RotNet: Predict Rotation

4-way classification task: How much was each image rotated? (0, 90, 180, or 270 degrees)

Gidaris et al, “Unsupervised representation learning by predicting image rotations”, ICLR 2018



RotNet: Predict Rotation

4-way classification task: How much was each image rotated? (0, 90, 180, or 270 degrees)

180

Gidaris et al, “Unsupervised representation learning by predicting image rotations”, ICLR 2018



RotNet: Predict Rotation

4-way classification task: How much was each image rotated? (0, 90, 180, or 270 degrees)

180

Gidaris et al, “Unsupervised representation learning by predicting image rotations”, ICLR 2018



Summary:
pretext tasks via image transformations

® Pretext tasks focus on “visual common sense”, e.g., predict rotations,
inpainting, rearrangement, and colorization.

® The models are forced learn good features about natural images, e.g.,

semantic representation of an object category, in order to solve the pretext
tasks.

® \We often do not care about the performance of these pretext tasks, but

rather how useful the learned features are for downstream tasks
(classification, detection, segmentation).



Summary:
pretext tasks via image transformations

e Pretext tasks focus on ‘visual common sense”

o e.g., predict rotations, inpainting, rearrangement, and colorization.

* \We often do not care about the performance of these pretext tasks

o but rather how useful the learned features are for downstream tasks (classification, detection,
segmentation).

* Problems:

o (1) coming up with individual pretext tasks is tedious

o (2) the learned representations may not be general.



Which SSL Method i1s best?

Fair evaluation of SSL methods is very hard ...
No theory, so we need to rely on experiments !!!

Many choices in experimental setup, huge variations from paper to paper:

- CNN architecture? AlexNet, ResNet50, something else?

- Pretraining dataset? ImageNet, or something else?

- Downstream task? ImageNet classification, detection, something else?

- Pretraining hyperparameters? Learning rates, training iterations, data augmentation?

- Transfer learning protocol?

- Linear probe? From which layer? How to train linear models? SGD, something else?

- Transfer learning hyperparameters? Data augmentation or BatchNorm during
transfer learning?

- Fine-tune? which layer? Linear or nonlinear? Fine-tuning hyperparameters?
- KNN? What value of K? Normalization on features?



Which SSL Method i1s best?

Some papers have tried to do fair comparisons of many SSL methods

Places205 Linear Classification from AlexNet conv5

0 I

Random Init ImageNet  Places205
Supervised Supervised

Accuracy
R = NN WO W B B U
o © U1 ©O U1 ©O U1 © U1 O

Goyal et al, “Scaling and Benchmarking Self-Supervised Visual Representation Learning”, ICCV 2019



Which SSL Method i1s best?

Some papers have tried to do fair comparisons of many SSL methods

Places205 Linear Classification from AlexNet conv5
44.8

38
309 597 325 337 322 319
. I I I I I

Random Init ImageNet  Places205 ligsaw  Colorization SplitBrain ~ Rotation DeepCluster  Jigsaw  Colorization
Supervised Supervised (Reimpl.)  (Reimpl.)

w BH L U
or ©O U1 O

30.3

W
-

Accuracy
= = NN
O U1 O Ul

U1

Goyal et al, “Scaling and Benchmarking Self-Supervised Visual Representation Learning”, ICCV 2019



Which SSL Method i1s best?

Some papers have tried to do fair comparisons of many SSL methods

Places205 Linear Classification from AlexNet conv5
Reimplementing

U
-

A5 44.8 existing methods can
40 33 . slightly change results...
> 3(5) 309 997 323 322 319 393
o
S 25
520 16.6
< 15
10
5
0
Random Init ImageNet  Places205 Jigsaw Colorization  SplitBrain Rotation DeepCluster  Jigsaw Colorization
Supervised Supervised (Reimpl.) (Reimpl.)

Goyal et al, “Scaling and Benchmarking Self-Supervised Visual Representation Learning”, ICCV 2019



Which SSL Method i1s best?

Some papers have tried to do fair comparisons of many SSL methods

Places205 Linear Classification from AlexNet conv5
Reimplementing

Z(S) 44 8 Overall, as of 2019 SS.L gave wor.se. existing methods can
10 38 features than supervised pretralnmg S|ight|y change results..
§ 30
S 25
520 16.6
< 15
10
5
0
Random Init ImageNet  Places205 Jigsaw Colorization  SplitBrain Rotation DeepCluster  Jigsaw Colorization
Supervised Supervised (Reimpl.) (Reimpl.)

