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o Faculty have fun (hide from the world, writing retreat, submit grant proposals)
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Some Reminders:  Spring Break !(?)
• What is Spring Break?

o Undergrads have fun (take a trip, visit home, etc.)

o Ph.D. students have fun (stop worrying about classes/grades and work on research  )

o Faculty have fun (hide from the world, writing retreat, submit grant proposals)

• Midterm Exam is on March 31

o In this room (ITE 231)

o During class hours (4:00 PM to 5:00 PM)

o Syllabus: every lecture until and including 03/26



tejasgokhale.com

Lecture 7: Representation Learning
CMSC 475/675 Neural Networks

Some VAE slides are borrowed 
from Ranjay Krishna



Machine Learning Problems



SUPERVISED LEARNING

‣ setting : ‣ setting :

• Training time
‣ data :

{x(t), y(t)}

• Test time
‣ data :

{x(t), y(t)}

x(t), y(t) ⇠ p(x, y) x(t), y(t) ⇠ p(x, y)

Example

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼:  𝑥𝑥(𝑡𝑡) is an image

𝑂𝑂𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼:𝑦𝑦(𝑡𝑡) is an image 
category



MULTITASK LEARNING

• Training time
‣ data :

‣ setting :

• Test time
‣ data :

‣ setting :

{x(t), y(t), . . . , y(t)}
1 M

{x(t), y(t), . . . , y(t)}
1 M

1x(t), y(t), . . . , y(t) ⇠M

p(x, y1, . . . , yM )
1x(t), y(t), . . . , y(t) ⇠M

p(x, y1, . . . , yM )

Example

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼:  𝑥𝑥(𝑡𝑡) is an image
𝑂𝑂𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑂𝑂: 

• 𝑦𝑦1
(𝑡𝑡): image category

• 𝑦𝑦1
(𝑡𝑡): object detection

• 𝑦𝑦1
(𝑡𝑡): depth estimation

• 𝑦𝑦1
(𝑡𝑡): semantic 

segmentation 

• …



MULTITASK LEARNING
Topics: multitask learning

...x1 xd...xj

......

......

h(1)(x)

h(2)(x)

W(1)

W(2)

y3
...

y1
...

y2
...



DOMAIN ADAPTATION
9

• Test time
‣ data :

• Training time
‣ data :

{x(t), y(t)}

• Example
‣ classify sentiment 

(positive vs negative)

‣ in reviews of different 
products

‣ training onAmazon 
Reviews but testing on 
Yelp Reviews

‣ setting :

x(t) ⇠ p(x)

y(t) ⇠ p(y|x(t))

{x̄ (t), y(t)}

‣ setting :

x̄ ( t ) ⇠ q(x)

y(t) ⇠ p(y|x̄(t))

{x̄ (t0 )}

x̄ (t) ⇠ q(x)⇡ p(x)



ONE-SHOT LEARNING
11

• Training time
‣ data :

{x(t), y(t)}

• Test time
‣ data :

{x(t), y(t)}

• Example
‣ recognizing a person 

based on a single 
picture of him/her

subject to y(t) 2 {1,. .., C} subject to y(t) 2 {C + 1,. .., C + M }
‣ side information :

- a single labeled example from 
each of the M new classes

‣ setting :

x(t), y(t) ⇠ p(x, y)

‣ setting :

x(t), y(t) ⇠ p(x, y)



ZERO-SHOT LEARNING
13

• Training time
‣ data :

{x(t), y(t)}

• Test time
‣ data :

{x(t), y(t)}

• Example
‣ recognizing an object 

based on a worded 
description of it

subject to y(t) 2 {1,. .., C}
‣ side information :

- description vector zc of each of 
the C classes

subject to y(t) 2 {C + 1,. .., C + M }
‣ side information :

- description vector zc of each of 
the new M classes

‣ setting :

x(t), y(t) ⇠ p(x, y)

‣ setting :

x(t), y(t) ⇠ p(x, y)



SEMI-SUPERVISED LEARNING

‣ setting : ‣ setting :

• Test time
‣ data :

{x(t), y(t)}

• Training time
‣ data :

{x(t), y(t)}

{x ( t )}

x(t), y(t) ⇠ p(x, y)

x(t) ⇠ p(x)

x(t), y(t) ⇠ p(x, y)



UNSUPERVISED LEARNING

‣ setting : ‣ setting :

• Test time
‣ data :

{x ( t )}

• Training time
‣ data :

{x ( t )}

x(t) ⇠ p(x) x(t) ⇠ p(x)



How can we train models “unsupervised”?
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How can we train models “unsupervised”?

