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Recap: AE, VAE

Autoencoder Variational Autoencoder

 Encodes and decodes the data
e Encodes and decodes the data e Low-dimensional bottleneck

* Low-dimensional bottleneck e Gaussian bottleneck (can sample; disentangled)



Generative Modeling vs. Representation Learning

Representation learning

Representation Learning: “Analysis™  Dataspace

Representation space

- Mapping data to representations

Encoder

Generative modeling

Representation space Data space

Generative Modeling: “Synthesis”

- Mapping representations to data

Generator




Generative Adversarial Networks

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair] Aaron Courville, Yoshua Bengio*
Département d’informatique et de recherche opérationnelle NIPS 2014

Université de Montréal
Montréal, QC H3C 3J7

* Problem: We want to sample from a high-dimensional Output: Sample from
training distribution p(x) training distribution
o But there is no direct way to do this ... r
o We don’t know which z maps to which image Generator
(so we can’t use autoencoders) ek
* We know how to sample from a random distribution Input: Random noise l

(e.g. Gaussian)

o Can we map a random distribution directly to p(x) ?




Generative Adversarial Networks

Goal: Map all z to some realistic-looking x



lmage synthesis from “noise”

Generator —

Sampler

G:Z—- X

z ~ p(2)
r = G(2)



lmage synthesis from “noise”
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Sampler
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r = G(2)
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fake image

Generator

© aleju/cat-generator [Goodfellow et al. 2014]
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A two-player game:
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o )~

ries to detect fake images.

NP

D |—

U=

Discriminator

Real (1) or
fake (0)?

ries to generate fake images that can fool D.

[Goodfellow et al. 2014]
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[Goodfellow et al. 2014]
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Learning objective (GANS)

min max

G

Uz [log(1=D(G(2))]+

D

D [ real (0.9)

rllog D(x)

[Goodfellow et al. 2014]



GAN Training Breakdown

* From the discriminator D’s perspective:

o binary classification: real vs. fake.

o Nothing special: similar to 1 vs. 7 or cat vs. dog

max Lllog(1—D (§8) |+




GAN Training Breakdown

* From the discriminator D’s perspective:

o binary classification: real vs. fake.

o Nothing special: similar to 1 vs. 7 or cat vs. dog

max IE|
1ax |

o From the generator G's perspective:

ST | 7’:_ **- |
44 10g D(

— Optimizing a loss that depends on a classifier D

min E.[£p(G(2)).
GAN loss for G

min
G

e 1F(G(2) = F(y)|

Perceptual Loss for G



GAN Training Breakdown

7 G(z)
-l Hinr=
III II G | D | real or fake?
1 o7 O
Generator Discriminator

G tries to synthesize fake images that fool D

D tries to identify the fakes

e [raining: iterate between training D and G with backprop.

o Global optimum when G reproduces data distribution.

|Goodfellow et al., 2014]



Training GANs: Two-player game

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images

AND WHEN WE FIGHT, IT'S A
ZERO-SUM GAME.

OO OO

Generative Network Network 2

[




Training GANs: Two-player game

Discriminator network:

Generator network:

O[O,

Generative Network

try to distinguish between real and fake images
try to fool the discriminator by generating real-looking images

@@

Network 2

AND WHEN WE FIGHT, ITS A
ZERO-SUM GAME.

Connection to Game Theory: Zero-Sum “Minimax’ Game
* Each player trying to minimize the opponent’s profits
* Each player trying to maximize their own profits



Training GANs: Two-player game

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images

Real or Fake

?

Discriminator Network

Fake Images Real Images
(from generator) | -  wealll (from training set)
A

Generator Network

?

Random noise Z

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.



Training GANs: Two-player game

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images

Real or Fake
’ \ Discriminator learning signal

Generator learning Slgnal Discriminator Network

Real Images
' (from training set)

Generator Network

?

Random noise Z

Fake Images
(from generator)

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.