Goyal et al, “Scaling and Benchmarking Self-Supervised Visual Representation Learning”, ICCV 2019



Let' s take a step back ...



A simpler idea ...

Similar images should have similar features

CNN

Dissimilar images should have dissimilar features
— J'H.._.ﬂ- ]
e W

CNN




Similarity based Representation Learning

* Build representations via feedback in terms of similarity:

pairs of similar / dissimilar inputs




Background: Metric Learning

In mathematics, a metric space Is a set together with a notion of distance
petween its elements, usually called points. The distance is measured by a
function called a metric or distance function.!’! Metric spaces are a general
setting for studying many of the concepts of mathematical analysis and geometry.

* How should we compute similarity between images?

* |[dea 1: Euclidean distance in pixel space |[|x; — x5 |5

o Images with the same background but different foreground will have very high similarity
(e.g. cat in snow vs dog in snow) — BAD!

e Goal: learn a metric where:

o Data points that belong together are similar (closer)

o Data points that are different are dissimilar (farther)



Background: Metric Learning

- E : 2
e L © » » E mlﬂ d X . X . 2 ! ! . .
Distance metric learning, with application A0 A(Xi, X;) min distance of similar points
to clustering with side-information (1.7)€S

S.t. Z dA(XkTXg)Q > 1  keep distance of dissimilar points

(k,£)€D
Eric P. Xing, Andrew Y. Ng, Michael I. Jordan and Stuart Russell
University of California, Berkeley
Berkeley, CA 94720
{epxing,ang, jordan,russell}@cs.berkeley.edu
— Original 2-class data Porjected 2-class data
introduced the term and problem in 2003
10 10
NI n O o
-
=10 - -10-
20 o0 20 0

’ 20 0 ’ 20 0

n -20 - =20

y X y X

Many related ideas and follow-up work




Contrastive Learning

Problem 1: How to compute similarity if we don't have labels for images?

Similar images should have similar features Dissimilar images should have dissimilar features




Contrastive Learning

Problem 1: How to compute similarity if we don't have labels for images?
Solution? Euclidean Distance between features |[¢d(xq) — d(x,)]||-

Similar images should have similar features Dissimilar images should have dissimilar features




Contrastive Learning

Problem 1: How to compute similarity if we don't have labels for images?
Solution? Euclidean Distance between features |[¢d(xq) — d(x,)]||-
Problem 2: Objective Function ?

Similar images should have similar features Dissimilar images should have dissimilar features




Contrastive Learning

Problem 1: How to compute similarity if we don't have labels for images?
Solution? Euclidean Distance between features |[¢d(xq) — d(x,)]||-
Problem 2: Objective Function ?

Similar images should have similar features Dissimilar images should have dissimilar features

Pull features of similar images S Push features of dissimilar iImages
closer (minimize distance) apart (maximize distance)

¥
i




Examples of Contrastive Pairs

Pull features of similar images
closer (minimize distance)

X Push features of dissimilar images
apart (maximize distance)



Examples of the Embedding Space




Space

INg

Examples of the Embedd




What can you do with this embedding space?



What can you do with this embedding space?
RETRIEVAL

* Given a query image (left column),
find similar images

* All you have to do is find the nearest
neighbors in the embedding space and
return the results

* Embedding space now has a notion of
“similarity”

o Similar datapoints are neighbors

o Dissimilar datapoints are not

P& & & @& & & @& & & & & & & & % & & F & & & B P B & B B F & B B & B

results from Song et al. CVPR 2016



What can you do with this embedding space?

RETRIEVAL

* Given a query image (left column),
find similar images

* All you have to do is find the nearest
neighbors in the embedding space and
return the results

* Embedding space now has a notion of
“similarity”

o Similar datapoints are neighbors

o Dissimilar datapoints are not

Figure 1: Example retrieval results on our Online Products
dataset using the proposed embedding. The images 1n the
first column are the query images.

results from Song et al. CVPR 2016



Challenges: “Similarity” is hard ...
What makes an image “similar” ?

