Some Reminders: Spring Break !(?)

* What is Spring Break?
o Undergrads have fun (take a trip, visit home, etc.)

o Ph.D. students have fun (stop worrying about classes/grades and work on research ©)

o Faculty have fun (hide from the world, writing retreat, submit grant proposals)

HBL) AN BMAEING BREAL | LW NT

ol MEAN UAT RESEARCH T
| fas ONER DFRIMG TREAR,

S kG, Mo R TaIM PAC VNG ...
COMEIN WANVE A | CAUGHT UT o SOWME LE1SURE
SEAT , 0, WHAT READIRG, | AUME OnJT AND THD
AT oo DO oVER! | lhorndinles . 199 TOTRLLY BRE-
LEXE DY 1TWaS GREKT,. .

JORGE CHAM (ETHE STANFORD DALY

Some Reminders: Spring Break !(?)

* What is Spring Break?
o Undergrads have fun (take a trip, visit home, etc.)

o Ph.D. students have fun (stop worrying about classes/grades and work on research ©)

o Faculty have fun (hide from the world, writing retreat, submit grant proposals)

HOW WAS YOUR
SPRING BREAK?

GOOD. | GOT A GRANT
APPLICATION FINISHED,

GOOD. |
N o B o o B
SUBMITTED AND AN IN COLORADO.
EXAM PUT TOGETHEE.
HOW ABOUT You?
Un—'anured Tenured
Protessor Professor

WWW.PHDCOMICS.COM
JORGE CHAM © 2013

Some Reminders: Spring Break !(?)

* What is Spring Break?
o Undergrads have fun (take a trip, visit home, etc.)

o Ph.D. students have fun (stop worrying about classes/grades and work on research ©)

o Faculty have fun (hide from the world, writing retreat, submit grant proposals)

o In this room (ITE 231)
o During class hours (4:00 PM to 5:00 PM)

* Midterm Exam is on March 31 TTATT: Q-I- SIMPL

o Syllabus: every lecture until and including 03/26

HE ENTIRE COURSE
AY BEFORE THE EXAM

tejasgokhale.com

CMSC 475/675 Neural Networks

Lecture 7: Representation Learning

REPRESENT BB riiRepResent mysetr,

Some VAE slides are borrowed
from Ranjay Krishna

Machine Learning Problems

SUPERVISED LEARNING

- Training time - lest time Example

» data: » data: Input: xV is an image

{X(t): y(t)} {X(t); y(t)} Output: y® is an image
category

» setting :

x{, 9 « p(x, y)

MULTITASK LEARNING

- Training time - fest time Example
» data: » data: Input: x is an image
(t) ,,(%) (¢) (t) ,,(t) (t) Outputs:
{X ’yl)"'?yM} {X)yl)"')yM} (t)

° 3’1 . Image category

o yl(t):object detection
) setting:
(t) . .
» Yy, :depth estimation
t t L
O, 4fY, - aff :

t .
: Y1(). semantic

segmentation

p(X, yt, ..., Yym)

MULTITASK LEARNING

Topics: multitask learning

DOMAIN ADAPTATION

- Training time - fest time - Example
» data: » data: » classify sentiment
(positive vs negative)
() 4,(%) —(t) ,,(t)
X
{ Y } {X ' Y } » in reviews of different
{} (ta)} products

»training on Amazon
» setting : » setting : Reviews but testing on
Yelp Reviews

xt9) ¢ p(x) x{8 e g(x)
Y9 - p(y/x') Yy e plyfx?)
X e q(x)? p

ONE-SHOT LEARNING

- Training time - lest time

» data: » data:

{x(9, yy {x(9, yy

» setting : » setting :

x(0), Yl « p(x, y) x4, ylo e p(x, y)

subject to y(t) 2{1,...,C} subjectto Yy 2 {C+ 1,...,C+ M}
» side information :

- a single labeled example from
each of the M new classes

- Example

» recognizing a person
based on a single
picture of him/her

ZERO-SHOT LEARNING

- Training time

» data:

{x(9, yy

» setting :

x4, yl « p(x, y)

subjectto y'? 2 {1,..., C}
» side information :

- description vector Z¢ of each of
the C classes

» Jest time

» data:

{x(9, yy

» setting :

x{, yl < p(x, y)

subjectto y® 2 {C+ 1,..., C+ M)
» side information :

- description vector Z¢ of each of
the new M classes

- Example

» recognizing an object
based on a worded
description of it

13

SEMI-SUPERVISED LEARNING

- Training time - lest time

» data: » data:

(x(9, y0) (x(9, y0)
(x(0)

» setting :

x{9, yl « p(x, y)
x(9 - p(x)

UNSUPERVISED LEARNING

- Training time - lest time

» data: » data:

(x(0) (x(0)

» setting :

X e p(x)

How can we train models “unsupervised?

This is the focus of representation learning

This is the focus of representation learning

There's an entire c¢c """ :

Categories ~ English =

Publication h5-index h5-median
F . I ‘ I R 1. Mature 488 745
. . 2. IEEE/CVF Conference on Computer Vision and Pattern Recognition 440 ST
3 The Mew England Journal of Medicine 434 ag7
4. Science 409 633
ICLR haS become one Of the top b MNature Communications 375 492
CS and Engineering (not just Al) C e lancer 268 -
pu bllcat|0n although It JUSt sta rted T. Meural Information Processing Systems 337 614
in 2013. 8. Advanced Materials 327 420
9 Cell 320 482

I n fa Ct tO p—]. O | n A I_ I_ O F S C I E N C E 10. International Conference on Learning Representations 304 564

International Conference on Learning Representations Q,

h5-index-304 h5-median: 584

#2 Artificial Intelligence
#4 Engineering & Computer Science

Title / Author Cited by

T h |S |S tr An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale.

A Dosovitskiy, L Beyer, A Kolesnikov, D Weissenborn, X Zhai, ... 38519
ICLR

Decoupled Weight Decay Regulanzation.

| Loshchilov, F Hutter 18046
ICLR (Poster)

Measuring and Improving the Use of Graph Information in Graph Neural Networks.
Y Hou, J Zhang, J Cheng, K Ma, RTB Ma, H Chen, MC Yang 1849 Q

There's an entire |

ALBERT: A Lite BERT for Self-supervised Learning of Language Representations.

Z Lan, M Chen, 5 Goodman, K Gimpel, P Sharma, R Soricut 127
ICLR

English =

ndex h5-median

Large Scale GAN Training for High Fidelity Natural Image Synthesis.