Training GANs: Two-player game

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images

Train jointly in minimax game

Minimax objective function:

I%iﬂ A Eznpaata 108 Do, (7) + Ezp(z) log(l — Do, (G, (2)))
g d b ]

Gene/r;tor o \ "
objective iscriminator

objective




Training GANs: Two-player game

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images

Train jointly in minimax game

Minimax objective function:

Discriminator outputs likelihood in (0,1) of real image

min max |Ezcpy... 108 Do, () + E,p(z) log(l — De, (G, (Z)))]

0, 04 L L
Discriminator output Discriminator output for
for real data x generated fake data G(z)

- Discriminator (9,) wants to maximize objective s.t.
D(X) is close to 1 (real) and D(G(z)) is close to O (fake)

- Generator (8,) wants to minimize objective s.t.
D(G(z)) is close to 1 (discriminator is fooled into thinking generated G(z) is real)



Training GANs: Two-player game
Minimax objective function:

I%ill II?E&X “::,;diam log Dl?.:a (E) T ‘E'ENP(E) log(l o D‘gd (Geg (z)))
g d L ]

Alternate between:
1. Gradient asc_ent on discriminator

mﬁ.&,}c _ i npaata 108 Doy (T) + Ezp(z) log(l — Do, (Go, (Z)))

2. Gradient descent on generator

When sample is likely

min “:zmp(z) 10%(1 — Ded(Geg (Z)))fake, want to learn from |
O it to iImprove generator

In practice, optimizing this generator objective (m_ove to the right on X |
axis).
does not work well! _

0.0 0.2 0.4 0.6 0.8
DiG(2))

1.0



Training GANs: Two-player game

Minimax objective function:

I%ill II?E&X “::,;diam log Dl?.:a (E) T ‘E'ENP(E) log(l o D‘gd (Geg (z)))
g d L ]

Alternate between:

1. Gradient ascent on discriminator
i Gradient signal

II%IM Lz npaara 108 Do, () + E,op(z) log(l — Dy, (Go, (2))) dominated by region
d L ) where sample Is

2. Gradient descent on generator o already good
When sample is likely . . S

I%ill “:zmp(z) 10%(1 — Ded(Geg (Z)))fake, want to learn from
g it to improve generator |,
(move to the right on X o

In practice, optimizing this generator objective axis). /_/7 _
does not work well! _
But gradient in this - . . . .

region is relatively flat!

\ -
— Iz}~ D(G(2) ||

D(G(=))



Training GANs: Two-player game
Minimax objective function:

I%ill II?E&X “::,;diam log Dl?.:a (E) T ‘E'ENP(E) log(l o D‘gd (Geg (z)))
g d L ]

Alternate between:
1. Gradient asc_ent on discriminator

mﬁ.&,}c _ i npaata 108 Doy (T) + Ezp(z) log(l — Do, (Go, (Z)))

2. Instead: Gradient ascent on generator, different objective

= . 'y =
T

max E, . (z) log(Ds, (Gs, (2))) h
) /
Instead of minimizing likelihood of discriminator being correct, now High gradi&nt signal
maximize likelihood of discriminator being wrong.
Same objective of fooling discriminator, but now higher gradient ) .
signal for bad samples => works much better! Standard in practice.

|
Mo.8

[ow:gradient signal



Training GANs: Two-player game
Putting it together: GAN training algorithm

for number of training iterations do
for k steps do

e Sample minibatch of m noise samples {z(1),. .., z(™)} from noise prior p,(z).
e Sample minibatch of m examples {z'V),. .., :1:{"’”}} from data generating distribution
pda{a(m)-
e Update the discriminator by ascending its stochastic gradient:
1 ; i
Vo, — 3 | log Dy, (z9) + log(1 — Dy, (Go, ("))
L
end for
e Sample minibatch of m noise samples {2'%), ..., (™)} from noise prior p,(2).

e Update the generator by ascending its stochastic gradient (improved objective):
1 « .
Vo, - Zl log(De,(Go, (3(1))))
7=

end for



Training GANs: Two-player game
Putting it together: GAN training algorithm

for number of training iterations do
for|k steps do

/- Sample minibatch of m noise samples {z(1),. .., z(™)} from noise prior p,(z).