This is the focus of representation learning

There’s an entire conference on Representation Learning

ICLR has become one of the top 
CS and Engineering (not just AI) 
publication although it just started 
in 2013.

In fact top-10 in ALL OF SCIENCE



How can we train models “unsupervised”?

This is the focus of representation learning

There’s an entire conference on Representation Learning

ICLR has become one of the top 
CS and Engineering (not just AI) 
publication although it just started 
in 2013.

In fact top-10 in ALL OF SCIENCE



Warning

I might use the terms “latent”, “embedding”, 
“representation”, “feature” interchangeably.



Motivation (kind of): Compression

• The idea is similar to compression (signal processing) or hashing (data structures):
o encode an image into a smaller vector s.t. you can decode it back to its original form

‒ Example:  images, audio, video are stored in a compressed form on your computer using compression 
algorithms like JPEG, MP3, MPEG etc.  The computer has software to decode it back so that you can 
view it (everytime you “open” a JPEG file to view an image, the decoder runs and converts code to RGB)



Motivation (kind of): Compression
• The idea is similar to compression (signal processing) or hashing (information theory):

o encode an image into a smaller vector s.t. you can decode it back to its original form
‒ Example:  images, audio, video are stored in a compressed form on your computer using compression algorithms 

like JPEG, MP3, MPEG etc.  The computer has software to decode it back so that you can view it (everytime you 
“open” a JPEG file to view an image, the decoder runs and converts code to RGB)

• Representation Learning 
∼ convert inputs automatically into “codes” (called representations/embeddings / features) 
s.t. the representations are:
o Useful for downstream tasks (e.g. classification, regression, …)
o “explain the data” and are “meaningful”

• Main difference:   “meaningful” representation spaces to do “tasks”

(The goal for compression is only efficient storage — not data classification/clustering etc.) 



Representation Learning Paradigm

Raw Data
(e.g. text, image, audio, 

video, …)

Representation 
Learning

(Encoding)

Do tasks / actions 
with these 

representations



Typical Goals for Representations

Source:  Pankaj Gupta (LMU Munich)

Similar representations for similar concepts



Typical Goals for Representations

Source:  Pankaj Gupta (LMU Munich)

A Semblance of “Context” should be encoded …

If you know the answer, 
don’t share it with the class yet.

People from lands between Greece and India 
might know the answer …
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Typical Goals for Representations
A Semblance of “Context” should be encoded …

food

If you speak Marathi, this word has two meanings depending on context

Halwa (1):  a food item    derived from: Farsi
Halwa (2): (an instruction to) move (something) derived from: Sanskrit



Typical Goals for Representations

Source:  Pankaj Gupta (LMU Munich)

A Semblance of “Context” should be encoded …



Typical Goals for Representations

Source:  Pankaj Gupta (LMU Munich)

A Semblance of “Context” should be encoded …

dessert



Typical Goals for Representations

Source:  Pankaj Gupta (LMU Munich)

A Semblance of “Context” should be encoded …

sugary
dessert

Oh no! I forgot to put sugar in the 



Typical Goals for Representations

• “bird” has  “wing”, “beak”, “feathers”

• “bird” can  “fly”

• “bird” is under category  “animal”

• “bird” has subcategories “eagle”, “peacock”, “sparrow”, “seagull”, “pigeon”

Source:  Pankaj Gupta (LMU Munich)

Parts, properties, attributes, ontology ?



Representation Learning is a Philosophy for Learning

Parallel Work in Cog.Sci.
Key assumptions in this philosophy:

• You can convert a high-dimensional input space 
into a low-dimensional representation space
o Example:  RGB images  100 dim vectors

• A good representation space will have a 
“structure”
o Example: Similarity, Symmetry, Relations will be 

easy to understand

o Why?  So that we can do arithmetic in 
representation space to do tasks

• Representations can be learned from data

• Representations can be leveraged for doing 
tasks



Representation Learning is a Philosophy for Learning

Key assumptions in this philosophy:

• You can convert a high-dimensional input space 
into a low-dimensional representation space
o Example:  RGB images  100 dim vectors

• A good representation space will have a 
“structure”
o Example: Similarity, Symmetry, Relations will be 

easy to understand

o Why?  So that we can do arithmetic in 
representation space to do tasks

• Representations can be learned from data

• Representations can be leveraged for doing 
tasks

Parallel Work in Cog.Sci.