A Brock, J Donahue, K Simonyan 2675

ICLR s 745
DARTS: Differentiable Architecture Search. 1]

689
H Liu, K Simonyan, Y Yang 4888
ICLR. (Poster) b4 a9r7
LoRA: Low-Rank Adaptation of Large Language Models. 19 633
EJ Hu, ¥ Shen, P Wallis, Z Allen-Zhu, Y Li, 5 Wang, L Wang, W Chen 4881
ICLR has become one of the top i . .
CS d nd Engl neeri ng (nOt JUSt AI) Deformable DETR: Deformable Transformers for End-to-End Object Detection. h& 678
. . . . o . A . 4444
publication although it just started X Zhu, W Su, L Lu, BLL X Wang, J Da - 514
1N 20]—3 BERTScore: Evaluating Text Generation with BERT. 4 420
T Zhang, V Kishore, F Wu, KQ Weinberger, ¥ Arzi 4143
ICLR i) 482
In fact tOp-].O in ALL OF SCIENCE ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators. 14 584

o
o
i
Lt

K Clark, MT Luong, QV Le, CD Manning
ICLR

Warning

| might use the terms “latent’, "embedding,

‘representation’, "feature’ interchangeably.

Motivation (kind of): Compression

* The idea is similar to compression (signal processing) or hashing (data structures):

o encode an image into a smaller vector s.t. you can decode it back to its original form

— Example: images, audio, video are stored in a compressed form on your computer using compression
algorithms like JPEG, MP3, MPEG etc. The computer has software to decode it back so that you can
view it (everytime you “open” a JPEG file to view an image, the decoder runs and converts code to RGB)

Decoding/
Decompression

Encoding/ m

Compression

Audio / Video
File

Original
Sound

Audio Codec Audio Codec

Motivation (kind of): Compression

* The idea is similar to compression (signal processing) or hashing (information theory):

o encode an image into a smaller vector s.t. you can decode it back to its original form

— Example: images, audio, video are stored in a compressed form on your computer using compression algorithms
like JPEG, MP3, MPEG etc. The computer has software to decode it back so that you can view it (everytime you
“open” a JPEG file to view an image, the decoder runs and converts code to RGB)

* Representation Learning

~ convert inputs automatically into “codes” (called representations/embeddings / features)
s.t. the representations are:

o Useful for downstream tasks (e.g. classification, regression, ...)

o “explain the data” and are "meaningful”

* Main difference: “meaningful” representation spaces to do “tasks”

(The goal for compression is only efficient storage — not data classification/clustering etc.)

Representation Learning Paradigm

Raw Data Representation Do tasks / actions

(e.g. text, image, audio, Lea rning with these
video, ..) (Encoding) representations

Typical Goals for Representations

Similar representations for similar concepts

Food

Source: Pankaj Gupta (LMU Munich)

Typical Goals for Representations

A Semblance of “Context” should be encoded ...

meaning ?

If you know the answer,
don’t share it with the class yet.

HALWA

People from lands between Greece and India
might know the answer ...

Source: Pankaj Gupta (LMU Munich)

Typical Goals for Representations

A Semblance of “Context” should be encoded ...

| am very hungry, | will eat HALWA

Source: Pankaj Gupta (LMU Munich)

Typical Goals for Representations

A Semblance of “Context” should be encoded ...

food ‘)

| am very hungry, | will eat HALWA

If you speak Marathi, this word has two meanings depending on context

Halwa (1): a food item derived from. Farsi
Halwa (2): (an instruction to) move (something) derived from: Sanskrit

Typical Goals for Representations

A Semblance of “Context” should be encoded ...

C)

Is it a good idea to eat HALWA after a meal ?

Source: Pankaj Gupta (LMU Munich)

Typical Goals for Representations

A Semblance of “Context” should be encoded ...

C)

dessert

Is it a good idea to eat HALWA after a meal ?

Source: Pankaj Gupta (LMU Munich)

Typical Goals for Representations

A Semblance of “Context” should be encoded ...

sugary ‘)

dessert @

Oh no! | forgot to put sugar in the HALWA

Source: Pankaj Gupta (LMU Munich)

Typical Goals for Representations

Parts, properties, attributes, ontology ?

.+ “bird"

.+ “bird"

.+ “bird"

.+ “bird"

has ‘wing, "beak’, “feathers”

can “fly"

Is under category

has subcategories

“animal”

“eagle’, “peacock’, “sparrow’, “seagull’, “pigeon”

Representation Learning is a Philosophy for Learning

Key assumptions in this philosophy:

* You can convert a high-dimensional input space
into a low-dimensional representation space

o Example: RGB images = 100 dim vectors

* A good representation space will have a
“structure’

o Example: Similarity, Symmetry, Relations will be
easy to understand

o Why? So that we can do arithmetic in
representation space to do tasks

* Representations can be learned from data

* Representations can be leveraged for doing
tasks

Parallel Work in Cog.Sci.

Trends in Cognitive Sciences c?

CellPress

Volume 28, Issue 9, September 2024, Pages 844-856

Review

Why concepts are (probably) vectors

Steven T. Piantadosi 12 & &, Dyana C.Y. Muller 2, Joshua S. Rule !,

Karthikeya Kaushik }, Mark Gorenstein 2, Elena R. Leib !, Emily Sanford *

For decades, cognitive scientists have debated what kind of representation might
characterize human concepts. Whatever the format of the representation, it must
allow for the computation of varied properties, including similarities, features, cate-
gories, definitions, and relations. It must also support the development of theories,
ad hoc categories, and knowledge of procedures. Here, we discuss why vector-
based representations provide a compelling account that can meet all these
needs while being plausibly encoded into neural architectures. This view has be-
come especially promising with recent advances in both large language models
and vector symbolic architectures. These innovations show how vectors can handle
many properties traditionally thought to be out of reach for neural models, including
compositionality, definitions, structures, and symbolic computational processes.

Highlights

Modern language models and vector-
symbolic architectures show that
vector-based models are capable of
handling the compositional, structured,
and symbolic properties required for
hiurnan concepts.

Viectors are also able to handle key phe-
normena from the psychology, including
computation of features and similarities,
reasoning about refations and analogies,
and representation of theoreas.

Language models show how vector
representation of word semantics and
sentences can interface between con-
cepts and language, as seen in defini-
tional theories of concepts or ad hoco
Concepts.

The idea of Church encoding, from logic,
allows us to understand how meaning
can arise in vector-based or symbolic
systems.

By combining these recent computa-
ticnal results with classic findings in psy-
chology, vector-based models provide a
compeling account of human concep-
tual representation.