Some find k=1 g Sa(ml):alﬂ minibatch of m examples {z'1),..., :1:{"’”}} from data generating distribution
Pdata\L ).

rT][ch)re Stablek’ > 1 e Update the discriminator by ascending its stochastic gradient:
others use ; ™m

1 (i Q
no best rule. Vo> [1og Da, () + log(1 — Dy, (Go, (2 )))]

i=1

Followup work | awid S
(e.9. Wasserstein ¢ Sample minibatch of m noise samples {z(1), ..., (™} from noise prior py(2).
GAN, BEGAN) e Update the generator by ascending its stochastic gradient (improved objective):
alleviates this m

1 .
problem, better Vo, — > log(Dg,(Ga,(2")))
stability! =1

end for



Training GANs: Two-player game

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images

Real or Fake

?

Discriminator Network

/
Real Images
- ~  wadlll (from training set)
!

Generator Network
’ After training, use generator network to

generate new images

Fake Images
(from generator)

Random noise Z

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.



Generative Adversarial Nets: Convolutional Architectures

Generator is an upsampling network with fractionally-strided convolutions
Discriminator is a convolutional network

Architecture guidelines for stable Deep Convolutional GANS

e Replace any pooling layers with strided convolutions (discriminator) and fractional-strided
convolutions (generator).

e Use batchnorm in both the generator and the discriminator.
e Remove fully connected hidden layers for deeper architectures.
e Use ReLLU activation 1in generator for all layers except for the output, which uses Tanh.

e Use LeakyReL.U activation in the discriminator for all layers.

Radford et al, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR 2016



Generative Adversarial Nets: Convolutional Architectures

Samples
from the
model look
much
better!

Radford et al,
ICLR 2016




Generative Adversarial Nets: Convolutional Architectures

Interpolating 2 e B
between o
random s
points in laten =
space |

Radford et al,
ICLR 2016



Generative Adversarial Nets: Interpretable Vector
Math

Smiling woman Neutral woman Neutral man

=

Radford et al, ICLR 2016

e

Samples
from the <
model




Generative Adversarial Nets: Interpretable Vector
Math

Smiling woman Neutral woman Neutral man

4 >

Radford et al, ICLR 2016

Samples
from the <
model

Average Z
vectors, do
arithmetic




Generative Adversarial Nets: Interpretable Vector
Math

Smiling woman Neutral woman Neutral man

4 \;’

Radford et al, ICLR 2016

Smiling Man

Samples
from the <
model

Average [/
vectors, do
arithmetic




Generative Adversarial Nets: Interpretable Vector
Math

Radford et al,
Glasses man  No glasses man No_glasses woman o R 2018

Woman with glasses




GAN in PyTorch

Stride 2

32 Stride 2

Project and reshape CONV 1
. . . e CONV 3 \:}Rx\
https://pytorch.org/tutorials/beginner/dcgan faces tutorial.html conve W
G(2)
. oL class Generator(nn.Module):
class Discriminator(nn.Module): o
o def __init__(self, ngpu):
def __init__(self, ngpu): super (Generator, self).__init__()
super(Discriminator, self).__init__() o crpEOr = T
self.ngpu = ngpu self.main = nn.Sequential (
self.main = nn.Sequential( # input is Z, going into a convolution
# input is "“(nc) x 64 x 64" nn.ConvTranspose2d( nz, ngf % 2, 4, 1, 0, bias=False),
nn.Conv2d(nc, ndf, 4, 2, 1, bias=False), nn.BatchNoxrm2d (ngf = 35),
nn.lLeakyRelU(2.2, inplace=True), nn.ReLU(Txue),
# state size. "'(ndf) x 32 x 32" # state size. '"(ngf*8) x 4 x 4"
nn.Conv2d(ndf, ndf = 2, 4, 2, 1, bias=False), nn.ConvTranspose2d(ngf * 2, ngf = 4, 4, 2, 1, bias=False),
nn.BatchNoxm2d (ndf = 2), nn.BatchNoxm2d(ngf * 4),
nn.LeakyRelLU(2.2, inplace=True), nn.RelLU(True),
# state size. "'(ndf*2) x 16 x 16" # state size. " (ngf*4) x 8 x 8

nn.ConvTranspose2d( ngf = 4, ngf = 2, 4, 2, 1, bias=False),

nn.Conv2d(ndf * 2, ndf = 4, 4, 2, 1, bias=False),
nn.BatchNorm2d (ngf = 2),

nn.BatchNoxrm2d(ndf = 4),

. nn.RelLU(True),
nn.LeakyRelU(2.2, inplace=True), , . . .
# state size. "~ '(ndf#4d) x 8 x 8 ¢ ostate size. (ngtx2) x 16 x 16 )