Ok whatever.  Tell us how it works …



Types of Modeling (Probabilistic Interpretation)

 Data: x; Label: y

 Density Function: 𝐼𝐼 𝑥𝑥

 ∫𝑋𝑋 𝐼𝐼 𝑥𝑥  𝑑𝑑𝑥𝑥 = 1

(probabilities of all inputs sum to 1)

“cat”

Discriminative Model
 

Learn Prob. Dist. 𝑃𝑃(𝑦𝑦|𝑥𝑥)

∀𝑥𝑥,∑𝑐𝑐 𝑃𝑃 𝑦𝑦 = 𝑐𝑐 𝑥𝑥 = 1  

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Cat Horse Tiger

P(y|x=     )

0

0.2

0.4

0.6

0.8

1

Cat Horse Tiger

P(y|x=     )



Types of Modeling (Probabilistic Interpretation)

 Data: x; Label: y

 Density Function: 𝐼𝐼 𝑥𝑥

 ∫𝑋𝑋 𝐼𝐼 𝑥𝑥  𝑑𝑑𝑥𝑥 = 1

(probabilities of all inputs sum to 1)

“cat”

Generative Model
 

Learn Marginal Prob. Dist. 𝑃𝑃(𝑥𝑥)

 

Conditional Generative Model
 

Learn conditional probability 𝑃𝑃(𝑥𝑥|𝑦𝑦)

0
0.05
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0.15
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P(       )P(      ) P(       )



Types of Modeling (Probabilistic Interpretation)

 Data: x; Label: y

 Density Function: 𝐼𝐼 𝑥𝑥

 ∫𝑋𝑋 𝐼𝐼 𝑥𝑥  𝑑𝑑𝑥𝑥 = 1

(probabilities of all inputs sum to 1)

“cat”

• Discriminative Model

Learn Prob. Dist. 𝑃𝑃(𝑦𝑦|𝑥𝑥)

• Generative Model

 

Learn Marginal Prob. Dist. 𝑃𝑃 𝑥𝑥

• Conditional Generative Model

 

Learn conditional probability 𝑃𝑃(𝑥𝑥|𝑦𝑦)



Types of Modeling (Probabilistic Interpretation)

• Discriminative Model

Learn Prob. Dist. 𝑃𝑃(𝑦𝑦|𝑥𝑥)

• Generative Model

 

Learn Marginal Prob. Dist. 𝑃𝑃 𝑥𝑥

• Conditional Generative Model

 

Learn conditional probability 𝑃𝑃(𝑥𝑥|𝑦𝑦)

APPLICATIONS

Classification, Regression, 
Representation Learning 

(with labels)



Types of Modeling (Probabilistic Interpretation)

• Discriminative Model

Learn Prob. Dist. 𝑃𝑃(𝑦𝑦|𝑥𝑥)

• Generative Model

 

Learn Marginal Prob. Dist. 𝑃𝑃 𝑥𝑥

• Conditional Generative Model

 

Learn conditional probability 𝑃𝑃(𝑥𝑥|𝑦𝑦)

APPLICATIONS

Data Generation
Outlier Detection

Representation Learning 
(without labels)



Types of Modeling (Probabilistic Interpretation)

• Discriminative Model

Learn Prob. Dist. 𝑃𝑃(𝑦𝑦|𝑥𝑥)

• Generative Model

 

Learn Marginal Prob. Dist. 𝑃𝑃 𝑥𝑥

• Conditional Generative Model

 

Learn conditional probability 𝑃𝑃(𝑥𝑥|𝑦𝑦)

APPLICATIONS

Machine Translation
Text-to-image generation

(pretty much every “GenAI” 
product you see is a 

conditional generative model)



Generative Models   

• What’s a Generative Model?
o A model for the probability distribution of data 𝑥𝑥  P(x)

o A model that can be used to “generate” data  marketing term “genAI”