Reference Reference Reference

Similar in:

Pose

Perspective

Foreground
color

Number of items

NP RENE P © Object shape

S W Y I',:'-f,r'-.'-rh e R
'.'::I'ﬁ'hé’fli.lli | |'Mﬁ':ﬂlil ¥,

“F )

® ¢

;‘* - ™
ﬂ_;....‘.f Dreamsim @) Humans

figure: Fu*, Tamir*, Sundaram™ et al 2023



Where can we get pairs of similar and

dissimilar images from?




Where can we get pairs of similar and
dissimilar images from?

DATA AUGMENTATION




Contrastive Learning with Data Augmentation

o s reference

_|_

€L ' positive

2  nhegative




Contrastive Learning Formulation

score( f(x), f(x™)) >> score(f(x), f(z7))

 WWe want:
x: reference sample; x* positive sample; x” negative sample
Loss function given 1 positive sample and N - 1 negative samples:
* Objective: € "
J L= By |log xp(s(/ (z), f (@)



Loss function given 1 positive sample and N - 1 negative samples:

exp(s(f (), f) ]
exp(s(f(z), f(z+)) + 30" exp(s (f (z), f(z;))

.’L’_l_ 9k

L =—-Ex |10g




Loss function given 1 positive sample and N - 1 negative samples:

L= _Ey |los xp(s(f(2), f (@)

exp(s(f(x), f(a+)) + X2, exp(s(f(x), f(2]))

score for the score for the N-1
positive pair negative pairs

This seems familiar ...



Loss function given 1 positive sample and N - 1 negative samples:

L _Ey |los p(s( @), /)

exp(s(f(x), f(xT)) + Zz exp(S(f(w),f(.’L’_Z- )

score for the score for the N-1
positive pair negative pairs

This seems familiar ...
Cross entropy loss for a N-way softmax classifier!
|.e., learn to find the positive sample from the N samples



Loss function given 1 positive sample and N - 1 negative samples:

exp(s(f(z), f (g;+))

L = —EX log _
exp(s(f(z), f(z)) + 3, exp(s(f(z), f(z}))
score for the score for the N-1
positive pair negative pairs

This seems familiar ...
Cross entropy loss for a N-way softmax classifier!
|.e., learn to find the positive sample from the N samples

Very similar to a softmax classitier
We want to compare the reference image against all other positive and negative images.
We can exponentiate and normalize these scores like we did with the softmax classifier.




Constrastive Learning Loss

Loss function given 1 positive sample and N - 1 negative samples:

exp(s(f(x), f (SL‘J“))
exp(s(f(z), f(zt)) + 2,1 exp(s(f(z), f(z;))

Commonly known as the InNfoNCE loss (van den Oord et al.. 2018)
A lower bound on the mutual information between f(x) and f(x")

MI[f(z), f(x7)] —log(N) > —L

L=—-Ex |log

The larger the negative sample size (N), the tighter the bound



SIMCLR: A Simple Framework for Contrastive learning

Cosine similarity as the score function: Tl e T
s(u,v) = ok g(-) g(")
|ul[v] .
h; <— Representation — h;
Use a projection network h(-) to project I ‘
features to a space where contrastive AQ )
learning is applied . @
£Li
Generate positive samples through data Fog, 32 g 1
augmentation:

e random cropping, random color
distortion, and random Dblur.

Source: Chen et al., 2020



SIMCLR: Data Augmentation Strategies

(f) Rotate {90°, 180°, 270°} (g) Cutout (h) Gaussian noise (1) Gaussian blur () Sobel filtering
Source: Chen et al., 2020




SIMCLR: Algorithm Sketch

Algorithm 1 SimCLR’s main learning algorithm.

input: batch size N, constant 7, structure of f, g, 7.
for sampled minibatch {x };._, do
forallk € {1...., N}do

draw two augmentation functions t ~7, t' ~T
/ # the irst augmentation

" : Top—1 = t(Tk)

Generate a positive pair —" oo =T o)

# representation

by Sampllng data 2ok—1 = g(hﬂk—l) H# prujec‘[iﬂn
augmentation functions # the second augmentation
— Top = t"(iﬂ;ﬂ)
“hor = f(@or) # representation
zor = g(hak) # projection
end for
foralli: € {1,...,2N}andj € {1,...,2N} do
Si, 5 = EETZJ/(HZEH sz H) # p&lirwiﬁﬂ :-;imi]arity
end for
lterate through ana define £(i, ) as [f(i, j) =~ 10g s<rx sxp(o4,1/7). —
use each of the 2N e e —