‘ nn.ConvTranspose2d( ngf = 2, ngf, 4, 2, 1, bias=False),
nn.Conv2d(ndf * 4, ndf * 5, 4, 2, 1, bias=False), nn.BatchNorm2d (ngf) ,
nn.BatchNoxrm2d(ndf %= 5), nn.RelU(True),
nn.lLeakyRelU(2.2, inplace=True), # state size. ''(ngf) x 32 x 32"
# state size. "'(ndf#*8) x 4 x 4 nn.ConvTranspose2d( ngf, nc, 4, 2, 1, bias=False),
nn.Conv2d(ndf = 5, 1, 4, 1, @, bias=False), nn.Tanh()
nn.Sigmoid() # state size. "‘(nc) x 64 x 64"
) )
def forward(self, input): def forward(self, input):

return self.main(input) return self.main(input)

https://qithub.com/soumith/ganhacks



https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html
https://github.com/soumith/ganhacks

Since then: Explosion of GANs
“The GAN Zoo’

} ) * Context-RNN-GAN - Contextual RNN-GANs for Abstract Reasoning Diagram Generation
* GAN - Generative Adversarial Networks . ‘ ‘
* C-RNN-GAN - C-RNN-GAN: Continuous recurrent neural networks with adversarial training

* 3D-GAN - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling » CS-GAN - Improving Neural Machine Translation with Conditional Sequence Generative Adversarial Nets

* acGAN - Face Aging With Conditional Generative Adversarial Networks » CVAE-GAN - CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training
« AC-GAN - Conditional Image Synthesis With Auxiliary Classifier GANs « CycleGAN - Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
« AcaGAN - AdaGAN: Boosting Generative Models » DTN - Unsupervised Cross-Domain Image Generation

« AEGAN - Learning Inverse Mapping by Autoencoder based Generative Adversarial Nets « DCGAN - Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks

- . » DiscoGAN - Learning to Discover Cross-Domain Relations with Generative Adversarial Networks
« AffGAN - Amortised MAP Inference for Image Super-resolution ? : : . ot
* DR-GAN - Disentangled Representation Learning GAN for Pose-Invariant Face Recognition

» AL-CGAN - Learning to Generate Images of Outdoor Scenes from Attributes and Semantic Layouts ' DialGAN - DialGAN: Unsibsrssd Dual Leatuing for imsgso-ifhage Translation

* ALI - Adversarially Learned Inference « EBGAN - Energy-based Generative Adversarial Network

« AM-GAN - Generative Adversarial Nets with Labeled Data by Activation Maximization « f-GAN - f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization
« AnoGAN - Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery * FF-GAN - Towards Large-Pose Face Frontalization in the Wild

« ArtGAN - ArtGAN: Artwork Synthesis with Conditional Categorial GANs * GAWWN - Learning What and Where to Draw

» GeneGAN - GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data
» Geometric GAN - Geometric GAN

» GoGAN - Gang of GANs: Generative Adversarial Networks with Maximum Margin Ranking

» b-GAN - b-GAN: Unified Framework of Generative Adversarial Networks
« Bayesian GAN - Deep and Hierarchical Implicit Models

« BEGAN - BEGAN: Boundary Equilibrium Generative Adversarial Networks « GP-GAN - GP-GAN: Towards Realistic High-Resolution Image Blending
» BiGAN - Adversarial Feature Learning  |AN - Neural Photo Editing with Introspective Adversarial Networks
« BS-GAN - Boundary-Seeking Generative Adversarial Networks * iGAN - Generative Visual Manipulation on the Natural Image Manifold