• Generative Models can be learned
o You are given some observed data X   (e.g. face images)

o You choose a function (e.g. neural network) to model 𝑃𝑃(𝑥𝑥;𝜃𝜃) using parameters 𝜃𝜃
o You estimate 𝜃𝜃 s.t. 𝑃𝑃 𝑥𝑥;𝜃𝜃  best fits the observations X

“Generative 
Model”

Seed x



Generative Models
• Generative Models can be learned

o You estimate 𝜃𝜃 s.t. 𝑃𝑃 𝑥𝑥;𝜃𝜃  best fits the observations X

• “Best fit” in what sense?
o Maximum Likelihood   𝜃𝜃∗ =  argmax

𝜃𝜃
 𝑃𝑃(𝑥𝑥;𝜃𝜃)

• How to model the distribution of high dimensional data?

𝑃𝑃 𝑥𝑥 = �
𝑧𝑧
𝑃𝑃 𝑥𝑥, 𝑧𝑧  𝑑𝑑𝑧𝑧 =  �

𝑧𝑧
𝑃𝑃 𝑧𝑧 𝑃𝑃(𝑥𝑥|𝑧𝑧) 

o 𝑃𝑃𝜃𝜃(𝑧𝑧) and 𝑃𝑃𝜃𝜃(𝑥𝑥|𝑧𝑧) can be factorized 

𝑃𝑃𝜃𝜃 𝑥𝑥 𝑧𝑧 = 𝑃𝑃𝜃𝜃 𝑥𝑥1  … , 𝑥𝑥𝐷𝐷 𝑧𝑧) =  �
𝑖𝑖

𝑃𝑃𝜃𝜃(𝑥𝑥𝑖𝑖|𝑧𝑧)

𝜃𝜃∗ =  argmax
𝜃𝜃

𝑃𝑃𝜃𝜃 𝑥𝑥 =  argmax
𝜃𝜃

�
𝑖𝑖

𝑃𝑃𝜃𝜃(𝑥𝑥𝑖𝑖|𝑧𝑧) = argmax
𝜃𝜃

 log�
𝑖𝑖

𝑃𝑃𝜃𝜃(𝑥𝑥𝑖𝑖|𝑧𝑧)



Ok whatever.  Tell us how it works …

Let’s start simple …



The idea of an “Auto-encoder”
• NN trained to reproduce the input  �𝑥𝑥 = 𝐹𝐹(𝑥𝑥)

• 𝐹𝐹() is a composition of two functions:   encoder 𝐸𝐸() and decoder 𝐷𝐷()
o Embedding / Feature / Latent   𝑧𝑧 = 𝐸𝐸(𝑥𝑥)

o Output      �𝑥𝑥 = 𝐷𝐷 𝑧𝑧 = 𝐷𝐷 𝐸𝐸 𝑥𝑥



How would you train an autoencoder?

Loss Function?



Autoencoder:  Loss Function

• The objective is to minimize the “distance” between 𝑥𝑥 and �𝑥𝑥
o If 𝑑𝑑 𝑥𝑥, �𝑥𝑥 = 0 then we get perfect reconstruction

• Mean squared error!

• Cross Entropy (for binary inputs)

• For both cases, gradient is very simple:  ∇𝑥𝑥 𝐿𝐿 𝑓𝑓 𝑥𝑥 , 𝑥𝑥 = �𝑥𝑥  − 𝑥𝑥



Autoencoder:  Simple Example

Source: Sebastian Raschka



Convolutional Autoencoder

Source: Sebastian Raschka



Convolutional Autoencoder



Convolutional Autoencoder:  
Expand Dimensions?  Transposed Convolution!
• The decoder needs to “expand dimensions” 

o Convert a small feature z into a large input x

• Use transposed convolution!   A.K.A. fractionally stride convolution

o Often (incorrectly) called “de”convolution

o This is an incorrect term because mathematically “deconvolution” is “inverse of convolution”



Convolutional Autoencoder:  
Expand Dimensions?  Transposed Convolution!



