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Recap: Artificial Neural Networks: VWhat's wrong on this slide?

Gradient Descent

N ™ For each example sample
2 Wa sum sign function
2:3"33\ . “Bwade;epﬁr_mi — 1. Predict

: WN

://///// a. Forward pass
LN

b. Compute Loss

\ \ 2. Update
‘ a.Back Propagation
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b. Gradient update
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vector of parameter update equations



Recap: Artificial Neural Networks: VWhat's wrong on this slide?

Gradient Descent

w For each example sample
2 Wa sum sign function
2:3"33\ . “Bwade;epﬁr_mi — 1. Predict
: WN
://///// a. Forward pass
LN
b. Compute Loss
\ \ 2. Update
‘ a.Back Propagation
2\
(
W oS ’

b. Gradient update

{mi: yi}

iJ = fmrp(zs; 6)
L;

Should be minus
oL

of

vector of parameter partial derivatives

9{—94—?}‘%

vector of parameter update equations



Before Deep Learning

A
. MMWW - .'---||-'.||'|--|VJWW’MH-|||"|"|'|" — | SVM |— Ans

Input Extract Concatenate into  Linear
Pixels Features a vector x Classifier

Figure: Karpathy 2016



Recall:

USING MACHINE LEARNING TO DIAGNOSE WHETHER A TUMOR IS BENIGN OR MALIGNANT

¢ Setti ng. two features: mean area vs. mean concave points, for two classes
o _ 0.25
o physician extracts a sample of fluid from tumor X Benign
090 +  Malignant .
o Stains the cell =2 creates a “slide” £ P
3 -+
A +
o Computes features for each cell such as 2
3
] ] < 0.10
area, perimeter, concavity, texture etc. 5
=
0.05
* \Want: on S
0 500 1000 1500 2000 2500 3000
é ‘f 9 Mean Area (pixels)
o A system that can process the Teatures and

predict whether the tumor is benign or malignant



Before Deep Learning

A
. MMWW - .'---||-'.||'|--|VJWW’MH-|||"|"|'|" — | SVM |— Ans

Input Extract Concatenate into  Linear
Pixels Features a vector x Classifier

Figure: Karpathy 2016



Convolutional Neural Networks



Prerequisite:

What is a convolution?



How come every time something convoluted
needs explaining, you always show up?




Convolution for 1D discrete signals

Definition of filtering as convolution:



1D Convolution. Example

Suppose our input 1D image is:

f=[10]50[60[10]20[4030]

g=|1/311/3[1/3

and our kernel is:

Let’s call the output image h. What is the value of h(3)?
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1D Convolution. Example

Suppose our input 1D image is:

f=[10]50]60]10]20 40730

g=|[1/311/3]1/3]

and our kernel is:

“Box” Filter that causes “Blur” or “Smoothing”

Let’s call the output image h. What is the value of h(3)?

h =20 |40 |40 |30 |20 |30 |23.333 |




Convolution for 2D discrete signals

Definition of filtering as convolution: notice the flip

o0 /
(fxg)@y)= > fli,)(x—iy—j)
. . — 1,]=—00 ™~ ™~ .
filtered image filter input image



Convolution for 2D discrete signals

Definition of filtering as convolution: notice the flip

/
(f *g)(x,y) Z f(@, ) I(x =i,y — )

. . — 1,]=—00 ™~ ™~ .

filtered image ’ filter input image
It the filter ..\ IS non-zero only within Lo ,
then f(?’?j) Y _]-S?’:jg]-

1
(f*g)(xy)= > fli,)(x—iy—j)
i, j=—1

The kernel we saw earlier is the 3x3 matrix representation of f(?,’ j) .



An Image Is a matrix of pixels

F[x,y]

An array of numbers ("pixels”)
X,y are integer column/row indices



Point Processing vs Image Filtering

Point Operation

point processing




Examples of point processing

darken

original

[7

Invert

r — 128

lighten

lower contrast

raise contrast

f
Vo - »
“
&
: i’—’
T X 2

non-linear lower contrast

> S

.\ 1/3
— 2
(255) X 255

non-linear raise contrast




Point Processing vs Image Filtering

Point Operation

point processing

Neighborhood Operation

“filtering”




How come every time something convoluted
needs explaining, you always show up?