« CCAN - Conditional Generative Adversarial Nets * IcGAN - Invertible Conditional GANs for image editing

, ; * : : . . i » |D-CGAN - Image De-raining Using a Conditional Generative Adversarial Network
« CaloGAN - CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters s o =

3 4 y » Improved GAN - Improved Technigues for Training GANs
with Generative Adversarial Networks P P q g

» InfoGAN - InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets

GO, SR GG LSRG OIS Lt L DEnR NG ACEIRINL TEDer « LAGAN - Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics

« CatGAN - Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks Synthesis
« CoGAN - Coupled Generative Adversarial Networks * LAPGAN - Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks

https://github.com/hindupuravinash/the-gan-zoo



2017: Explosion of GANSs

Better training and generation

LSGAN, Zhu 2017. Wasserstein GAN,
Arjovsky 2017.

Improved Wasserstein
GAN, Gulrajani 2017.

Progressive GAN, Karras 2018.



Some challenges with GANs ...



Challenges with GANSs

Vanishing gradients:

o the discriminator becomes too good and the generator gradient vanishes.

Non-Convergence:

o the generator and discriminator oscillate without reaching an equilibrium.

Mode Collapse:

o the generator distribution collapses to a small set of examples.

Mode Dropping:

o the generator distribution doesnt fully cover the data distribution.



Challenges with GANs: Vanishing Gradients

e [he minimax objective saturates when Dy is close to perfect:

V(Qd: Qg) = EPdata [Iog ng (X)]+:Epz(z) [Iog (]_ — ng(Ggg(Z))” :

e A non-saturating heuristic objective for the generator is

J(Go,) = —Ep,(2) log ( Dy, (Go,(2)))] -

O — Minimax
15 H T Non-saturating heuristic
—— Maximum likelihood cost
_2[] | | 1 |
0.0 0.2 0.4 0.6 0.8

https://arxiv.org/abs/1701.00160



Challenges with GANs: Vanishing Gradients

e [he minimax objective saturates when Dy, is close to perfect:

V (04, 0g) = Ep,,., [log Da, (x)]+ b, (2) [Iog (1 - Df?d(Gﬁ’g(Z))” '

e A non-saturating heuristic objective for the generator is

J(Go,) = ~Ep,(z [log (D, (Go, (2)))]

5 \ I | | |
[} ——“-___._
_5 L w
E“
S 10
—10H —  Minimax |
_15 | = Non-saturating heuristic i
——  Maximum likelihood cost
—QU | | | |
0.0 0.2 0.4 0.6 0.8 1.0

D(G(z))

https://arxiv.org/abs/1701.00160

Potential Solutions:

1. Explore other training
objectives?

2. Discriminator Capacity:

- make it small ?
- trainitless ?
- slow learning rate”

3. Learning Schedule:
- try to balance training
Gand D




Problems: Nonconvergence

* Deep Learning models (in general) involve a single player

* The playertries to maximizeits reward (minimize its loss).

* Use SGD (with Backpropagation) to find the optimal parameters.
* SGD hasconvergence guarantees (under certain conditions).

* Problem: With non-convexity, we might converge to local optima.

mcin L(G)

* GANs instead involve two (or more) players

* Discriminatoristrying to maximize its reward.
* Generatoris trying to minimize Discriminator’sreward.

min maxV (D, G)
G D

* SGD was not designed to find the Nash equilibrium of a game.
* Problem: We might not converge to the Nash equilibrium at all.



Challenges with GANs: Non-Convergence

« Simultaneous gradient descent is
not guaranteed to converge for

minimax objectives.

» Goodfellow et al. only showed
convergence when updates are

made in the function space.

* The parameterization of D and G
results in highly non-convex

objective.

* In practice, training tends to
oscillate — updates undo each

other!



Challenges with GANS:

Simultaneous gradient descent is

not guaranteed to converge for

minimax objectives.

Goodfellow et al. only showed
convergence when updates are

made in the function space.

The parameterization of D and G
results in highly non-convex

objective.

In practice, training tends to
oscillate — updates undo each

other!

