tejasgokhale.com

CMSC 475/675 Neural Networks

Lecture 6: Domain Adaptation

A Limitation of the (Supervised) ML Framework

Measure of performance: Fraction of mistakes during testing

But: In reality, the distributions we **use** ML on are NOT the ones we **train** it on

A Limitation of the (Supervised) ML Framework

Measure of performance: Fraction of mistakes during testing

But: In reality, the distributions we **use** ML on are NOT the ones we **train** it on

What can go wrong?

Standard *i.i.d.* Assumption in Machine Learning

"Independent and Identically Distributed" Models learn useful patterns

Standard *i.i.d.* Assumption in Machine Learning

IID Assumption collapses in real-world "in-the-wild" settings Model performance deteriorates

Example Scenarios

What your net is trained on

What it's asked to label

"Dataset Bias" "Domain Shift" "Domain Adaptation" "Domain Transfer"

Example Scenarios

From dataset to dataset

From simulated to real control

From RGB to depth

From CAD models to real images

Example Scenarios

Tumor detection & classification

Source hospital Target hospital

varying imaging techniques, different demographics

Land use classification Source region Target region

appearance of buildings, plants; weather conditions, pollution Text classification, generation Source corpus Target corpus

WIKIPEDIA differing sentence structure, vocabulary, word use

Distribution shift is unavoidable for models that learn from data

Distribution shift is unavoidable for models that learn from data

Distribution shift causes failures of ML models

Benchmarks / Challenge Datasets

Dataset	Domain	IS				
Colored MNIST	+90%	+80% 3 rrelation between	-90%	1)		
Rotated MNIST	•° 9	_{15°}	30°	45°	60°	75°
VLCS	Caltech101	LabelMe	SUN09	VOC2007		
PACS	Art	Cartoon	Photo	Sketch		
Office-Home	Art	Clipart	Product	Photo		
Terra Incognita	L100 (camera trap	L38 Iocation)	L43	L46		
DomainNet	Clipart	Infographic	Painting	QuickDraw	Photo	Sketch

Algorithm	CMNIST	RMNIST	VLCS	PACS	OfficeHome	TerraInc	DomainNet	Average	
ERM	51.5 ± 0.1	98.0 ± 0.0	77.5 ± 0.4	85.5 ± 0.2	66.5 ± 0.3	46.1 ± 1.8	40.9 ± 0.1	66.6	
IRM	52.0 ± 0.1	97.7 ± 0.1	78.5 ± 0.5	83.5 ± 0.8	64.3 ± 2.2	47.6 ± 0.8	33.9 ± 2.8	65.4	
GroupDRO	52.1 ± 0.0	98.0 ± 0.0	76.7 ± 0.6	84.4 ± 0.8	66.0 ± 0.7	43.2 ± 1.1	33.3 ± 0.2	64.8	
Mixup	52.1 ± 0.2	98.0 ± 0.1	77.4 ± 0.6	84.6 ± 0.6	68.1 ± 0.3	47.9 ± 0.8	39.2 ± 0.1	66.7	
MLDG	51.5 ± 0.1	97.9 ± 0.0	77.2 ± 0.4	84.9 ± 1.0	66.8 ± 0.6	47.7 ± 0.9	41.2 ± 0.1	66.7	
CORAL	51.5 ± 0.1	98.0 ± 0.1	78.8 ± 0.6	86.2 ± 0.3	68.7 ± 0.3	47.6 ± 1.0	41.5 ± 0.1	67.5	
MMD	51.5 ± 0.2	97.9 ± 0.0	77.5 ± 0.9	84.6 ± 0.5	66.3 ± 0.1	42.2 ± 1.6	23.4 ± 9.5	63.3	
DANN	51.5 ± 0.3	97.8 ± 0.1	78.6 ± 0.4	83.6 ± 0.4	65.9 ± 0.6	46.7 ± 0.5	38.3 ± 0.1	66.1	
CDANN	51.7 ± 0.1	97.9 ± 0.1	77.5 ± 0.1	82.6 ± 0.9	65.8 ± 1.3	45.8 ± 1.6	38.3 ± 0.3	65.6	
MTL	51.4 ± 0.1	97.9 ± 0.0	77.2 ± 0.4	84.6 ± 0.5	66.4 ± 0.5	45.6 ± 1.2	40.6 ± 0.1	66.2	
SagNet	51.7 ± 0.0	98.0 ± 0.0	77.8 ± 0.5	86.3 ± 0.2	68.1 ± 0.1	48.6 ± 1.0	40.3 ± 0.1	67.2	
ARM	56.2 ± 0.2	98.2 ± 0.1	77.6 ± 0.3	85.1 ± 0.4	64.8 ± 0.3	45.5 ± 0.3	35.5 ± 0.2	66.1	
VREx	51.8 ± 0.1	97.9 ± 0.1	78.3 ± 0.2	84.9 ± 0.6	66.4 ± 0.6	46.4 ± 0.6	33.6 ± 2.9	65.6	
RSC	51.7 ± 0.2	97.6 ± 0.1	77.1 ± 0.5	85.2 ± 0.9	65.5 ± 0.9	46.6 ± 1.0	38.9 ± 0.5	66.1	
Model selection: training-domain validation set									