Representation Learning is a Philosophy for Learning

Key assumptions in this philosophy:

* You can convert a high-dimensional input space
into a low-dimensional representation space

o Example: RGB images = 100 dim vectors

* A good representation space will have a
“structure’

o Example: Similarity, Symmetry, Relations will be
easy to understand

o Why? So that we can do arithmetic in
representation space to do tasks

* Representations can be learned from data

* Representations can be leveraged for doing
tasks

Latent concept
representations

/ Dog

= e = = = = .)
Domain-specific
Similarities | Features | [Categories| [Definitions| [language Task N :
generation transformations
H.fghT -"1:"_”1
’ Domain-specific

e g Iy
Y A . »
\ rl"f"- Mammal,
Alligat i J ;'- / “.teach an old
Alligator w

dog new tricks”

representations

Trends in Cognitive Sciences

Figure 1. This figure illustrates the proposal that concepts are vectors that are projected into spaces for each

task. These tasks include the basic tasks of cognitive psychology, including use of features, judgment of similarities, creation

of definitions, language definition, and others. Information is shared between tasks when the task-specific transformations
preserve some of the geometry in highest-level concept representation. Concept representations are then adjusted to
perform well on all tasks simultaneously.

£l =y T

Ok whatever. Tell us how it works ...

Types of Modeling (Probabilistic Interpretation)

Data: x; Label: y

Density Function: p(x)
[, p(x)dx =1

(probabilities of all inputs sum to 1)

Discriminative Model

Learn Prob. Dist. P(y|x)

Horse Tiger

Cat Horse Tiger
VX;ZCP(Y =clx) =1

Types of Modeling (Probabilistic Interpretation)

Data: x; Label: y

6

cat”’

Density Function:
[, p(x)dx =1

p(x)

(probabilities of all inputs sum to 1)

Generative Model

Learn Marginal Prob. Dist. P(x)

Conditional Generative Model

Learn conditional probability P(x|y)

Discriminative Model (ynconditional)

P Generative Model
P(x |)= }(3’0',;‘ I x)

Prior over labels

Conditional
Generative Model

Types of Modeling (Probabilistic Interpretation)

e Discriminative Model

Data: x; Label: y
Learn Prob. Dist. P(y|x)

at * Generative Model
Learn Marginal Prob. Dist. P(x)
Density Function: p(x)
fX p(x) dx =1 e (Conditional Generative Model

(probabilities of all inputs sum to 1)
Learn conditional probability P(x|y)

Types of Modeling (Probabilistic Interpretation)
APPLICATIONS

e Discriminative Model

Classification, Regression,
Representation Learning QN Learn Prob. Dist. P(y|x)
(with labels)

* Generative Model

Learn Marginal Prob. Dist. P(x)

* Conditional Generative Model

Learn conditional probability P(x|y)

Types of Modeling (Probabilistic Interpretation)

APPLICATIONS

Data Generation
Outlier Detection
Representation Learning
(without labels)

e Discriminative Model

Learn Prob. Dist. P(y|x)

* Generative Model

| Learn Marginal Prob. Dist. P(x)

* Conditional Generative Model

Learn conditional probability P(x|y)

Types of Modeling (Probabilistic Interpretation)
APPLICATIONS

e Discriminative Model

Learn Prob. Dist. P(y|x)

* Generative Model

Learn Marginal Prob. Dist. P(x)

Machine Translation
Text-to-image generation (Conditional Generative Model

(pretty much every “GenAl” _

product you see is a Learn conditional probability P(x|y)
conditional generative model)

Generative Models

* What's a Generative Model?
o A model for the probability distribution of data x P(x)

o A model that can be used to “generate’ data marketing term “genAl" |

Seed “Generative b as ;4

Model”

* Generative Models can be /earned
o You are given some observed data X (e.g. face images)

o You choose a function (e.g. neural network) to model P(x;8) using parameters 6

o You estimate 8 s.t. P(x; 0) best fits the observations X

Generative Models

 Generative Models can be /earned
o You estimate 0 s.t. P(x; 0) best fits the observations X

‘Best fit”’ in what sense?

o Maximum Likelihood 0* = argmax P(x; 0)
0

* How to model the distribution of high dimensional data?

P(x)=f P(x,z) dz =f P(z)P(x|z)

Z

o Pg(z) and Pg(x|z) can be factorized

Po(x|z) = Pg(xt ...,xP |2) = HPg(xi\z)

0" = argmax Pg(x) = argmaxl | Pg(x'|z) = argmax logz Py (x!|2)
0 6 : 6 .
l l

Let's start simple ...

The 1dea of an “Auto-encoder”

* NN trained to reproduce the input X = F(x)
* F()is a composition of two functions: encoder E() and decoder D ()
o Embedding / Feature / Latent z = E(x)
o Output
—
—>
—>
Input —> Output
x — X
—
—> Feature
—

Encoder Decoder

How would you train an autoencoder?

L oss Function?

bl

Input —=
X

LIy

Autoencoder: Loss Function

* The objective is to minimize the "distance” between x and X

olfd(x,x) =0 then we get perfect reconstruction

* Mean squared error! Z(f(X)) i % Zk(zk - -/I:k)Q

* Cross Entropy (for binary inputs)

I(f(x)) = = 2k (xr log(Tk) + (1 — 2) log(1 — T))

* For both cases, gradient is very simple: V. L(f(x),x) =X —x

Autoencoder:

Simple Example

Reshape
2828 => /84

?7.

fully connected layer fully connected layer
+ leaky relu + sigmoid
784 => 32 32 => 784

32 dim

Reshape
/84 => 2828

:11

original i

reconstructed »| 7] |

N0 N0

|~

T
o~
wl

IFJ|K3
YA

%%

Source

- Sebastian Raschka

Convolutional Autoencoder

1 or more 1 or more

convolutional layers "de"convolutional layers

7

9 e

original

/{13118 & Z
recgnStrUCtedi T R Izﬂ ﬂ3zu :.;. fz'u :e.-]z:;. uﬂm n% -::jm

Source: Sebastian Raschka

Convolutional Autoencoder

14x14x32
/ TxTxbd
i
ﬂ-
Convd
stride=2

stride =2

1152 1152
"— ml
3x3x128 o~
ﬂ | -
Conv3)
stride=2 h
Flatten FC

Tx Tubd
v I 3x128 sff
-I.l |ﬁ
Reshape
DeConv3
stride=2

Tdx14x32

4
14

DeConv2
stride=2

DeConv1
stride=2

Convolutional Autoencoder:
Expand Dimensions? Transposed Convolution!

* The decoder needs to “expand dimensions’

o Convert a small feature z into a large input X

* Use transposed convolution! A.K.A. fractionally stride convolution

o Often (incorrectly) called “de’convolution

o This is an incorrect term because mathematically “deconvolution” is “inverse of convolution”

Convolutional Autoencoder:
Expand Dimensions? Transposed Convolution!