Image Filtering
IS



Image Convolution Examples




Image Convolution Examples




Image Convolution Examples




Image Convolution Examples

0|0 O
ylo |l o 1 1ol o p—
>I< | 0|00
ylo | o
) ] Kernel (k) Shifted left
Original (1) Identical image (g)

By 1 pixel




Image Convolution Examples

Original (f)

0 () 0

[dentical image (g)

Onemal

xR

Shifted left

By 1 pixel

Original (f)




Image Convolution Examples

i) { | ()
000 >I< 1l 01| 0O —
>I< 0|l1/|0 — ) |
i { ] [ ]
I,-hl |:| I,-hl
: ﬂ Kermel (k) Original Shifted lefi
Original (1) Identical image (o) ' -
e (£ By 1 pixel

Blur (with a mean filter) (g

Original (f)




Image Convolution Examples
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Image Convolution Examples

Original (f)

000
0|00

Kernel (k)
Identical image (g)

Original (f)

Kemel (k)
Blur (with a mean filter) (g

(] [ ] ()
1 (0] 0 e 4
i [ ] (]
Orniginal Shifted lefi
By 1 pixel
0|0 1111
1
O] = —}11 (11
9
0|0 1111

Original

Sharpening filter
(accentuates edges)




Example: box filter

11| 1
1
— 1 1] 1
O

11| 1

Slide credit: David Lowe (UBC)



Image filtering




Image filtering




Image filtering




Image filtering




Image filtering




Image filtering




Image filtering

/1]

hlm,n]

10

20

30

30

50

/]




Image filtering of- -]




Practice with linear filters

Original

Source: D. Lowe



Practice with linear filters

Original Filtered
(no change)

Source: D. Lowe



Practice with linear filters

Original

Source: D. Lowe



Practice with linear filters

Original Shifted left
By 1 pixel

Source: D. Lowe



Practice with linear filters

0,00 . 1111

02 0| ™= —(11]1
9

0,00 1111

(Note that filter sums to 1)

Original

Source: D. Lowe



Practice with linear filters

0,00 . 1111

02 0| ™= —(11]1
9

0,00 1111

Original

Sharpening filter
- Accentuates differences with local
average

Source: D. Lowe



Sharpening

before

Source: D. Lowe



Ok now we know what a Convolution is.

Next:
Convolutional Neural Networks









= a Classifier

Rird




Bird




Bird

—>

Classifier

—>

Sky







Problem:

What if objects don't fit neatly into these patches?

How to increase the resolution of the output map?






What's the object class of the center pixel?

:f> Bird
:J,‘\> Bird
j‘> Sky
j‘> Sky




What's the object class of the center pixel?

Training data j> Bird
| j“> Bird
) j‘> Sky
N Bird
| f Sky

(1




(Colors represent one-hot codes)

This problem is called semantic segmentation



What's the object class of the center pixel?

:J,‘\> Rird
:J,‘\> Rird

Sky

Sky

0 N

Translation invariance: process
each patch in the same way.

An equivariant mapping:
f (translate(x)) = translate(f(x))



W computes a weighted sum of all pixels in the patch

O-
O =)
O

— O W is a convolutional kernel applied to the full image!




Convolution

Linear, shift-invariant transformation

K
Yourloml=b+ Y wlki,ko)xi[n+k,m+k;]

k1,kr=—K




Fully-connected network

Fully-connected (fc) layer




OOQTQOOO

Locally connected network

Often, we assume output is a
local function of input.

If we use the same weights

(weight sharing) to compute
each local function, we get a
convolutional neural network.



Conv layer

Convolutional neural network

OO00000OOO

Z

W X+ b

Often, we assume output is a
local function of input.

If we use the same weights

(weight sharing) to compute
each local function, we get a
convolutional neural network.



Weight sharing

Conv layer

& O_O:: Often, we assume output is a
O— — —O—0O local function of input.
O= — =(—C0

— =(—0
O= — =(—0 If we use the same weights
8F 38:8 (weight sharing) to compute

g(z) each local function, we get a

convolutional neural network.

Z = WX+ Db




(Fully-connected) linear layer

Xout = WXin + b
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Convolutional layer

Xout = W Xin + D

=

n
O C
g
-

]

( )

OO00000O00OO0

Xout Xin

QQi?;Qi

X
=

Xout



Toeplitz matrix

a b ¢ d e

f a b c¢ d
g [ a b c
h g f a b

r h g f a

e.g., pixel image

» Constrained linear layer

* Fewer parameters —> easier to learn, less overfitting






Y
Conv layers can be applied to arbitrarily-sized inputs

(generalizes beyond the training data due to an architectural structure!)