Non-Convergence

Potential Solutions (HACKS) https://github.com/soumith/ganhacks

How to Train a GAN? Tips and tricks to make GANs work

While research in Generative Adversarial Networks (GANs) continues to improve the fundamental stability of these

models, we use a bunch of tricks to train them and make them stable day to day.

Here are a summary of some of the tricks.

If you find a trick that is particularly useful in practice, please open a Pull Request to add it to the document. If we find

it to be reasonable and verified, we will merge it in.

1. Normalize the inputs

® normalize the images between -1 and 1

* Tanh as the last layer of the generator output

2: A modified loss function

In GAN papers, the loss function to optimize G is min (log 1-D) , but in practice folks practically use max log D

* because the first formulation has vanishing gradients early on

¢ Goodfellow et. al (2014)
In practice, works well:

* Flip labels when training generator: real = fake, fake = real

3: Use a spherical Z

¢ Dont sample from a Uniform distribution

4: BatchNorm

e Construct different mini-batches for real and fake, i.e. each mini-batch needs to contain only all real images or all

generated images.

* when batchnorm is not an option use instance normalization (for each sample, subtract mean and divide by

standard deviation).

5: Avoid Sparse Gradients: ReLU, MaxPool

¢ the stability of the GAN game suffers if you have sparse gradients
* LeakyRelU = good (in both G and D)
* For Downsampling, use: Average Pooling, Conv2d + stride

* For Upsampling, use: PixelShuffle, ConvTranspose2d + stride
© PixelShuffle: https:/ 51

6: Use Soft and Noisy Labels

¢ Label Smoothing, i.e. if you have two target labels: Real=1 and Fake=0, then for each incoming sample, if it is
real, then replace the label with a random number between 0.7 and 1.2, and if it is a fake sample, replace it with
0.0 and 0.3 (for example).
Salimans et. al. 2016

* make the labels the noisy for the discriminator: occasionally flip the labels when training the discriminator

7: DCGAN / Hybrid Models

¢ Use DCGAN when you can. It works!

T I e T i P O T T T T e T T

8: Use stability tricks from RL

* Experience Replay
Keep a replay buffer of past generations and occassionally show them

Keep checkpoints from the past of G and D and occassionaly swap them out for a few iterations
¢ All stability tricks that work for deep deterministic policy gradients
* See Pfau & Vinyals (2016)

9: Use the ADAM Optimizer

* optim.Adam rules!
o See Radford et. al. 2015

* Use SGD for discriminator and ADAM for generator

10: Track failures early

D loss goes to 0: failure mode
check norms of gradients: if they are over 100 things are screwing up
when things are working, D loss has low variance and goes down over time vs having huge variance and spiking

if loss of generator steadily decreases, then it's fooling D with garbage (says martin)

11: Dont balance loss via statistics (unless you have a good reason to)

¢ Dont try to find a (number of G / number of D) schedule to uncollapse training
® |t's hard and we've all tried it.

¢ |f you do try it, have a principled approach to it, rather than intuition

For example

while lossD > A:
train D

while lossG > B:
train G

12: If you have labels, use them

¢ if you have labels available, training the discriminator to also classify the samples: auxillary GANs

13: Add noise to inputs, decay over time

* Add some artificial noise to inputs to D (Arjovsky et. al., Huszar, 2016)

* adding gaussian noise to every layer of generator (Zhao et. al. EBGAN)
Improved GANs: OpenAl code also has it (commented out)

14: [notsure] Train discriminator more (sometimes)

* especially when you have noise

* hard to find a schedule of number of D iterations vs G iterations

15: [notsure] Batch Discrimination

* Mixed results

[T] README

e Use an Embedding layer
* Add as additional channels to images

¢ Keep embedding dimensionality low and upsample to match image channel size

17: Use Dropouts in G in both train and test phase

* Provide noise in the form of dropout (50%).

* Apply on several layers of our generator at both training and test time



https://github.com/soumith/ganhacks

Challenges with GANs: Mode Collapse

The generator maps all z values to the x that is mostly likely to fool the discriminator.