Maximize agreement

<i > Zj

A A
g() g()

h, +— Representation —» h;

A A
f() /()

INfoNCE loss:
- Use all non-positive

- L =557 [6(2k—1,2k) + £(2k, 2k—1)]
2N £Lak=1 ’ ’
Sample as refe rence, update networks f and g to minimize £

compute average loss end for
return encoder network f(-), and throw away g(-)

samples In the
patch as x-

Source: Chen et al.. 2020




SIMCLR Training

Batch of
N images

Hadsell et al, “Dimensionality Reduction by Learning and Invariant Mapping”, CVPR 2006 Hjelm et al, “Learning deep representations by mutual information estimation and maximization”, ICLR 2019 Tian et al, “Contrastive Multiview Coding”, ECCV 2020

Wu et al, “Unsupervised Feature Learning by Non-Parametric Instance-Level Discrimination”, CVPR 2018 Bachman et al, “Learning Representations by Maximizing Mutual Information Across Views”, NeurlPS 2019 He et al, “Momentum Contrast for Unsupervised Visual Representation Learning”, CVPR 2020
Van den Oord et al, “Representation Learning with Contrastive Predictive Coding”, NeurIPS 2018 Henaff et al, “Data-Efficient Image Recognition with Contrastive Predictive Coding”, ICML 2020 Chen et al, “A Simple Framework for Contrastive Learning of Visual Representations”, ICML 2020



SIMCLR Training

Batch of Two augmentations
N images  for each image

Hadsell et al, “Dimensionality Reduction by Learning and Invariant Mapping”, CVPR 2006 Hjelm et al, “Learning deep representations by mutual information estimation and maximization”, ICLR 2019 Tian et al, “Contrastive Multiview Coding”, ECCV 2020
Wu et al, “Unsupervised Feature Learning by Non-Parametric Instance-Level Discrimination”, CVPR 2018 Bachman et al, “Learning Representations by Maximizing Mutual Information Across Views”, NeurlPS 2019 He et al, “Momentum Contrast for Unsupervised Visual Representation Learning”, CVPR 2020
Van den Oord et al, “Representation Learning with Contrastive Predictive Coding”, NeurlIPS 2018 Henaff et al, “Data-Efficient Image Recognition with Contrastive Predictive Coding”, ICML 2020 Chen et al, “A Simple Framework for Contrastive Learning of Visual Representations”, ICML 2020



SIMCLR Trainin

Batch of Two augmentations  Extract
N images  for each image features

%

LA A A A A

Hadsell et al, “Dimensionality Reduction by Learning and Invariant Mapping”, CVPR 2006 Hjelm et al, “Learning deep representations by mutual information estimation and maximization”, ICLR 2019 Tian et al, “Contrastive Multiview Coding”, ECCV 2020
Wu et al, “Unsupervised Feature Learning by Non-Parametric Instance-Level Discrimination”, CVPR 2018 Bachman et al, “Learning Representations by Maximizing Mutual Information Across Views”, NeurlPS 2019 He et al, “Momentum Contrast for Unsupervised Visual Representation Learning”, CVPR 2020
Van den Oord et al, “Representation Learning with Contrastive Predictive Coding”, NeurlIPS 2018 Henaff et al, “Data-Efficient Image Recognition with Contrastive Predictive Coding”, ICML 2020 Chen et al, “A Simple Framework for Contrastive Learning of Visual Representations”, ICML 2020



SImMCLR Trainin

Batch of Two augmentations
N images  for each image

Each image tries to predict which
of the other 2N-1 images came

from the same original image

Similarity between x; and x;:
. . — fP(xi)TfP(xj)
Gl Nl (el

If (x;,x;) is a positive pair,

then loss for x; is:

og exp(si, j /r)
Yk exp(si/7)

k#i
(T is a temperature)

Li=—l

Interpretation: Cross-entropy
loss over the other 2N-1

elements in the batch!