Transposed Conv in PyTorch



Denoising Autoencoder
• The input is “noisy” �𝑥𝑥 .  The expected output is a clean image (denoised image)

• Noise Examples:

o Gaussian:  �𝑥𝑥 = 𝑥𝑥 + 𝑧𝑧;  𝑧𝑧 ∼ 𝑁𝑁(0,𝜎𝜎2𝐼𝐼)

o Masking:  Zero-out some of the components of x 
   (for images, make some pixels 0)

‒ Can be random masks

‒ Can be square masks

• Adding noise makes representations more robust

o Expect 𝐷𝐷(𝐸𝐸 �𝑥𝑥 = 𝑥𝑥   for all 𝑧𝑧  

Vincent, Larochelle, Bengio, Manzagol. ICML 2008



Example:  Face Auto-Encoder

Once trained, what can you do 
with this model?



With Generative Models, there are 2 objectives:

𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥)

figure adapted from Ranjay Krishna



An Auto-Encoder is a Generative Model
Probabilistic Interpretation:

• Encoder 𝐸𝐸() estimates  𝑃𝑃𝜃𝜃𝐸𝐸(𝑧𝑧|𝑥𝑥)

• Decoder 𝐷𝐷() estimates  𝑃𝑃𝜃𝜃𝐷𝐷(𝑥𝑥|𝑧𝑧)

• The marginal   𝑃𝑃 𝑥𝑥 = ∫𝑧𝑧 𝑃𝑃 𝑥𝑥, 𝑧𝑧  𝑑𝑑𝑧𝑧 =  ∫𝑧𝑧 𝑃𝑃 𝑧𝑧 𝑃𝑃(𝑥𝑥|𝑧𝑧) 
 Bayes/Chain Rule …

• Once the AE is “trained”
o you get a generative model that generates “x” given a latent code “z”

o A conditional generative model takes an additional input “y”  𝑃𝑃 𝑥𝑥 𝑧𝑧,𝑦𝑦
‒ E.g. generating images from text  y=text, x = image

‒ More on this later …



Example:  Face Auto-Encoder

Once trained, what can you do 
with this model?

(1)  Encode images into vectors 

(throw away the decoder …)



Example:  Face Auto-Encoder

Once trained, what can you do 
with this model?

(1) Encode images into vectors 

(2) Generate new faces …

(throw away the encoder )



Types of Autoencoders



So far, we have not enforced any “structure” on the latents z

But a structure is desirable

(Remember our motivations / goals for representation learning)



So far, we have not enforced any “structure” on the latents z

We can’t generate new images from D() if we don’t understand the z-space



So far, we have not enforced any “structure” on the latents z

We can’t generate new images from D() if we don’t understand the z-space

For example, if I ask you to generate a “face with beard, glasses, brown hair”
which z would you choose?



VAE:  Variational Autoencoder

• Force a “prior” distribution on the latent space

o Example:  Gaussian 𝑁𝑁 0, 𝐼𝐼

• Gaussians are nice because they are 
perfectly symmetrical in every dimension

o Isotropic (covariance matrix is identity 𝐼𝐼)

o Dimensions are independent, 

i.e. P z1 𝑧𝑧2) = 𝑃𝑃 𝑧𝑧1 = 𝑁𝑁 0, 𝐼𝐼  ∀𝑧𝑧1, 𝑧𝑧2

o Property holds for any linear combination 
of 𝑧𝑧 elements

‒ i.e. 𝑃𝑃 𝑧𝑧1 𝑎𝑎𝑧𝑧2 + 𝑏𝑏𝑧𝑧3 = 𝑁𝑁(0, 𝐼𝐼) 

Kingma and Welling. Auto-Encoding Variational Bayes. ICLR 2014



These slides on VAE are adpated from Ranjay Krishna
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These slides on VAE are adapted from Ranjay Krishna



These slides on VAE are adapted from Ranjay Krishna



These slides on VAE are adapted from Ranjay Krishna



These slides on VAE are adapted from Ranjay Krishna



These slides on VAE are adapted from Ranjay Krishna



Variational Autoencoders: Intractability
Data likelihood:

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Ranjay Krishna, Sarah Pratt



Variational Autoencoders: Intractability
Data likelihood:

Simple Gaussian prior

Ranjay Krishna, Sarah Pratt



Variational Autoencoders: Intractability
Data likelihood:

Decoder neural network

Ranjay Krishna, Sarah Pratt



Variational Autoencoders: Intractability
Data likelihood:

Intractable to compute p(x|z) for every z!

Ranjay Krishna, Sarah Pratt



Variational Autoencoders: Intractability
Data likelihood:

Intractable to compute p(x|z) for every z!