Flve views on convolutional layers

. Equivariant with translation f (translate(x)) = translate (f(x))

. Patch processing

Image filter

. Parameter sharing

|

. A way to process variable-sized tensors



ConvNets

They're just neural networks with
3D activations and weight sharing



3D Activations

before:

output layer
Input
layer hidden layer (1D vectors)

Figure: Andrej Karpathy



3D Activations

before:
output layer
Input
layer hidden layer (1D vectors)
NOW: ¥ - h, T h,
(3D arrays)

Figure: Andrej Karpathy



3D Activation

All Neural Net
activations

arranged in 3
dimensions:

Figure: Andrej Karpathy

L

&

HEIGHT

/ WIDTH
>

DEPTH



3D Activation
All Neural Net / ‘

activations
arranged in 3
dimensions:

HEIGHT

/ WIDTH

For example, a CIFAR-10 image is a 3x32x32 volume
(3 depth — RGB channels, 32 height, 32 width)

DEPTH

Figure: Andrej Karpathy



3D Activations

1D Activations:

Figure: Andrej Karpathy



3D Activations

1D Activations: 3D Activations:

a hidden neuron in

32

Figure: Andrej Karpathy



3D Activations

a hidden neuron In

32

Figure: Andrej Karpathy

- The Input Is 3x32x32

- This neuron depends

on a 3xb5x5 chunk of
the Input

- The neuron also has a

3x5x5 set of weights
and a bias (scalar)



3D Activations

Example: consider the
32 region of the input “X’”
xr a hidden neuron in
next layer , r
>® With output neuron A
5 h
32

Figure: Andrej Karpathy



3D Activations

Example: consider the
N region of the input “X’”

X a hidden neuron in

next layer , r
>® With output neuron A
h?‘

5 Then the output Is:

32

h' = z xrijkVVijk +b

ijk

Figure: Andrej Karpathy
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3D Activations

32
xr a hidden neuron in

next layer
>®
h v

S

32

Figure: Andrej Karpathy

Example: consider the
region of the input “X’”

With output neuron A’

Then the output Is:

h' = z xrijkVVijk +b

ijk

\

Sum over 3 axes



3D Activations

32
xr a hidden neuron Iin
next layer
E hr
5 1

32

Figure: Andrej Karpathy



3D Activations

32
xr a hidden neuron Iin
next layer
E r r
5 h 1 h 2

Figure: Andrej Karpathy



3D Activations

2 With 2 output neurons

X a hidden neuron in

e h| = zx riikwlzjk +b,
5 O Ijk
h' h,

h, = ZJC ijkW2zjk + b,

1k

Figure: Andrej Karpathy



3D Activations

2 With 2 output neurons

xr a hidden neuron in

next layer ro r
boo 1= 2 i
1k
r r
h | h 2

> h', = zxrijkwﬁzjk T

1k

32

Figure: Andrej Karpathy



3D Activations

32
xr a hidden neuron Iin
next layer
E hr
5 1

32

Figure: Andrej Karpathy



3D Activations

- depth dimension

>

00000

32

Figure: Andrej Karpathy



3D Activations

We can keep adding

MOore outputs

- depth dimension

>

These form a column

O0000 in the output volume:

[depth x 1 x 1]

32

Figure: Andrej Karpathy



3D Activations

We can keep adding

more outputs

- depth dimension

>

These form a column

O0000 in the output volume:

[depth x 1 x 1]
\I/

39 Fach neuron has its
own 3D filter and
own (scalar) bias

Figure: Andrej Karpathy



3D Activations

Now repeat this
across the input

>

D sets of weights
(also called filters)

Figure: Andrej Karpathy



3D Activations

>

D sets of weights
(also called filters)

Figure: Andrej Karpathy

Now repeat this
across the input

Weight sharing:

Each filter shares
the same weights
(but each depth
iINndex has its own
set of weights)



3D Activations

D sets of weights
(also called filters)

Figure: Andrej Karpathy



3D Activations

With weight

sharing,

this Is called
convolution

>

D sets of weights
(also called filters)

Figure: Andrej Karpathy



3D Activations

>

D sets of weights
(also called filters)