Regular Convolution:

“ 5

Dumoulin, Vincent, and Fra o Visin. "A guide to arithmetic for dee ing." arXiv preprint arXiv:1603.07285 (2016).

output

Input

Transposed Convolution (stride = 2)

- B B S
<> < 4

<>

;
)
O
&

%

Input

Transposed Conv in PyTorch

import torch

torch.manual_seed(123)

a = torch.rand(4).view(1, 1, 2, 2) Output — S(TL — 1) —|— k s 2p

conv_t = torch.nn.ConvTranspose2d(in_channels=1,
out_channels=1,
kernel_size=(3, 3),
padding=8,
stride=1)

output = s(n=1)+k=-2p = 1%{2-1)+3-2%0 = 4
conv_t(a)

tensor([[[[-0.2863, -0.2766, -0.1478, -0.3274],
[-8.3522, -8.5356, -0.1591, -0.2911],
[-90.3054, -0.4644, -0.3286, -0.2444],
[-0.2332, -0.2557, -8.1876, -0.3970]]11],
grad_fn=<ThnnConvTranspose2DBackward=>)

torch.manual_seed(123) torch.manual_seed(123)

a = torch.rand(16).view(1l, 1, 4, 4) a = torch.rand(64).view(1l, 1, 8, 8)

conv_t = torch.nn.ConvTranspose2d(in_channels=1, conv_t = torch.nn.ConvTranspose2d(in_channels=1,
out_channels=1, out_channels=1,
kernel_size=(3, 3), kernel_size=(3, 3),
padding=@, padding=@,
stride=1) stride=1)

output = s(n-1)+k=2p = 1*(4-1)+3-2%8 = b # output = s{n-1)+k-2p = 1%(8-1)+3-2%0 = 18

conv_t{a).sizel) conv_t(a).size()

torch.Size([1, 1, 6, 6]) torch.Size([1, 1, 18, 10])

Denoising Autoencoder

~S

* The input is “noisy” X . The expected output is a clean image (denoised image)

* Noise Examples:
o Gaussian: ¥x=x+z z~N(0,0°%])

o Masking: /ero-out some of the components of x
(for images, make some pixels 0)

— Can be random masks

— Can be square masks

* Adding noise makes representations more robust

o Expect D(E((f)) =x forall z

Vincent, Larochelle, Bengio, Manzagol. ICML 2008

Example: Face Auto-Encoder

_—Encoder
output

Once trained, what can you do
with this model?

ENCODER

With Generative Models, there are 2 objectives:

4 |earnin§ sampli:n>g J 4

Training data ~ p_ . (X) |

Objectives:
1. Learnp_ . (X)that approximates p_ . (X)
2. Sampling new x fromp__ (X)

figure adapted from Ranjay Krishna

An Auto-Encoder 1s a Generative Model

Probabilistic Interpretation:

Encoder E() estimates Pg.(z]|x)
Decoder D() estimates Pg (x|z)
The marginal P(x)=]) P(x,z)dz = | P(2)P(x|z)

Bayes/Chain Rule ...

Once the AE is “trained”
o you get a generative model that generates “x given a latent code "Z"

o A conditional generative model takes an additional input y" P(x|z, vy)
— E.g. generating images from text y=text, Xx = image

— More on this later ...

Example: Face Auto-Encoder

Once trained, what can you do
with this model?

_—Encoder
output

(1) Encode images into vectors

(throw away the decoder ...) @ gENCODER

Example: Face Auto-Encoder

Once trained, what can you do
with this model?

(2) Generate new faces ...

(throw away the encoder)

Types of Autoencoders

~___—Encoder
output

0

So far, we have not enforced any “structure’ on the latents z
But a structure is desirable

(Remember our motivations / goals for representation learning)

~___—Encoder
output

0

So far, we have not enforced any “structure’ on the latents z

We can't generate new images from D() if we don’'t understand the z-space

S DECODER
A r "“xﬁ. AT Fay
) J '-,_x_ : .'.L . i '-R ; .__,-' L ..__.-: L -.-__.' 5 --__

_——Encoder
output

So far, we have not enforced any “structure’ on the latents z

We can’t generate new images from D() if we don’t understand the z-space

For example, if | ask you to generate a “face with beard, glasses, brown hair”
which z would you choose?

VAE: Variational Autoencoder

‘ Prior distribution: pe(z)

Encoder: q4(z|x)

Z-5pace

|

A

Decoder: pe(x|z)

*
i"“
.

X-5pace

Dataset: D

* Force a "prior’ distribution on the latent

o Example: Gaussian N(0,)

* Gaussians are nice because they are
perfectly symmetrical in every dimension

o Isotropic (covariance matrix is identity I)
o Dimensions are independent,
.e. P(Zl‘Zz) — P(Zl) — N(O, I) VZl, VA

o Property holds for any linear combination
of z elements

— i.e. P(zq|lazy, + bz3) = N(O,1)

Kingma and Welling. Auto-Encoding Variational Bayes. ICLR 2014

Variational Autoencoders

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Assume training data {:c(i)}fil IS generated from the distribution of unobserved (latent)
representation z

These slides on VAE are adpated from Ranjay Krishna

Variational Autoencoders

Sample from
true conditional

P~ (CE

2 ()

Sample from
true prior

20 ~ Py (2)

We want to estimate the parameters g*
given training real data x.

How should we represent this model?

Kingma and Welling, "Auto-Encoding Variational Bayes”, ICLR 2014

These slides on VAE are adpated from Ranjay Krishna

Variational Autoencoders

We want to estimate the parameters g*
given training real data x.

Sample from
true conditional 4

How should we represent this model?

oy (CE Z(i)) A

Choose prior p(z) to be simple, e.qg.
Sample from Gaussian. Reasonable for latent attributes,
true prior > e.g. pose, how much smile.

20 ~ Py (2)

- Kingma and Welling, "Auto-Encoding Variational Bayes”, ICLR 2014

These slides on VAE are adapted from Ranjay Krishna

Variational Autoencoders

PPTAT USTUSN thm We want to estimate the parameters g*
n “ ‘ ‘ i given training real data x.

Sample from
true conditional '?E How should we represent this model?
po~(z | 2(V)
Choose prior p(z) to be simple, e.g.
Sample from Gaussian. Reasonable for latent attributes,
true prior e.g. pose, how much smile.

20 ~ Py (2)

-I Kingma and Welling, "Auto-Encoding Variational Bayes”, ICLR 2014

These slides on VAE are adapted from Ranjay Krishna

Variational Autoencoders

Decoder must be probabillistic:

Decoder inputs z, outputs mean Moz and

(diagonal) covariance lez

Sample from
true conditional

P~ (CE

2 ()

Sample from
true prior

20 ~ Py (2)

X

A

V4

We want to estimate the parameters g*
given training real data x.

