tejasgokhale.com

CMSC 475/675 Neural Networks

Lecture 5

Training Neural Networks

Slides adapted from Ranjay Krishna (UW)

Recap

Convolutional Neural Networks

Image Maps Input Convolutions Subsampling

Illustration by LeCun et al. 1998 from CS231n 2017 Lecture 1

Recap

Convolution Layer

convolve (slide) over all spatial locations

32x32x3 image 5x5x3 filter

activation map

Recap Learning network parameters through optimization

Vanilla Gradient Descent

while True:

weights_grad = evaluate_gradient(loss_fun, data, weights)
weights += - step_size * weights_grad # perform parameter update

Landscape image is CC0 1.0 public domain Walking man image is CC0 1.0 public domain

Mini-batch SGD

- Loop:
- 1. Sample a batch of data
- 2. Forward prop it through the (network),
 - get loss
- **3.** Backprop to calculate the gradients

4. Update the parameters using the gradient

Training Neural Networks

Agenda:

Lecture Overview:

PART I

Network and Optimizer Design

- **Activation Functions**
- Data Preprocessing •
- Weight Initialization •
- Normalization

- Optimizers Learning Rate
 - Scheduling
- Regularization
 - Hyperparameters

PART II

Training Dynamics and Monitoring

PART III

Inference and Evaluation

- Visualizing Features
- Saliency Maps etc. \bullet
- Robustness Evaluation (later)

Lecture Overview:

PART I

Network and Optimizer Design

- Activation Functions
- Data Preprocessing ightarrow
- Weight Initialization ightarrow
- Normalization

- Optimizers Learning Rate
 - Scheduling
- Regularization
 - Hyperparameters

PART II

Training Dynamics and Monitoring

PART III

Inference and Evaluation

- Visualizing Features
- Saliency Maps etc. \bullet
- Robustness Evaluation (later)

Sigmoid $\sigma(x) = \frac{1}{1 + e^{-x}}$

tanh (x)

ReLU $\max(0, x)$

Maxout $\max(w_1^T x + b_1, w_2^T x + b_2)$

Sigmoid

 $\sigma(x) = 1/(1 + e^{-x})$

 Squashes numbers to range [0,1]
 Historically popular since they have nice interpretation as a saturating "firing rate" of a neuron

Sigmoid

 $\sigma(x) = 1/(1 + e^{-x})$

 Squashes numbers to range [0,1]
 Historically popular since they have nice interpretation as a saturating "firing rate" of a neuron

1. Saturated neurons "kill" the gradients

$$\frac{\partial \sigma(x)}{\partial x} = \sigma(x) \left(1 - \sigma(x)\right)$$

What happens when x = -10?

 $\frac{\partial \sigma(x)}{\partial x}$

 $\frac{\partial \sigma(x)}{\partial x} = \sigma(x) \left(1 - \sigma(x)\right)$

What happens when x = -10? $\sigma(x) = -0$ $\frac{\partial \sigma(x)}{\partial x} = \sigma(x) (1 - \sigma(x)) = 0(1 - 0) = 0$

What happens when x = -10?What happens when x = 0? What happens when x = 10?

 $\frac{\partial \sigma(x)}{\partial x} = \sigma(x) \left(1 - \sigma(x)\right)$

What happens when x = -10? What happens when x = 0? What happens when x = 10?

 $\frac{\partial \sigma(x)}{\partial x} = \sigma(x) \left(1 - \sigma(x)\right) = 1(1 - 1) = 0$ $\sigma(x) = \sim 1$

$$\frac{\partial \sigma(x)}{\partial x} = \sigma(x) \left(1 - \sigma(x)\right)$$

1 1

$$\frac{\partial \sigma(x)}{\partial x} = \sigma(x) \left(1 - \sigma(x)\right)$$

Why is this a problem? If all gradients flowing back = 0, weights will never change ...

Sigmoid

 $\sigma(x) = 1/(1 + e^{-x})$

 Squashes numbers to range [0,1]
 Historically popular since they have nice interpretation as a saturating "firing rate" of a neuron

- 1. Saturated neurons "kill" the gradients
- 2. Sigmoid outputs are not zero-centered

 $f\left(\sum_{i} w_{i} x_{i} + b\right)$

What can we say about the gradients on w?