LA A A A A

Hadsell et al, “Dimensionality Reduction by Learning and Invariant Mapping”, CVPR 2006 Hjelm et al, “Learning deep representations by mutual information estimation and maximization”, ICLR 2019 Tian et al, “Contrastive Multiview Coding”, ECCV 2020
Wu et al, “Unsupervised Feature Learning by Non-Parametric Instance-Level Discrimination”, CVPR 2018 Bachman et al, “Learning Representations by Maximizing Mutual Information Across Views”, NeurlPS 2019 He et al, “Momentum Contrast for Unsupervised Visual Representation Learning”, CVPR 2020
Van den Oord et al, “Representation Learning with Contrastive Predictive Coding”, NeurlIPS 2018 Henaff et al, “Data-Efficient Image Recognition with Contrastive Predictive Coding”, ICML 2020 Chen et al, “A Simple Framework for Contrastive Learning of Visual Representations”, ICML 2020



ImageNet Linear Classification from SSL Features
90

30 76.5

69.3
1 a 55.4
' 48 .4
46 44.6
I I 39.6 I
0 I I

Exemplar Context Jigsaw Rotation  Colorization DeepCluster MoCo SImCLR SImCLR Moco-v3
Prediction (ResNet50) (ResNet50) (ResNet50x4) (ViT-BN-L/7)
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~
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60.6

Topl Accuracy
N W =~ U o)
o - - - -

=
o

He et al, “Momentum Contrast for Unsupervised Visual Representation Learning”, CVPR 2020

Chen et al, “A Simple Framework for Contrastive Learning of Visual Representations”, ICML 2020 : :
Chen et al, “An Empirical Study of Training Self-Supervised Vision Transformers”, ICCV 2021 (LOtS Of caveats he re ... d Iffe rent a rCh Iitectu res, EtC)



ImageNet Linear Classification from SSL Features

90
Constrastive Approaches give huge improvement

31
30 /6.5
69.3
60.6
c1 4 55.4
' 48.4
46 44.6 S
I I 39.6 I
0 I I

Topl Accuracy
W ~ U @) ~N
- - - - -

N
-

=
o

Exemplar Context Jigsaw Rotation  Colorization DeepCluster MoCo SimCLR SimCLR MoCo-v3
Prediction (ResNet50) (ResNet50) (ResNet50x4) (ViT-BN-L/7)
He et al, “Momentum Contrast for Unsupervised Visual Representation Learning”, CVPR 2020
Chen et al, “A Simple Framework for Contrastive Learning of Visual Representations”, ICML 2020 : :
Chen et al, “An Empirical Study of Training Self-Supervised Vision Transformers”, ICCV 2021 (LOtS of caveats here ... different architectu res, EtC)



The motivation of SSL is scaling to large data 90
that can’t be labeled

o0
>~ O 00

Most papers pretrain on (unlabeled)
ImageNet, then evaluate on ImageNet!

ImageNet Topl
28 %K

Unlabeled ImageNet is still curated: single 78
object per image, balanced classes 76
/4

Self-Supervised Learning on larger datasets
hasn’t been as successful as NLP

But how did you get the pretraining data?

-®-Non-ImageNet data ImageNet data

200 400 600 800
Number of training images

1000 1200

Caron et al, “Unsupervised pre-training of images features on non-curated data”, ICCV 2019

Chen et al, “Big self-supervised models are strong semi-supervised learners”, NeurlPS 2020

Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021
Goyal et al, “Self-supervised Pretraining of Visual Features in the Wild”, arXiv 2021

He et al, “Masked Autoencoders are Scalable Vision Learners”, arXiv 2021



Multimodal Selt-Supervised Learning

Don’t learn from isolated images -- take images together with some context

Video: Image together with adjacent video frames

Agrawal et al, “Learning to See by Moving”, ICCV 2015
Wang et al, “Unsupervised Learning of Visual Representations using Videos”, ICCV 2015
Pathak et al, “Learning Features by Watching Objects Move”, CVPR 2017

Sound: Image with audio track from video

Owens et al, “Ambient Sound Provides Supervision for Visual Learning”, ECCV 2016
Arandjelovic and Zisserman, “Look, Listen and Learn”, ICCV 2017

3D: Image with depth map or point cloud

Xie et al, “PointContrast: Unsupervised Pre-training for 3D Point Cloud Understanding”, ECCV 2020
Zhang et al, “Self-supervised pretraining of 3D features on any point-cloud”, CVPR 2021



Next time: Multimodal (Self-Supervised) Learning
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