Figure: Andrej Karpathy

With weight

sharing,

this Is called
convolution

Without weight
sharing,

this Is called a
locally
connected layer



3D Activations

0 f one fi . |
Jtputotone fiter one set of weights gives

/ one slice In the output

To get a 3D output of depth D,
use D different filters

In practice, ConvNets use
~many filters (~64 to 1024)

(input (output
depth) depth)




<+

(Input

deptr

)

3D Activations

Qutput of one filter

/

(oL

tput

de

oth)

One set of weights gives
one slice In the output

To get a 3D output of depth D,
use D different filters

In practice, ConvNets use

- many filters (~64 to 1024)

All together, the weights are 4 dimensional:
(output depth, input depth, kernel height, kernel width)



3D Activations

We can unravel the 3D cube and show each layer separately:
(Input)

Activations:

GINSEESENNZITAYREERESESAEIEESRRSR S
one filter = one depth slice (or activation map) ( 32 fi "[ersj each 3)(5)(5)

....E E'; H ‘ -

Figure: Andrej Karpatny



3D Activations

We can unravel the 3D cube and show each layer separately:

(Input)
. PRCINEERDNEIIANEENESEORENINEERESR S

“ one filter = one depth slice (or activation map) (3 2 f| \terS, eaCh 3)(5)(5)

Acﬂ:

4= \ '
l

- y Ly = I
: |
i N =N N
[ASRR
Bed: AN 7SN

*

Figure: Andrej Karpatny



3D Activations

We can unravel the 3D cube and show each layer separately:

(Input)
. > dihll!ﬂﬂ:lﬂl!lIIBIHHSIHIIEIIBIS

one filter =\gne depth slice (or activation map) (3 2 f| \terS, eaCh 3)(5)(5)

. -\‘

i..lll A A7

- Il"j

Figure: Andrej Karpathy




3D Activations

We can unravel the 3D cube and show each layer separately:
(Input)

’
«

o :Ehlllunn:unnllln:manlauls-luq/il
one filter =\gne depth slice (or activation map) (32 f”’[ers each 3)(5)(5)

%’/

jgure: A ndrej Karpathy



A ConvNet is a sequence of convolutional layers, interspersed with
activation functions (and possibly other layer types)

CONV, CONV, CONV,
RelLU RelLU RelLU

e.q.6 e.q. 10
5x5x3 5x5x6
32 filters 28 filters 24




Convolution Layer

32x32x3 image

32 height

3 depth



Convolution Layer

32x32x3 image

32

32

5x5x3 filter

J

Convolve the filter with the image
I.e. “slide over the image spatially,
computing dot products”



CO nVOI Ution Layer Filters always extend the full

depth of the input volume

32x32x3 image /
ox5x3 filter
32
Convolve the filter with the image

32

I.e. "slide over the image spatially,
computing dot products”



Convolution Layer

_— 32x32x3 Image

5x5x3 filter w
32

~ 1 number:
the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image
32 (i.e. 5*5*3 = 75-dimensional dot product + bias)

’ wlz +b



What will the output size be?

| You will need to make some
Convolution Layer assumptions ...

— 32x32x3 Image
o5x5x3 filter w

~ 1 number:
the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image
32 (i.e. 5*5*3 = 75-dimensional dot product + bias)

’ wlz +b




Convolution Layer

activation map

__— 32x32x3 Image

5x5x3 filter
32

convolve (slide) over all
spatial locations

32




Convolution Layer Consider a second filter ...

_— 32x32x3 image activation maps
- OxOxa3 filter

ii 28
convolve (slide) over all

spatial locations

32 28




What will the output size be if
Convolution Layer we have 6 filters?

_— 32x32x3 image activation maps
_ OxOx3 filter

TI; 28
convolve (slide) over all

spatial locations

‘—""'f

28




For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

activation maps

32
28

-

Convolution Layer

32 28
3 6

We stack these up to get a “"new image” of size 28x28x6!