 $f\left(\sum_{i} w_{i}x_{i} + b\right)$

What can we say about the gradients on w?

$= \sigma(\sum_i w_i x_i + b)(1 - \sigma(\sum_i w_i x_i + b))x imes upstream_gradient)$ ∂w

 $f\left(\sum_{i} w_{i}x_{i} + b\right)$

What can we say about the gradients on w?

We know that local gradient of sigmoid is always positive

$$rac{\partial L}{\partial w} = \sigma(\sum_i w_i x_i + b)(1 - \sigma(\sum_i w_i x_i + b))x imes upstream_gradie$$

 $f\left(\sum_{i} w_{i}x_{i} + b\right)$

What can we say about the gradients on w?

We know that local gradient of sigmoid is always positive We are assuming x is always positive

$$rac{\partial L}{\partial w} = \sigma(\sum_i w_i x_i + b)(1 - \sigma(\sum_i w_i x_i + b))x imes upstream_gradie$$

 $f\left(\sum_{i} w_{i}x_{i} + b\right)$

What can we say about the gradients on w?

We know that local gradient of sigmoid is always positive We are assuming x is always positive

So!! Sign of gradient for all w_i is the same as the sign of upstream scalar gradient!

 ∂L $rac{\partial u}{\partial w} \models \sigma(\sum_i w_i x_i + b)(1 - \sigma(\sum_i w_i x_i))$

$$_{i}w_{i}x_{i}+b))x imes upstream_gradie$$

 $f\left(\sum_{i} w_i x_i + b\right)$

What can we say about the gradients on w? Always all positive or all negative :(

vector

 $f\left(\sum_{i}w_{i}x_{i}+b\right)$

What can we say about the gradients on w? Always all positive or all negative :((For a single element! Minibatches help)

vector

Sigmoid

 $\sigma(x) = 1/(1 + e^{-x})$

 Squashes numbers to range [0,1]
 Historically popular since they have nice interpretation as a saturating "firing rate" of a neuron

- 1. Saturated neurons "kill" the gradients
- 2. Sigmoid outputs are not zero-centered
- 3. exp() is a bit compute expensive

tanh(x)

- Squashes numbers to range [-1,1] -- zero centered (nice)
- still kills gradients when saturated :(

[LeCun et al., 1991]

ReLU (Rectified Linear Unit)

- Computes f(x) = max(0,x)

- Does not saturate (in +region) - Very computationally efficient - Converges much faster than sigmoid/tanh in practice (e.g. 6x)

[Krizhevsky et al., 2012]

ReLU (Rectified Linear Unit)

- Computes f(x) = max(0,x)

Does not saturate (in +region)
Very computationally efficient
Converges much faster than sigmoid/tanh in practice (e.g. 6x)

- Not zero-centered output

ReLU (Rectified Linear Unit)

- Computes f(x) = max(0,x)

Does not saturate (in +region)
Very computationally efficient
Converges much faster than sigmoid/tanh in practice (e.g. 6x)

Not zero-centered output
An annoyance:

hint: what is the gradient when x < 0?

What happens when x = -10? What happens when x = 0? What happens when x = 10?

DATA CLOUD

=> people like to initialize ReLU neurons with slightly positive biases (e.g. 0.01)

Leaky ReLU $f(x) = \max(0.01x, x)$

[Mass et al., 2013] [He et al., 2015]

- Does not saturate - Computationally efficient - Converges much faster than sigmoid/tanh in practice! (e.g. 6x) - will not "die".

Leaky ReLU $f(x) = \max(0.01x, x)$

[Mass et al., 2013] [He et al., 2015]

- Does not saturate - Computationally efficient - Converges much faster than sigmoid/tanh in practice! (e.g. 6x) - will not "die".