Monte Carlo estimation is too high variance

Ranjay Krishna, Sarah Pratt



Variational Autoencoders: Intractability
Data likelihood:

Another idea: Use Bayes rule

Ranjay Krishna, Sarah Pratt



Variational Autoencoders: Intractability
Data likelihood:

Another idea: We know how to calculate these

Ranjay Krishna, Sarah Pratt



Solution: In addition to modeling pθ(x|z),
Learn qɸ(z|x) that approximates the true posterior pθ(z|x).

Variational Autoencoders: Intractability
Data likelihood:

Another idea: But how do you calculate this?

Ranjay Krishna, Sarah Pratt



Variational Autoencoders: Intractability
Data likelihood:

Another idea: x: 28x28 image = 784-dim vector
z: 20-dim vector

Ranjay Krishna, Sarah Pratt



Variational Autoencoders

Ranjay Krishna, Sarah Pratt

Using this approximation, we can derive a lower bound on the data likelihood 
p(x), making it tractable, therefore, possible to optimize.



Variational Autoencoders

Ranjay Krishna, Sarah Pratt

Taking expectation wrt. z 
(using encoder network) will 
come in handy later



Variational Autoencoders

Ranjay Krishna, Sarah Pratt



Variational Autoencoders

Ranjay Krishna, Sarah Pratt



Variational Autoencoders

Ranjay Krishna, Sarah Pratt



Variational Autoencoders

The expectation wrt. z (using
encoder network) let us write
nice KL terms

Ranjay Krishna, Sarah Pratt



Variational Autoencoders

Decoder network gives pθ(x|z), can 
compute estimate of this term through 
sampling (need some trick to 
differentiate through sampling).



Variational Autoencoders

This KL term (between 
Gaussians for encoder and z 
prior) has nice closed-form

Decoder network gives pθ(x|z), can 
compute estimate of this term through 
sampling (need some trick to
differentiate through sampling).

Ranjay Krishna, Sarah Pratt

solution!

Lecture 17 -
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This KL term (between 
Gaussians for encoder and z 
prior) has nice closed-form

pθ(z|x) intractable (saw 
earlier), can’t compute this KL 
term :( But we know KL

Decoder network gives pθ(x|z), can 
compute estimate of this term through 
sampling (need some trick to

divergence always >= 0.
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93 We want to 
maximize the 
data 
likelihood

This KL term (between 
Gaussians for encoder and z 
prior) has nice closed-form

pθ(z|x) intractable (saw 
earlier), can’t compute this KL 
term :( But we know KL

Decoder network gives pθ(x|z), can 
compute estimate of this term through 
sampling.

divergence always >= 0.solution!

Lecture 17 -Ranjay Krishna, Sarah Pratt



Variational Autoencoders
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Lecture 17 -

Tractable lower bound which we can take 
gradient of and optimize! (pθ(x|z) differentiable, 
KL term is differentiable)

We want to 
maximize the 
data 
likelihood

Ranjay Krishna, Sarah Pratt 106
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Tractable lower bound which we can take 
gradient of and optimize! (pθ(x|z) differentiable, 
KL term differentiable)

Decoder: 
reconstruct 
the input data

Encoder:
make approximate 
posterior distribution 
close to prior

Ranjay Krishna, Sarah Pratt



Variational Autoencoders
Putting it all together: maximizing the 
likelihood lower bound

Ranjay Krishna, Sarah Pratt



Input Data

Variational Autoencoders
Putting it all together: maximizing the 
likelihood lower bound

Let’s look at computing the KL 
divergence between the estimated 
posterior and the prior given some data

Ranjay Krishna, Sarah Pratt



Encoder network

Input Data

Variational Autoencoders
Putting it all together: maximizing the 
likelihood lower bound
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Variational Autoencoders
Putting it all together: maximizing the 
likelihood lower bound

Make approximate 
posterior distribution 
close to prior

Encoder network

Input Data

This equation has an analytical solution

Ranjay Krishna, Sarah Pratt



Encoder network

Sample z from

Input Data

Variational Autoencoders
Putting it all together: maximizing the 
likelihood lower bound

Make approximate 
posterior distribution 
close to prior

Not part of the computation graph!