How should we represent this model?

Kingma and Welling, "Auto-Encoding Variational Bayes”, ICLR 2014

These slides on VAE are adapted from Ranjay Krishna

Variational Autoencoders

Decoder must be probabillistic:

Decoder inputs z, outputs mean y,,, and We want to estimate the parameters §*
(diagonal) covariance Z}qz given training real data x.

Sample from

true conditional My Z;q How should we represent this model?
po~ (x| 2() A z A
Decoder
Sample from network
true prior P

|\

Kingma and Welling, "Auto-Encoding Variational Bayes”, ICLR 2014

These slides on VAE are adapted from Ranjay Krishna

Variational Autoencoders

Sample from
true conditional

Po~ (SE

()

Sample from
true prior

X

A

Decoder
network

V4

We want to estimate the parameters g*
given training real data x.

How to train the model?

Learn model parameters to maximize likelihood
of training data

= [po(2)po(x|z)dz
Q: What is the problem with this?

These slides on VAE are adapted from Ranjay Krishna

Variational Autoencoders

Sample from
true conditional

Po~ (SE

()

Sample from
true prior

X

A

Decoder
network

V4

We want to estimate the parameters g*
given training real data x.

How to train the model?

Learn model parameters to maximize likelihood
of training data

= [po(2)po(x|z)dz
Q: What is the problem with this?

Intractable! Impossible to iterate over all z

These slides on VAE are adapted from Ranjay Krishna

Variational Autoencoders: Intractability

Data likelihood: pe(z) = [pe(2)pe(z|2)dz

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Intractability

Data likelihood: pg(z) = [pe(2)pe(z|2)dz

7‘

Simple Gaussian prior

Variational Autoencoders: Intractability

Data likelihood: pg(z) = [pe(2)pe(z|2)dz

\

Decoder neural network

Variational Autoencoders: Intractability

Data likelihood: pe(z) = [pe(2)pe(z|2)dz

f

Intractable to compute p(x|z) for every zZ!

Variational Autoencoders: Intractability

vV vV
Data likelihood: pe(z) = [pe(2)pe(z|2)dz

f

Intractable to compute p(x|z) for every Z!

logp(z) = log% S p(x|2?), where () ~ p(2)

Monte Carlo estimation is too high variance

Variational Autoencoders: Intractability

Data likelihood: pe(z) = [pe(2)pe(z|2)dz

X | Z VA
Another idea: pg(x) = Pox | 2)po(z) -« Use Bayes rule
pe(z | x)

Variational Autoencoders: Intractability

Data likelihood: pe(z) = [pe(2)pe(z|2)dz

Another idea:

po(x | 2)pe(2)

po(x) =

pe(z | x)

'\

We know how to calculate these

Variational Autoencoders: Intractability

Data likelihood: pe(z) = [pe(2)pe(z|2)dz

po(x | 2)pe(2)
ez | x) «—— Buthow do you calculate this?

Solution: In addition to modeling p,4(x|z),
Learn q¢(z|x) that approximates the true posterior py(z|x).

Another idea: Do (x) —

Encoder Network Decoder Network
Qcp (Z ‘ JC) — N(ﬂz|x: z:zlx) Pe (x | Z) — N(ﬂx|z;zx|z)
Hz|x Ezl:c Ho| 2 Z:a:|:a:

| | | |

Variational Autoencoders: Intractability

Data likelihood: pe(z) = [pe(2)pe(z|2)dz

Another idea:

Py (x) =

po(x | 2)pe(2)

pe(z | x)

X: 28x28 image = 784-dim vector
z: 20-dim vector

Encoder Network

qe(z | x) = N(Uzx Z2x)

“‘le: 20

T

Linear(400->20)

237y 20

T

T

Linear(400->20)

Decoder Network

po(x|z) = N(ﬂx|zrzx|z)

y,: 768

T

T

Linear(784->400)

X: 784

Linear(400->768)

S,z 768

T

T

Linear(400->768)

1

Linear(20->400)

[

Z: 20

Variational Autoencoders

log pg(z'?) = E. q,(z]z) {bgpg(:r:(i))] (po (') Does not depend on z)

Using this approximation, we can derive a lower bound on the data likelihood
p(Xx), making it tractable, therefore, possible to optimize.

Variational Autoencoders

log pg(z'?) = E. q,(z]z) {10gp9(:r:(i))] (po (') Does not depend on z)

/

Taking expectation wrt. z
(using encoder network) will
come in handy later

Variational Autoencoders

log pg(z'")) =

E

zrvqg (z]z (V) log pfi‘(m(i))

E,

log

po(z® | 2)po(z)’
po(z | 2)

(po (') Does not depend on z)

(Bayes’ Rule)

Variational Autoencoders

log po(z'")) = E

zrvqg (z]z (V) log p9($(i))

log

log

po(2® | 2)po(2)’
po(z | z®)
pe(z\") | 2)po(2) g4 (2

(po (') Does not depend on z)

(Bayes’ Rule)

MOM

po(z | 2®) gqu(z

r@)

(Multiply by constant)

Variational Autoencoders

log pg(z\") = E

= E. |log

= E. |log

zrvqg (z]z (V) log p9($(i))

po(z® | 2)pa(z)
po(z | 20)

po () | 2)po(2) qo (2

(po (") Does not depend on z)

(Bayes’ Rule)

MOM

po(z | zV) qp(z

=3 _logpg(x(i) | z)_ —E,

log

x()
gp(z | ™)
po(z)

+ K,

(2

(Multiply by constant)

MOM

_1 .
08
. Do

(2

x(i))

(Logarithms)

Variational Autoencoders

log pg(z\") = E

log

log

zrvqy (2|2 (V) log p9($(i))

po(z® | 2)pa(z)
po(z | 20)

po () | 2)po(2) qo (2

(po (") Does not depend on 2)

(Bayes’ Rule)

MOM

po(z | 2®) gq4(z

log po(z® | 2)| — E.

log po(z(® | 2)

log

r(4))

gy (2 | x'

(Multiply by constant)

i))'

+ E,

po(2)

log

qe(2

MOMN

p@(z

-~

The expectation wrt. z (using
encoder network) let us write
nice KL terms

(@)

(Logarithms)

— Dicr(as(2 | %) [|po(2)) + Dicr(ao(z | V) || po(z | 7))

Variational Autoencoders

logpg(as(i)) = Ezm%(zm(i)) logpg(.fl?(i))

po(z® | 2)pa(z)

(Bayes’ Rule)