Parametric Rectifier (PReLU) $f(x) = \max(\alpha x, x)$

> backprop into \alpha (parameter)

Exponential Linear Units (ELU)

 $f(x) = \begin{cases} x & \text{if } x > 0\\ \alpha \left(\exp(x) - 1 \right) & \text{if } x \le 0 \end{cases}$ (Alpha default = 1)

[Clevert et al., 2015]

- All benefits of ReLU
- Closer to zero mean outputs -
- Negative saturation regime compared with Leaky ReLU adds some robustness to noise

- Computation requires exp()

Activation Functions Scaled Exponential Linear Units (SELU)

$$f(x) = egin{cases} \lambda x & ext{if } x > 0\ \lambda lpha(e^x-1) & ext{otherwise}\ lpha = 1.6733, \lambda = 1.0507 \end{cases}$$

[Klambauer et al. ICLR 2017]

- Scaled version of ELU that works better for deep networks
- "Self-normalizing" property;
- Can train deep SELU networks without BatchNorm

- (will discuss more later)

[Goodfellow et al., 2013] Maxout "Neuron" - Does not have the basic form of dot product -> nonlinearity - Generalizes ReLU and Leaky ReLU - Linear Regime! Does not saturate! Does not die!

$\max(w_1^T x + b_1, w_2^T x + b_2)$

Problem: doubles the number of parameters/weights :(

GeLU

[Hendrycks and Gimpel, Gaussian Error Linear Units (GELUs), 2016]

- Idea: Multiply input by 0 or 1 at random; large values more likely to be multiplied by 1, small values more likely to be multiplied by 0 (data-dependent dropout)
- Take expectation over randomness
- **Common in Transformers** (BERT, GPT, Vit

TLDR: In practice:

- Use GeLU is using transformers - To squeeze out some marginal gains - Don't use sigmoid or tanh

- Use ReLU. Be careful with your learning rates - Try out Leaky ReLU / Maxout / ELU / SELU

Weight Initialization

- Q: what happens when W=constant init is used?

- First idea: Small random numbers (gaussian with zero mean and 1e-2 standard deviation)

W = 0.01 * np.random.randn(Din, Dout)

- First idea: **Small random numbers** (gaussian with zero mean and 1e-2 standard deviation)

W = 0.01 * np.random.randn(Din, Dout)

Works ~okay for small n deeper networks.

Works ~okay for small networks, but problems with

Weight Initialization: Activation statistics

dims = [4096] * 7 Forward pass for a 6-layer net with hidden size 4096 hs = [] x = np.random.randn(16, dims[0])for Din, Dout in zip(dims[:=1], dims[1:]): W = 0.01 * np.random.randn(Din, Dout) x = np.tanh(x.dot(W))hs.append(x)

What will happen to the activations for the last layer?

Weight Initialization: Activation statistics

dims = [4096] * 7 Forward pass for a 6-layer net with hidden size 4096 hs = [] x = np.random.randn(16, dims[0])for Din, Dout in zip(dims[:-1], dims[1:]): W = 0.01 * np.random.randn(Din, Dout) x = np.tanh(x.dot(W))hs.append(x)

What will happen to the activations for the last layer?

dL/dW start to mostly be 0 no learning

Goal: Initialize weights s.t. std.dev of activations are ~ same for all layers

Glorot and Bengio, "Understanding the difficulty of training deep feedforward neural networks", AISTAT 2010

lization: in)

:]): np.sqrt(Din)

Glorot and Bengio, "Understanding the difficulty of training deep feedforward neural networks", AISTAT 2010

Layer 4 Layer 5 Layer 6 mean=0.00mean=0.00mean = -0.00std=0.36 std=0.32 std=0.30

Glorot and Bengio, "Understanding the difficulty of training deep feedforward neural networks", AISTAT 2010

"Just right": Activations are nicely scaled for all layers!

Let: $y = x_1 W_1 + x_2 W_2 + ... + x_{Din} W_{Din}$

Glorot and Bengio, "Understanding the difficulty of training deep feedforward neural networks", AISTAT 2010

ization: in)

:1): np.sqrt(Din)

"Just right": Activations are nicely scaled for all layers!

Let:
$$y = x_1 w_1 + x_2 w_2 + ... + x_{Din} w_{Din}$$

Assume: $Var(x_1) = Var(x_2) = ... = Var(x_{Din})$

Glorot and Bengio, "Understanding the difficulty of training deep feedforward neural networks", AISTAT 2010

ization: in)

np.sqrt(Din)

"Just right": Activations are nicely scaled for all layers!