2-dimensional output
Input features A bank of 2 filters feature maps




Convolution: Stride

During convolution, the weights “slide™ along the input to
generate each output

Weights

Output

Input



Convolution: Stride

During convolution, the weights “slide™ along the input to
generate each output

Output

Input



Convolution: Stride

During convolution, the weights “slide™ along the input to
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Output

Input
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Input



Convolution: Stride

During convolution, the weights “slide™ along the input to
generate each output

Output

Input



Convolution: Stride

During convolution, the weights “slide™ along the input to
generate each output

Output

Input



Convolution: Stride

During convolution, the weights “slide™ along the input to

generate each output

Input

Recall that at each position,
we are doing a 3D sum:

h' = Zx’"ljkW.. +b

1k
Ik

(channel, row, column)



Convolution: Stride

But we can also convolve with a stride, e.g. stride = 2

Output

Input



Convolution: Stride

But we can also convolve with a stride, e.g. stride = 2

Output

Input



Convolution: Stride

But we can also convolve with a stride, e.g. stride = 2

Output

Input



Convolution: Stride

But we can also convolve with a stride, e.g. stride = 2

Output

- Notice that with certain
strides, we may not be able to
cover all of the input

- The output is also half the
Size of the input

Input



Convolution: Padding

We can also pad the input with zeros.
Here, pad = 1, stride = 2

O101 0101071010

Output

O |1 O | O] O |]O]1O O | O | O
O 1 O | OO ]|]O ] O |O]|]CO]| O

Input



Convolution: Padding

We can also pad the input with zeros.
Here, pad = 1, stride = 2

O PO O30 O |00

Output

O 1 O | OO ]|]O ] O |O]|]CO]| O
O 1 O | OO ]|]O ] O |O]|]CO]| O

Input



Convolution: Padding

We can also pad the input with zeros.
Here, pad = 1, stride = 2

010 (0 pQCFO 0| O

Output

O 1 O | OO ]|]O ] O |O]|]CO]| O
O 1 O | OO ]|]O ] O |O]|]CO]| O

Input



Convolution: Padding

We can also pad the input with zeros.
Here, pad = 1, stride = 2

01001010 pQC | 0O

Output

O 1 O | OO ]|]O ] O |O]|]CO]| O
O |1 O | OO |]O 1O 10O | O | O

Input



Convolution:
How big Is the output?

stride s
« >
O1O1O]1O0O1O1O]lO]101]O0
0| | , 0
0 kernel &k 0
O O 1 In general, the output has size:
. - w. +2p—k [
O Wout T T
| - S —
0
0
O1O1O]1O0O1O1O]JTO]101]O0

p width w._ p



Convolution:

How big Is the output?

stride s

«

010 0101 O 0
0 0
0 kerrnel| & 0
0 0
0 0
0

0

0

010 0101 O 0
28 width w,_ D

Example: k=3, s=1, p=1

- +2p—k
Win T 2P +1
— S -
w. +2—3
1 + 1

= W.

1n

VGGNet [Simonyan 2014]
uses filters of this shape



Feature maps

conv1 (after flrst conv layer)

e Each layer can be thought of as a set of C feature maps aka channels

e Each feature map is an NxM image



Knowledge Check ...

/ /// 128
|%|> Filter Bank with |%|>
3x43 filters
128

3 06

How many parameters does each filter have?

128

@9 ()27 ()96 (d)864



Knowledge Check ...

/ /// 128
|%|> Filter Bank with |%|>
3x43 filters
128

3 06

How many filters are in the bank?

128

(a) 3 (b)27 ()96 (d)can't say



Input image (RGB) Layer 1 feature maps Layer 2 feature maps

[H xW x3] [H/4 x W/4 xC1] [H/8 x W/8 x (3]
“. " - ) > .

/) /! H

— "

_ EE E N ] o

- T EE E N —

5.5 B i 1: B8
%) - L "'H. 1% » g 1%
S I.- oN f E u . _ E %
: - l | am ® B: | MW

Cq filters > . :‘ . . = n

B B =r 2 ==

E B Ll o

Layer 1 _ _ _

filters L

(4x zoom) C; filters =

N

Layer 2 .

filters 7

(4x zoom) _




Filter

Pooling

Pool

OOQTQOOO

5855068

>
< 00000000

Max pooling
y; = max h;
JEN (J)

Mean pooling

Zh

JGN(J)




Vlax Pooling

Single depth slice

1111 2 | 4
max pool with 2x2 filters
516 |7 |8 and stride 2 6 | 8
3121|110 3 | 4
1121 3| 4
y

What's the backprop rule for max pooling”
- In the forward pass, store the index that took the max
- The backprop gradient is the input gradient at that index

Figure: Andrej Karpathy



Pooling — Why?

Pooling across spatial locations achieves
stability w.r.t. small translations:

>




Pooling — Why?

Pooling across spatial locations achieves
stability w.r.t. small translations:

large response
regardless of exact
position of edge




Pooling — Why?