= E. |log

pe(z | ()
po(z\") | 2)pe(2) go(z | V)

= E. |log

= E, _logpg(x(i) | 2)

po(z | @) qg(z|z@®)_

| - E. |log

— E. _10gpg(:n(i) | z)_

*

Decoder network gives p,4(x|z), can
compute estimate of this term through
sampling (need some trick to
differentiate through sampling).

qo(z | zV)
po(2)

+ K,

log

qe(2

(po (") Does not depend on 2)

(Multiply by constant)

MOMN

p@(z

(@)

(Logarithms)

— Dk r(qs(z | 29) || pa(2)) + Dir(ge(z | 29) || pa(z | 7))

Variational Autoencoders

10%?9(33(@) — Ezwq¢,(z|m(’i

= E. |log

po(z® | 2)pa(z)

) 10%299(55(?:))

po(z | (V)

po () | 2)po(2) qo (2

(po (") Does not depend on 2)

(Bayes’ Rule)

MOM

= E. |log

po(z | 2®) gq4(z

—E, |logpe(z® | 2)| — E,

— E. _10gp9(:n(i) | z)_

*

Decoder network gives p,(x|z), can

compute estimate of this term
sampling (need some trick to

differentiate through sampling).

log

x(i))

qo(z | zV)
po(2)

*

+ E,

This KL term (between

log

through Gaussians for encoder and z
prior) has nice closed-form

solution!

qe(2

(Multiply by constant)

MOMN

p@(z

(@)

(Logarithms)

— Dicr(as(2 | %) [|po(2)) + Dicr(ao(z | V) || po(z | 7))

Variational Autoencoders

logpg(:c(i)) =E, ., (zlz0) logpg(a':(i)) (pg(:c(i)) Does not depend on z)

po(z® | 2)pa(z)
pa(z | 20)
po(z'Y | 2)pe(2) qp(z | V)

— E. |log (Bayes’ Rule)

= E. |lo . . Multiply by constant
BT e [0) gplz| o)) (MUY by constany
- o - (i)y- - (i)y-

= E. |logpy(z'V | 2)| — E, |log 4(z]27) + E. |log 47 | @ .) (Logarithms)
: : _ po(z) T pe(z | 2)

= E. |logps(¢™ | 2)| — Drr(as(2 | 20) || pa(2)) + Drr(as(z | ™) || po(z | D))

+ + +

Decoder network gives pg(x|z), can This KL term (between Po(Z|x) Intractable (saw
compute estimate of this term through ~ Gaussians for encoderand z €arlier), can't compute this KL
sampling (need some trick to prior) has nice closed-form term :(But we know KL

divergence always >= 0.

Variational Autoencoders

log pg(z\") = E

/&
We want to
maximize the
data =k,
likelihood
—E.

2~y (z|a(D)

log po(z@)

po(z® | 2)pa(z)

log

pe(z | ()
po(z\") | 2)pe(2) go(z | V)

lo . .

0 ez [2®) gz 20).

' ORIy gz] x)
logpg(z'” | 2)| — E, |log

_ _ | po(2)

log po(z(® | 2)

*

Decoder network gives p,(x|z), can
compute estimate of this term through

sampling.

(Bayes’ Rule)

+ E,

log

(po (") Does not depend on 2)

(Multiply by constant)

go(z |)

(Logarithms)

~ Dir(gs(2 | 21) || po(2)) + Drr(ao(z | &) [po(2 | 1))

This KL term (between
Gaussians for encoder and z
prior) has nice closed-form

solution!

?

Po(z|X) intractable (saw
earlier), can't compute this KL
term :(But we know KL

divergence always >= 0.

Variational Autoencoders

logpg(as(i)) =E, ¢, (z|lz0) logpg(:r:(i)) (pg(as(i)) Does not depend on z)

_ ” _
/ =E, |log po(z” | z)(};)g(z) (Bayes’ Rule)

We want to I po(z [z\M))

maximize the I (%) ()Y

dat = E, |log po(z™ | z)pg(z) 92 | @ .) (Multiply by constant)

dla pg(z ‘ .’L'(?’)) Q«:;ES(Z 35'(""))
likelihood _ _]) (i) - i (@))-
— E. |logpg(z'? | 2)| —E, |log 4(z | 2) + E. |log 47 | @ . (Logarithms)

: - I po(2) U pe(z | xW))

=|E. |logpo(«'” | 2)| — Dxr(as(z | #'9) || pa(2))|+ Drr(gs(z | 2) || po(z | 1))
E . ﬁf—/
—‘,—/
L(z?,0,¢) S
Tractable lower bound which we can take
gradient of and optimize! (p4(x|z) differentiable,
KL term is differentiable)

Variational Autoencoders

log p(z'”) = E

— E.

Decoder:
— E

reconstruct .
the input data\-]
\Kgpe(ﬂ?(i) | 2)| —E; |log

— E.

po(z® | 2)pa(z)

zrvqg (z]z (V) log pe (Cc(i))

log

po(z | z(V)

po () | 2)po(2) qo (2

(po (") Does not depend on z)

(Bayes’ Rule)

log

po(z | zD) qp(z

2(0)
. (Multiply by constant)
o).
gy (2 | =) ag(z | =)
+ B, |log .
po(2) po(z | z())_

—|E,

S—

" T)
log po (2" | 2)

L(z",0,)

Tractable lower bound which we can take
gradient of and optimize! (p4(x|z) differentiable,
KL term differentiable)

Encoder:

make approximate
posterior distribution
close to prior

(Logarithms)

+ Dgr(gs(2 | 29) || po(2 |))
ﬁf—/
> ()

Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. |logpo(a” | 2)| — Dicr(as(= | 29) || po(2)

L(z,0,¢)

Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. |logpo(a” | 2)| —|Dics(as(= | 29) || po(2)

Let's look at computing the KL
divergence between the estimated
posterior and the prior given some data

Input Data

Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. |logpo(a” | 2)| —|Dics(as(= | 29) || po(2)

Hz|x

Encoder network

q4(2|x)
Input Data

Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. |logpo(a” | 2)| —|Dics(as(= | 2) || po(2)

L(z?,0,¢) » Dkr (N(“z\ma Ez\w)HN(O? I))

This equation has an analytical solution

Make approximate
posterior distribution

close to prior Hz|x Zz\m

Encoder network
16(2|2) ~_

Input Data L

Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

(i) - (i)
s {logpg(m ‘ 2)] Dicrlgp(z [2) [[o(2)) Not part of the computation graph!