Benchmarks / Challenge Datasets

	Domain shift				Subpopulation shift	Domain shift + subpopulation shift				
Dataset	iWildCam	Camelyon17	RxRx1	OGB-MolPCBA	GlobalWheat	CivilComments	FMoW	PovertyMap	Amazon	Py150
Input (x)	photo	tissue slide	cell image	molecular graph	wheat image	online comment	satellite image	satellite image	product review	code
Prediction (y)	animal species	tumor	perturbed gene	bioassays	wheat head bbo	x toxicity	land use	asset wealth	sentiment	autocomplete
Domain (d)	camera	hospital	batch	scaffold	location, time	demographic	time, region	location	user	git repository
Train example						What do Black and LGBT people have to do with bicycle licensing?		19	Overall a solid package that has a good quality of construction for the price.	import numpy as np norm=np
Test example				, p. f.		As a Christian, I will not be patronizing any of those businesses.			I *loved* my French press, it's so perfect and came with all this fun stuff!	<pre>import subprocess as sp p=sp.Popen() stdout=p</pre>
Adapted from	Beery et al. 2020	Bandi et al. 2018	Taylor et al. 2019	Hu et al. 2020	David et al. 2021	Borkan et al. 2019	Christie et al. 2018	Yeh et al. 2020	Ni et al. 2019	Raychev et al. 2016

Solution?

Domain Adaptation

Domain Adaptation

• Problem Setup (Handwritten Notes)

- Theory
 - A theory of learning from different domains (Ben-David et al. MLJ 2010) <u>https://link.springer.com/content/pdf/10.1007/s10994-009-5152-4.pdf</u>
 - Learning from multiple sources (Crammer et al. JMLR 2008)
 <u>https://www.jmlr.org/papers/volume9/crammer08a/crammer08a.pdf</u>

Domain Adaptation Scenarios

(adapted from Mathieu Salzmann)

Standard Visual Recognition

Train a classifier on the training data and directly apply it to the test data

Domain Shift

A classifier trained on one domain may perform poorly on another domain

Semi-supervised vs Unsupervised

• Semi-supervised: Some labeled target data, but not enough to train from scratch

Fully-labeled

Source data

A few labels

Target data

Semi-supervised vs Unsupervised

• Unsupervised: No labels for the target data

Fully-labeled

Single vs Multiple Source Domains

Source domain 1

Source domain 2

• Moving towards domain generalization

Domain Adaptation: Other Scenarios

Synthetic (source domain)

Real (target domain)

Domain Adaptation: Other Scenarios

Synthetic (source domain)

with facial landmarks

Real (target domain)

with facial landmarks

Domain Adaptation: Other Scenarios

Satellite 6D pose estimation

Synthetic (source)

Real (target)

Setup

- Each sample is represented by a feature vector:
 - In the traditional methods, e.g., bag of SURF features
 - More recently, features extracted by a deep backbone network

Label: $\{y_s^i\}_{i=1}^n$

Domain Shift

• The domain shift is defined as a difference in the distribution of the source and target samples

Domain Shift

• Typically, the literature focuses on the covariate shift case, where

 $p_t(x_t) \neq p_s(x_s)$

• But

 $p_t(y|x_t) = p_s(y|x_s)$

 The goal of domain adaptation is then often expressed as that of finding a transformation T(.), such that

$$p_t(T(x_t)) = p_s(T(x_s))$$