Let:
$$y = x_1 w_1 + x_2 w_2 + ... + x_{Din} w_{Din}$$

Assume: $Var(x_1) = Var(x_2) = ... = Var(x_{Din})$
We want: $Var(y) = Var(x_i)$

Glorot and Bengio, "Understanding the difficulty of training deep feedforward neural networks", AISTAT 2010

lization: in)

np.sqrt(Din)

"Just right": Activations are nicely scaled for all layers!

Let:
$$y = x_1 w_1 + x_2 w_2 + ... + x_{Din} w_{Din}$$

Assume: $Var(x_1) = Var(x_2) = ... = Var(x_{Din})$
We want: $Var(y) = Var(x_i)$

Glorot and Bengio, "Understanding the difficulty of training deep feedforward neural networks", AISTAT 2010

ization: in)

"Just right": Activations are nicely scaled for all layers!

np.sqrt(Din)

For conv layers, Din is filter size² * input channels

 $Var(y) = Var(x_1w_1 + x_2w_2 + ... + x_{Din}w_{Din})$ [substituting value of y]

Let:
$$y = x_1 w_1 + x_2 w_2 + ... + x_{Din} w_{Din}$$

Assume: $Var(x_1) = Var(x_2) = ... = Var(x_{Din})$
We want: $Var(y) = Var(x_i)$

Glorot and Bengio, "Understanding the difficulty of training deep feedforward neural networks", AISTAT 2010

ization: in)

"Just right": Activations are nicely scaled for all layers!

np.sqrt(Din)

For conv layers, Din is filter size² * input channels

 $Var(y) = Var(x_1w_1 + x_2w_2 + ... + x_{Din}w_{Din})$ = Din Var $(x_i w_i)$ [Assume all x_i, w_i are iid]

Let:
$$y = x_1 w_1 + x_2 w_2 + ... + x_{Din} w_{Din}$$

Assume: $Var(x_1) = Var(x_2) = ... = Var(x_{Din})$
We want: $Var(y) = Var(x_i)$

Glorot and Bengio, "Understanding the difficulty of training deep feedforward neural networks", AISTAT 2010

ization: in)

"Just right": Activations are nicely scaled for all layers!

:::): np.sqrt(Din)

For conv layers, Din is filter size² * input channels

$Var(y) = Var(x_1w_1 + x_2w_2 + ... + x_{Din}w_{Din})$ = Din Var $(x_i w_i)$ = Din Var(x_i) Var(w_i) [Assume all x_i, w_i are zero mean]

Let:
$$y = x_1 w_1 + x_2 w_2 + ... + x_{Din} w_{Din}$$

Assume: $Var(x_1) = Var(x_2) = ... = Var(x_{Din})$
We want: $Var(y) = Var(x_i)$

So, $Var(y) = Var(x_i)$ only when $Var(w_i) = 1/Din$

Glorot and Bengio, "Understanding the difficulty of training deep feedforward neural networks", AISTAT 2010

ization: in)

"Just right": Activations are nicely scaled for all layers!

:1): np.sqrt(Din)

$$Var(y) = Var(x_1w_1 + x_2w_2 + ... + x_{Din}w_{Din})$$

= Din Var(x_iw_i)
= Din Var(x_i) Var(w_i)
[Assume all x_i, w_i are iid]

Weight Initialization: What about ReLU?

Weight Initialization: What about ReLU?

Xavier assumes zero centered activation function

Activations collapse to zero again, no learning =(

Weight Initialization: Kaiming

He et al, "Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification", ICCV 2015

"Just right": Activations are nicely scaled for all layers!

Proper initialization is (was?) an active area of research...

Understanding the difficulty of training deep feedforward neural networks by Glorot and Bengio, 2010

al., 2015

Data-dependent Initializations of Convolutional Neural Networks by Krähenbühl et al., 2015

All you need is a good init, Mishkin and Matas, 2015

Fixup Initialization: Residual Learning Without Normalization, Zhang et al, 2019

- Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by Saxe et al, 2013
- Random walk initialization for training very deep feedforward networks by Sussillo and Abbott, 2014
- **Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification** by He et
- The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks, Frankle and Carbin, 2019