L(zD 0, $) \ \

VA
Sample z from z|x ~ N(}Lz\ma Ez\m)

Make approximate
posterior distribution / \
close to prior M|z Zﬂ‘m
Encoder network v\/
q4(2|x)

Input Data L

Va riatigna | A utoen COde rs Reparameterization trick to make

sampling differentiable;

Putting it all together: maximizing the
likelihood lower bound Sample € ~ N(()? I)

< = Hz|z T €O 2|z

E. |logpo(a” | 2)| |- Dicr(as(= | =) || po(2)

VA
Sample z from z|x ~ N(ﬂz\ma Ez[m)

T

/‘LE‘SE Eg‘m

Encoder network
6 (2|) ~

Input Data L

Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. |logpo(a” | 2)| |- Dicr(as(= | =) || po(2)

Kzl

r/v

Part of computation graph

VA

Reparameterization trick to make
sampling differentiable;

Input to
the graph

Sample z from Z‘m ™~ N(ﬂz\m: Ez:\:c)

T

Hz|x

Encoder network

q4(2|7)
Input Data

~._

Ez\m

Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. {logpg(:r:(i) | Z)] — Dgr.(gs(2 | ") || po(2)) #m“z Efﬂ‘g

L(z,0,) Decoder network \/
po(z|2)
Z

Sample z from z|x ~ N(ﬂz\ma Ez[m)

T

/‘LE‘IIT Eg‘m

Encoder network
6 (2|) ~
4 i

Input Data

Variational Autoencoders

aximize likelihood of original

Putting it all together: maximizing the ~"PUt PeIng reconstructed A

likelihood Ioweriiund// / \
E. [logpa(z® | 2)] [« DL (a(z | 29)]| (=) He|z 2iz|2

L(z,0,) Decoder network \/
po(z|2)
Z

Sample z from z|x ~ N(}Lz\ma Ez\m)

T

“E‘fﬂ Zg‘m

Encoder network
16(2|2) ~
4 i

Input Data

Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. |logpo(a” | 2)| — Dics(as(= | 29) || po(2)

For every minibatch of input
data: compute this forward
pass, and then backprop!

Hz|z Em\z

Decoder network \/
po(z|2)
VA
Sample z from z|z ~ N (ly)2, Xz|e)

T

/‘LE‘IIT Eg‘m

Encoder network
16(2|2) ~
4 i

Input Data

Variational Autoencoders:

Our assumption about data generation
process

Sample from
true conditional A

pe*(-’L‘ \ Z(i)) t
Decoder
network

Sample from

true prior

P 2z

2 ~ Py (2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Generating Data!

Variational Autoencoders: Generating Data!

Now given a trained VAE:
Our assumption about data generation use decoder network & sample z from prior!

process
Sample from L
true conditional T Sample x|z from Z|2 ~ N (lg|2; Xe2)
- A
po+(| Z(Z))
Decoder / \
network x|z m\z:
tsampl'e from Decoder network \/
rue prior
v 2 po(al2)
2\ ~ pg-(2) Z

Sample z from z ~ N(0, I)
Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Generating Data

Variational Autoencoders

INg

Use decoder network. Now sample z from prior!

DAY SNANNANAANNNNSNSNNNNS
Q Qoo oty g By B B 0,08 LHLLWYWNYNNSNSN
QUAVYIHYNINRLLLLLLVYY Y NN~
QAUAVVHININNNKNGSLBLIVVY W~~~
QAUAODHHINNKWWBIVIYY W W - —
QAOAOOOHININMNNOEPBDIYOIY Y W - - —
QOAQOQODIOMIMNMMMOoY MDD IID D W@ - - —
QOQODIMHMNMMMMN MWD DD D @ o —
OO0DMMMMM N N0 DD D e e
QOMMMM M 000000 o on oo oo —
QAN 0? 0?0000 00 0 o O~ 0~ P~ o~
R L LG Ll R Rl
S N G i a al al ok ok R S S SN N
i ogororocororrTT 0NN~
Sdadadadadogorrrrr T ITIINN
SdadaddgorororrrrdFdTrPrRIRINNN
A dTTTTTorrrr>rFrr222NN
SFTrToooororecroec IR NN

E:ﬂ\z

S

M|z

Sample x|z from {L“z ~ N(/-Lm‘z} Em\z)

X

. -

=
o ¥

D W

ST

| -

%xix
!

@)

O =

()]

o

VA
Sample z from z ~ N(0, I)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Data
Data manifold for 2-d z

Generati

Variational Autoencoders

INg

Use decoder network. Now sample z from prior!

DAY YN SNANNAANAANANNNNSNNNNS
Q Qo mty g iy B 0 008HLHLLYWNYNSNSNSN~
QUAVYIHYNINRLLLLLLVYY Y NN~
QAUAVVHININNNKNGSLBLIVVY W~~~
QAUAODHHINNKWWBIVIYY W W - —
QAOODOHINININMEBPBIOIVIVY W = —— A
QAQOIOHIMNMNMMNON M DIOID D W@ - - —
QOQODIMHMNMMMMN MWD DD D @ o —
OO0 DOMMMMMON D)WWYDL P e e
QOMMMM M "0 0000 oo oy o o oo —
QAN 0? 0?0000 00 0 o O~ 0~ P~ o~
RS N N e N Nl ol ol Rl o
r.uzq‘zz..aawqqqqqqqqqfal?.l./‘
oo orrTT NN
SdadadadadogorocrrrrdTITIINNN
SdadaddgorororrrrdFdTrPrRIRINNN
A dTTTTTorrrr>rFrr222NN
S B gie glie ple i+ < pll el ol ol ol ol ol L N N NI N N N

«

Vary z,

Sample x|z from {L“z ~ N(/-Lm‘z} Em\z)

E:ﬂ\z

S

M|z

>

Decoder network

po(|2)

Sample z from z ~ N(0, I)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Vary z,

Variational Autoencoders: Generating Data!

Diagonal prior on z _Tjjjﬁ

=> Independent Degree of smile ““‘"‘1“11'1“

latent variables - m'q,.‘,.‘aqk;}
Different \ 3:13331?‘137‘; ”
dimensions of z Vary z, aﬁﬁq:q:qqg r

'er’:(exr)p?reetable factors a:iqqqq:qa :
Ic?f variation % :a:;\qq-q:; v

SEEEAEALEE
BEEEEEEEE
SEEEEEEELE

B Vary z, >

Head pose
Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Generating Data!

Diagonal prior on z IIJJJ

=> Independent Degree of smile *‘vv“qu

latent variables - m'q,.v.‘aq;;
Different \ ;:l:;la-qqqq; ¥
dimensions of z Vary z, iﬁﬁﬁﬁﬁﬂ"ﬂ r

%r’:(exr)p?reetable factors ﬁaa’iﬂqqﬂ 3
of variation %xl:;lx\q-qq:q

| -
Also good feature representation that S5 SEUEEUESL SN SN IS S
can be computed using q,(z|x)! ! __-_ :_135:53?