Pooling across spatial locations achieves
stability w.r.t. small translations:




Pooling across channels — \Why?

Pooling across feature channels (filter outputs)

can achieve other kinds of invariances:

PAANN

!
/
-

\
.

large response
for any edge,
regardless of its
orientation



Pooling vs Downsampling



Computation in a neural net

Cowd £
N2 2
< s 0"
X
— L = =1 = sheron

fx)=fu(...fa(f1(x)))
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X))
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Filter

OOQTQOOO

Downsampling

Pool and downsample

00000000



Filter

OOQTQOOO

Downsampling

Downsample

O

O O O




Dilated Convolutions

Allows increasing the receptive field
of the convolutional layer

Useful for looking at larger spatial
context without looking at every pixel




Transposed Convolution

The transposed convolution a.k.a

- deconvolution layer
- fractionally strided convolution




VS. Dilated Conv

Transposed Conv




1x1 convolution

How Is this not just multiplication?

Multiplications followed by a RELU

activation

9

)

9

%

9

%

Good for dimensionality reduction

efficient storage

%

A
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Used in GoogleNet as Inception Layers

Inception architecture

Used in GoogleNet in the ”iifﬁ s

Able to get large layer network by
doing this

. . . . o
Task: Object classification concutmtn
/ 3x3 convolutions 5x5 convolutions 1x1 convolutions
1x1 convolutions & 4 B
1x1 convolutions 1x1 lutio 3x3 max pooling

(b) Inception module with dimension reductions



Example ConvNet
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Figure: Andrej Karpatny



Example ConvNet
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Example ConvNet

(Fully-connected)
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Example ConvNet
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10x3x3 conv filters, stride 1, pad 1
2XZ pOO‘ f”terS, stride 2 Figure: Andrej Karpathy




Input image
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resnetl8




Layer Visualizations
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Example: AlexNet [Krizhevsky 2012]

convli conv2 conv3 conv4 convs fc6 fc7

class
scores

3 96 256 384 384 256
227x227 55x55 27x27 13x13 13x13 13x13 | 4096 | 4096 1000

conv conv conv conv conv max full

max max full

o $I—| \_I_I
Extract high level features Classify

each sample
‘max . max pooling
‘norm’: local response normalization
“Tull”: quy connected Figure: [Karnowski 2015] (with corrections)



Training ConvNets



HOwW dO you actually
train these things”

Roughly speaking:
Gather Find a ConvNet Minimize
labeled data architecture the loss
*ﬁ?‘“i]a_t ST TP TR B ﬁim
JEE e A e v e
ﬂm-“lunnnr. s 8- i pt-++ ==
—L L LLL_LIL Bt
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Training a convolutional
neural network

Split and preprocess your data

Choose your network architecture

Initialize the weights

Find a learning rate and regularization strength

Minimize the loss and monitor progress

Fiddle with knobs



Mini-batch Gradient Descent

Loop:

1. Sample a batch of training data (~100 images)
2. Forwards pass: compute loss (avg. over batch)
3. Backwards pass: compute gradient

4. Update all parameters

Note: usually called “stochastic gradient descent” even
though SGD has a batch size of 1



Reqgularization

Regularization reduces overfitting:
| T
L L T L Lreg — /’L_”W||2
2

data

A =0.001 A=0.01

[Andrej Karpathy http.//cs.stanford.edu/people/karpathy/convnetjs/demo/classity2d.html]




Overfitting

Overfitting: modeling noise in the training set instead
of the “true” underlying relationship

Underfitting: insufficiently modeling the relationship in
the training set

15

10

General rule: models that are
‘bigger” or have more capacity
are more likely to overtit

0

-

-10

-15

-6 -4 -2 0 2 4 6

[Image: https://fen. wikipedia.org/wiki/File:Overfitted Data.png]




Summary of things to fiddle

* Network architecture

e |earning rate, decay schedule, update type

* Regularization (L2, L1, maxnorm, dropout, ...)
e Loss function (softmax, SVM, ...)