Ranjay Krishna, Sarah Pratt



Sample z from

Encoder network

Input Data

Variational Autoencoders
Putting it all together: maximizing the 
likelihood lower bound

Reparameterization trick to make 
sampling differentiable:

Sample

Ranjay Krishna, Sarah Pratt



Encoder network

Input Data

Variational Autoencoders
Putting it all together: maximizing the 
likelihood lower bound

Reparameterization trick to make 
sampling differentiable:

Sample

Part of computation graph

Sample z from

Input to 
the graph

Ranjay Krishna, Sarah Pratt



Decoder network

Sample z from

Encoder network

Input Data

Variational Autoencoders
Putting it all together: maximizing the 
likelihood lower bound

Ranjay Krishna, Sarah Pratt



Decoder network

Sample z from

Encoder network

Input Data

Variational Autoencoders
Putting it all together: maximizing the 
likelihood lower bound

Maximize likelihood of original

Ranjay Krishna, Sarah Pratt

input being reconstructed



Decoder network

Sample z from

Encoder network

Input Data

Variational Autoencoders
Putting it all together: maximizing the 
likelihood lower bound

For every minibatch of input 
data: compute this forward 
pass, and then backprop!

Ranjay Krishna, Sarah Pratt



Variational Autoencoders: Generating Data!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Sample from 
true prior

Decoder 
network

Our assumption about data generation 
process

Sample from 
true conditional

Ranjay Krishna, Sarah Pratt



Variational Autoencoders: Generating Data!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Sample from 
true prior

Sample from 
true conditional

Decoder 
network

Our assumption about data generation 
process

Decoder network

Sample z from

Sample x|z from

Now given a trained VAE:

Ranjay Krishna, Sarah Pratt

use decoder network & sample z from prior!



Decoder network

Sample x|z from

Variational Autoencoders: Generating Data!

Sample z from

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Use decoder network. Now sample z from prior!

Ranjay Krishna, Sarah Pratt



Decoder network

Sample x|z from

Variational Autoencoders: Generating Data!

Sample z from

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Use decoder network. Now sample z from prior! Data manifold for 2-d z

Vary z1

Vary z2

Ranjay Krishna, Sarah Pratt



Variational Autoencoders: Generating Data!

Vary z1

Vary z2

Degree of smile

Head pose

Diagonal prior on z
=> independent 
latent variables

Ranjay Krishna, Sarah Pratt

Different 
dimensions of z 
encode 
interpretable factors 
of variation

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014



Variational Autoencoders: Generating Data!

Vary z1

Vary z2

Degree of smile

Head pose

Diagonal prior on z
=> independent 
latent variables

Different 
dimensions of z 
encode 
interpretable factors 
of variation

Also good feature representation that 
can be computed using qɸ(z|x)!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Ranjay Krishna, Sarah Pratt



Variational Autoencoders: Generating Data!

32x32 CIFAR-10

Ranjay Krishna, Sarah Pratt

Labeled Faces in the Wild



Editing images with VAEs

1. Run input data through 
encoder to get a distribution 
over latent codes

Encoder network

Input Data

Ranjay Krishna, Sarah Pratt



Editing images with VAEs

1. Run input data through 
encoder to get a distribution 
over latent codes

2. Sample code z from encoder 
output

Sample z from

Encoder network

Input Data

Ranjay Krishna, Sarah Pratt



Editing images with VAEs

1. Run input data through 
encoder to get a distribution 
over latent codes

2. Sample code z from encoder 
output

3. Modify some dimensions of 
sampled code

Sample z from

Encoder network

Input Data

Ranjay Krishna, Sarah Pratt

modified



Editing images with VAEs

1. Run input data through 
encoder to get a distribution 
over latent codes

2. Sample code z from encoder 
output

3. Modify some dimensions of 
sampled code

4. Run modified z through 
decoder to get a distribution 
over data sample

Encoder network

Decoder network

Sample z from

Input Data

Ranjay Krishna, Sarah Pratt

modified



Editing images with VAEs

1. Run input data through 
encoder to get a distribution 
over latent codes

2. Sample code z from encoder 
output

3. Modify some dimensions of 
sampled code

4. Run modified z through 
decoder to get a distribution 
over data sample

5. Sample new data from (4)

Encoder network

Decoder network

Sample z from

Input Data

Ranjay Krishna, Sarah Pratt

modified



Editing images with VAEs

Ranjay Krishna, Sarah Pratt
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