Vary z, >

Head pose
Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Generating Data!

Labeled Faces in the Wild

32x32 CIFAR-10

Editing images with VAEs

1.

Run input data through
encoder to get a distribution
over latent codes

Hz|x

Encoder network

q4(2|x)
Input Data

Editing images with VAEs

1. Run input data through
encoder to get a distribution
over latent codes

2. Sample code z from encoder

output Z
Sample Z from Z‘$ et N-(I-IIE":E} Ez[ﬂ:)

T

/‘LE‘IIT Eg‘m

Encoder network
16 (2|) ~

Input Data L

Editing images with VAEs

1. Run input data through
encoder to get a distribution

over latent codes Z modified
2. Sample code z from encoder
output Z
3. Modify some dimensions of sample z from 2|z ~ N (hs(z) Sy (z)
sampled code /v \ e
Hz|x Eg‘m

Encoder network
16 (2|) ~_

Input Data L

Editing images with VAEs

Hz|z Em\z
1. Run input data through Decoder network
encoder to get a distribution pe(z|2) \/
over latent codes Z modified
2. Sample code z from encoder
output Z

3. Modify some dimensions of Sample zfrom 2|z ~ N (ty)zs X 2(z)

sampled code /v \

4. Run modified z through | o 2

decoder to get a distribution Encoder network
over data sample 4o (2|7) \/

Input Data L

Editing images with VAEs

/m\

Hz|z Em\z
1. Run input data through Decoder network
encoder to get a distribution pe(z|2) \/
over latent codes Z modified
2. Sample code z from encoder
output Z

3. Modify some dimensions of Sample zfrom 2|z ~ N (ty)zs X 2(z)

sampled code /v \

4. Run modified z through | o 2

decoder to get a distribution Encoder network
over data sample
5. st > 16 (2|z) v

Sample new data from (4) ot Dt T
nput Data

\

299 DIECCOII

o

ction Pose (Azimuth) varied Original Reconstuction i irecti i

Original Reconstu

Editing images with VAEs

o

Cee 0 ¢

2
5

4
| D
Ly

o
o
D
b
-
™
~:
Ll
@
o

	Some Reminders: Spring Break !(?)
	Some Reminders: Spring Break !(?)
	Some Reminders: Spring Break !(?)
	Lecture 7: Representation Learning
	Machine Learning Problems��
	SUPERVISED LEARNING
	MULTITASK	LEARNING
	MULTITASK	LEARNING
	DOMAIN ADAPTATION
	ONE-SHOT LEARNING
	ZERO-SHOT LEARNING
	SEMI-SUPERVISED LEARNING
	UNSUPERVISED LEARNING
	How can we train models “unsupervised”?
	How can we train models “unsupervised”?����This is the focus of representation learning
	How can we train models “unsupervised”?���This is the focus of representation learning���There’s an entire conference on Representation Learning
	How can we train models “unsupervised”?���This is the focus of representation learning���There’s an entire conference on Representation Learning
	Warning��I might use the terms “latent”, “embedding”, “representation”, “feature” interchangeably.
	Motivation (kind of): Compression
	Motivation (kind of): Compression
	Representation Learning Paradigm
	Typical Goals for Representations
	Typical Goals for Representations
	Typical Goals for Representations
	Typical Goals for Representations
	Typical Goals for Representations
	Typical Goals for Representations
	Typical Goals for Representations
	Typical Goals for Representations
	Representation Learning is a Philosophy for Learning
	Representation Learning is a Philosophy for Learning
	Ok whatever. Tell us how it works …
	Types of Modeling (Probabilistic Interpretation)
	Types of Modeling (Probabilistic Interpretation)
	Types of Modeling (Probabilistic Interpretation)
	Types of Modeling (Probabilistic Interpretation)
	Types of Modeling (Probabilistic Interpretation)
	Types of Modeling (Probabilistic Interpretation)
	Generative Models
	Generative Models
	Ok whatever. Tell us how it works …���Let’s start simple …
	The idea of an “Auto-encoder”
	How would you train an autoencoder?��Loss Function?�������
	Autoencoder: Loss Function
	Autoencoder: Simple Example
	Convolutional Autoencoder
	Convolutional Autoencoder
	Convolutional Autoencoder: �Expand Dimensions? Transposed Convolution!
	Convolutional Autoencoder: �Expand Dimensions? Transposed Convolution!
	Transposed Conv in PyTorch
	Denoising Autoencoder
	Example: Face Auto-Encoder
	With Generative Models, there are 2 objectives:
	An Auto-Encoder is a Generative Model
	Example: Face Auto-Encoder
	Example: Face Auto-Encoder
	Types of Autoencoders
	So far, we have not enforced any “structure” on the latents z���But a structure is desirable���(Remember our motivations / goals for representation learning)
	So far, we have not enforced any “structure” on the latents z���We can’t generate new images from D() if we don’t understand the z-space
	So far, we have not enforced any “structure” on the latents z��We can’t generate new images from D() if we don’t understand the z-space��For example, if I ask you to generate a “face with beard, glasses, brown hair”�which z would you choose?
	VAE: Variational Autoencoder
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Variational Autoencoders: Intractability
	Variational Autoencoders: Intractability
	Variational Autoencoders: Intractability
	Variational Autoencoders: Intractability
	Variational Autoencoders: Intractability
	Variational Autoencoders: Intractability
	Variational Autoencoders: Intractability
	Variational Autoencoders: Intractability
	Variational Autoencoders: Intractability
	Variational Autoencoders
	Variational Autoencoders
	Variational Autoencoders
	Variational Autoencoders
	Variational Autoencoders
	Variational Autoencoders
	Variational Autoencoders
	Variational Autoencoders
	Variational Autoencoders
	Variational Autoencoders
	Variational Autoencoders
	Variational Autoencoders
	Variational Autoencoders
	Variational Autoencoders
	Variational Autoencoders
	Variational Autoencoders
	Variational Autoencoders
	Variational Autoencoders
	Variational Autoencoders
	Variational Autoencoders
	Variational Autoencoders
	Variational Autoencoders
	Variational Autoencoders: Generating Data!
	Variational Autoencoders: Generating Data!
	Variational Autoencoders: Generating Data!
	Variational Autoencoders: Generating Data!
	Variational Autoencoders: Generating Data!
	Variational Autoencoders: Generating Data!
	Variational Autoencoders: Generating Data!
	Editing images with VAEs
	Editing images with VAEs
	Editing images with VAEs
	Editing images with VAEs
	Editing images with VAEs
	Editing images with VAEs