 Weignht initialization

Neural network
parameters




(Recall) Regularization
reduces overfitting

1
L= Ly + Lig L, =z—||wl|§

data

A =0.001 A =0.01

[Andrej Karpathy http.//cs.stanford.edu/people/karpathy/convnetjs/demo/classity2d.html]




-xample Reqgularizers

Lo
L2 regularization L = ﬂ,—HWH
reg o 2
(L2 regularization encourages small weights)

L1 regularization Lreg = A |W| 1 /12 sz
ij

(L1 regularization encourages sparse weights:
weights are encouraged to reduce to exactly zero)

“Elastic net” Lreg = /11 | |W| |1 T /12 | |W| E

(combine L1 and L2 regularization)

Max norm
Clamp weights to some max norm

Wl <c



“Weight decay”

Regularization is also called “weight decay” because
the weights “decay” each iteration:

| I oL
L. =A-|Wf — =—==aw
reg 2” | 2 aW
Gradient descent step: N7
W W — AW — —2=

- oW

Weight decay: g4 {weights always decay by this amount)

Note: biases are sometimes excluded from regularization

[Andre| Karpathy http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html]



Dropout

Simple but powerful technique to reduce overfitting:

W PW
Present with Always
probability p present
(a) At training time (b) At test time

[Srivasta et al, “Dropout: A Simple Way to Prevent Neural Networks from
Overfitting”, JIMLR 2014]



Dropout

Simple but powerful technique to reduce overfitting:
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Case study: [Krizhevsky 2012]

Dropout

“‘Without dropout, our network exhibits
substantial overfitting.”

. Stricle
“of 4

25

48

Max
pooling

[Krizhevsky et al, “ImageNet Classification with Deep Convolutiona
Neural Networks”, NIPS 2012]

Dropout here

l

l

i : i j- . II".,‘ - f 3
| '.! b .1 3' ; L 3"
{\ d “J 3
\ 192 192 128 2048 \ / 20as \dense
27 128 —_—
N A\ \13 k 13
- - . | ",_. 11 )
IR ENEA 3
! ¥ 3 13 A i kt | — J b » R
k7 3t ~} 3| \ 137 13 dense dense
J \\i 1000
192 192 128 Max
» 2048
128 Max pooling 2048
pooling

T

But not here — why?




summary

Preprocess the data (subtract mean, sub-crops)
Initialize weights carefully

Use Dropout

Use SGD + Momentum

Fine-tune from ImageNet

Babysit the network as it trains



Common Architectures



VGG 224 X 224 x 3 224 x 224 X 64

* Simonyan and Zisserman, /‘mm
“Very Deep Convolutional /7805 v 7 v X7 x512
----- ). 114x14x512 44 1x4096 1x1x 1000
Networks for Large-Scale [l =
Image Recognition” /
) convolution+ReLU
) max pooling
fully nected+RelU
e Used to be very common o
(before ResNets)
VGG-16
| N - N (N M [N m - N|(m -
g (442 AR b D42 BbAbD 888 s
2225 225 2225 2223 2225 55802
= 11885 (8185 388/F 888 388c 288 S




ResNet

He, Kaiming; Zhang, Xiangyu; Ren, Shaoqing;
Sun, Jian (2016). "Deep Residual Learning for
Image Recognition" (PDF). Proc. Computer

Vision and Pattern Recognition (CVPR), IEEE.

Deep networks with more layers does not always
mean better performance (vanishing gradient
problem)

Residual blocks = has skip connections

Skipped layers train faster at the beginning, then
later are filled out

34-layer plain

iiiii
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http://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
http://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf

Autoencoder

* Can be done with either fully connected
or convolutional layers

* |dea is to reduce the input to a bottleneck
or latent code, then reconstruct it again

 Sometimes can be used to train a feature
extractor by enforcing the output =
input, and then use the first part of the
network as a feature extractor



U-Net

 Common architecture for image
reconstruction tasks

* Features skip connections and
transposed convolutions (up-conv)

Input DEM 1 495 195

2562 =~

L::

224 112112 1_ Predicted Mask

4::- f
Ty

256¢

112 224 224 448 112 112

128°

224 448 896 224 iid

|~|1 |+|

Conv 3x3, RelLU
MaxPool 2x2

Up-conv 2x2

Dropout, then
conv 3x3, RelLU

v

Copy

y

Conv 1x1, sigmoid



Encoder

B

B

orduresqng

AJLIeUI[UON

UOTIN[OAUO))

Decoder

B

orduwresdn

B




Image-to-image

Skip connection >

v

1.
Non-linearity
Vo
W
Vo
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Subsample




conv
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Image-to-image

relu

Yy v vy vy y vy v vo.©y

conv softmax
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U-net

— — —> —
— —> —> —
— — — —

Skip connection /



Convolutions In time
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