Step O Step 5k Step 10k Step 15K Step 20k Step 25k



Some real examples




Challenges with GANs: Mode Collapse

Possible Solutions: Wasserstein GAN
There are a large variety of divergence measures for distributions: . \ -
— Density of real
e f-Divergences: (e.g. Jensen-Shannon, Kullback-Leibler) 08 et
WGAN Critic

o; (P 1) = [ a(F (P dx

v q(x)

e GANs [2], ~-GANs [7], and more.
e Integral Probability Metrics: (e.g. Earth Movers Distance,

: : —0.2} Vanishing gradients
Maximum Mean Discrepancy) in regular GAN
r: ~6 4 2 0 2 4 : 8
vE (P ||@) = sup /fdP/fdQ
feF

e Wasserstein GANs (1], Fisher GANs [6], Sobolev GANs [5] and

Mmore.



Wasserstein GANSs

WGAN

* If our data are on a low-dimensional manifold of a high dimensional
space the model’s manifold and the true data manifold can have a
negligible intersection in practice

* KL divergence is undefined or infinite

* The loss function and gradients may not be continuous and well
behaved

* The Earth Mover’s Distance is well defined: 2=,
* Minimum transportation cost for making one pile
of dirt (pdf/pmf) look like the other

-
(.




Wasserstein GANSs

WGAN

| Density of real
D)(p(D) @Y = _[F _F | e
]( )(9( | (QG) ) ; [ijwpdmﬁD(X) ZD(G(Z))] I| Ehgll“?{:ritic |
] (9( )’9( )) — *ZD(G(Z)) 0.6 |
* Importantly, the discriminator is trained for many steps before the 0.4 o l.
generator is updated . \ |
 Gradient-clipping is used in the discriminator to ensure D(x) has the A \__

Lipschitz continuity required by the theory

-0.2

 The authors argue that this solves many training issues, including
mode collapse 0.4




Additional Sources:

There are lots of excellent references on GANSs:

* Sebastian Nowozins presentation at MLSS 2018:
https: //github.com/nowozin/mlss2018-madrid-gan

* NIPS 2016 tutorial on GANs by lan Goodfellow:
https://arxiv.org/abs/1701.00160

* A nice explanation of Wasserstein GANs by Alex Irpan:
https: //www.alexirpan.com /2017 /02/22 /wasserstein-gan.htm|



https://github.com/nowozin/mlss2018-madrid-gan
https://arxiv.org/abs/1701.00160
https://www.alexirpan.com/2017/02/22/wasserstein-gan.html

Conditional GANs

MNIST digits generated conditioned on their class label.

[1,0,0,0,0,0,0,0,0,0] — F RN R EIEEK R R K RN RN I RS,
[0,1,0,0,0,0,0,0,0,0] — |FaNEFs ,mu A R RV
[0,0,1,0,0,0,0,0,0,0] — YN L 22 Ja a2 222 I
[0,0,0,1,0,0,0,0,0,0] — BRI #2383 3822F 2237
[0,0,0,0,1,0,0,0,0,0] — T A O " BN AR " TR TR *
[0,0,0,0,0,1,0,0,0,0] — 5 % 55 %54 8§85 5% 4505
[0,0,0,0,0,0,1,0,0,0] —- b6 6 6 &6 Lt E &6
[0,0,0,0,0,0,0,1,0,0] — 7777713277771
[0,0,0,0,0,0,0,0,1,0] — 2 7 £ 88 782%¢8¢F FF
[0,0,0,0,0,0,0,0,0,1] — 99759 R 7994999719

Figure 2 in the original paper.



Conditional GANSs

* Simple modification to the original GAN
framework that conditions the model on
additional information for better multi-modal
learning.

* Lends to many practical applications of GANs
when we have explicit supervision available.

(@) | ()
G /

[C {class}] [Z {nﬂiSE}J

Conditional GAN
(Mirza & Osindero, 2014)

Image Credit: Figure 2 in Odena, A., Olah, C. and Shlens, J., 2016. Conditional image synthesis with auxiliary classifier GANs. arXiv preprint arXiv:1610.09585.

Mirza, Mehdi, and Simon Osindero. “Conditional generative adversarial nets”. arXiv preprint arXiv:1411.1784 (2014).



Image-to-Image Translation

Labels to Street Scene Labels to Facade BW to Color

Input output

Edges to Photo

output Input output

Figure 1 in the original paper.

Link to an interactive demo of this paper

Isola, P, Zhu, J.Y., Zhou, T., & Efros, A. A. “Image-to-image translation with conditional adversarial networks”. arXiv preprint arXiv:1611.07004. (2016).



Image-to-Image Translation

° Arc h iteCtu re: DCGA N— based Positive examples Nigaltiue; iﬁiﬂ’?j&ﬁ
. Real or fake pair? eal or Take pair:
architecture b

|
O N —
|

* Training is conditioned on the images
from the source domain.

G tries to synthesize fake

* Conditional GANs provide an effective  imagestnatfool D
way to handle many complex domains D triestoidentiy the fakes
without worrying about designing Figure 2 in the original paper.
structured loss functions explicitly.

Isola, P, Zhu, J. Y., Zhou, T., & Efros, A. A. “Image-to-image translation with conditional adversarial networks”. arXiv preprint arXiv:1611.07004. (2016).



Text-to-Image Synthesis

this small bird has a pink this magnificent fellow 1s
: : breast and crown, and black almost all black with a red
M otivation primaries and secondaries. crest, and white cheek patch.

Given a text description, generate
Images closely associated.

the flower has petals that this white and yellow flower
USES 3 CONn d|t|0n al GAN W|th the are hright pinkish purple have thin white petals and a
with white stigma round yellow stamen

generator and discriminator being
condition on “dense” text
embedding.

.-}. » ** {

i
™ F

_i

/

Figure 1 in the original paper.

Reed, S., Akata, Z., Yan, X., Logeswaran, L, Schiele, B., & Lee, H. “Generative adversarial text to image synthesis”. ICML (2016).



Text-to-Image Synthesis

Fhis flower has small, round violet ﬂ this flower has small, round violet
petals with a dark purple center r:=0G (E _. lp(i*)j petals with a dark purple center

Sﬁ"L»—l—m *‘:’L»_

Y, g, | e h | (el R D(E ()]
S ”@%1 e [y K rrrrr I
- i \i{ ‘ _O
Generator Network Discriminator Network
Figure 2 in the original paper.
Positive Example: Negative Examples:
Real Image, Right Text Real Image, Wrong Text

Fake Image, Right Text

Reed, S., Akata, Z., Yan, X., Logeswaran, L., S5chiele, B., & Lee, H. “Generative adversarial text to image synthesis”. ICML (2016).



Face Aging with Conditional GANs

* Differentiating Feature: Uses an Identity Preservation Optimization using an
auxiliary network to get a better approximation of the latent code (z*) for an

Input image.
* Latent code isthen conditioned on a discrete (one-hot) embedding of age

tegories.
PEeoTE

El

Identity
Preserving -.
Optimization

Imitial reconstmcetion ' {jpil]lll?l&(l reconstrmchon

of age “60+”

Resulting face X¢q; g0
it

Xp of age y, ' X of age }'.].

I Generator
s e G
Geueratnr e
L 1' J

Figure 1 in the original paper.

Antipov, G., Baccouche, M., & Dugelay, J. L. (2017). “Face Aging With Conditional Generative Adversarial Networks". arXiv preprint arXiv:1702.01983.



Face Aging with Conditional GANs

Reconstruction
N Optimization Face Aging
Ofiaing] Initial I \
= Reconstruction

E

Pixelwise - - 40-49 50-59

Figure 3 in the original paper.

Antipov, G., Baccouche, M., & Dugelay, J. L. (2017). “Face Aging With Conditional Generative Adversarial Networks”. arXiv preprint arXiv:1702.01983.



Conditional GANSs

Conditional Model Collapse

A man in a orange jacket with sunglasses and a hat ski down a hill.

* Scenario observed when the
Conditional GAN starts ignoring
either the code (c) or the noise
variables (z).

* This limitsthe diversity of
Images generated.

Credit?

Mirza, Mehdi, and Simon Osindero. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014).



GANSs got stuck ...

| ater in this course: Diffusion Models
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