tejasgokhale.com

CONVOLUTIONALNEURAL
CMSC 475/675 Neural Networks NETWORKS

I{.) - 8
E:Z-ig.f-ﬂ‘.-—. e
I;'E*h":ﬁ‘-:'r'r = s g

{m__. - .'.__.f'

IS{THEREANYTHING THEY.CANT

Convolutional Neural THR
Networks

I .

—
-

cONVOLTIONAL

UMBC _NEURAL NETWORKS

Some slides from Andrej Karpathy (Stanford), Suren Jayasuriya (ASU)

Recap: Artificial Neural Networks: VWhat's wrong on this slide?

Gradient Descent

N ™ For each example sample
2 Wa sum sign function
2:3"33\ . “Bwade;epﬁr_mi — 1. Predict

: WN

://///// a. Forward pass
LN

b. Compute Loss

\ \ 2. Update
‘ a.Back Propagation
"&
W oS ’

b. Gradient update

oL
50
Ye
B8 —
KDY

vector of parameter update equations

Recap: Artificial Neural Networks: VWhat's wrong on this slide?

Gradient Descent

w For each example sample
2 Wa sum sign function
2:3"33\ . “Bwade;epﬁr_mi — 1. Predict
: WN
://///// a. Forward pass
LN
b. Compute Loss
\ \ 2. Update
‘ a.Back Propagation
2\
(
W oS ’

b. Gradient update

{mi: yi}

iJ = fmrp(zs; 6)
L;

Should be minus
oL

of

vector of parameter partial derivatives

9{—94—?}‘%

vector of parameter update equations

Before Deep Learning

A
. MMWW - .'---||-'.||'|--|VJWW’MH-|||"|"|'|" — | SVM |— Ans

Input Extract Concatenate into Linear
Pixels Features a vector x Classifier

Figure: Karpathy 2016

Recall:

USING MACHINE LEARNING TO DIAGNOSE WHETHER A TUMOR IS BENIGN OR MALIGNANT

¢ Setti ng. two features: mean area vs. mean concave points, for two classes
o _ 0.25
o physician extracts a sample of fluid from tumor X Benign
090 + Malignant .
o Stains the cell =2 creates a “slide” £ P
3 -+
A +
o Computes features for each cell such as 2
3
]] < 0.10
area, perimeter, concavity, texture etc. 5
=
0.05
* \Want: on S
0 500 1000 1500 2000 2500 3000
é ‘f 9 Mean Area (pixels)
o A system that can process the Teatures and

predict whether the tumor is benign or malignant

Before Deep Learning

A
. MMWW - .'---||-'.||'|--|VJWW’MH-|||"|"|'|" — | SVM |— Ans

Input Extract Concatenate into Linear
Pixels Features a vector x Classifier

Figure: Karpathy 2016

Convolutional Neural Networks

Prerequisite:

What is a convolution?

How come every time something convoluted
needs explaining, you always show up?

Convolution for 1D discrete signals

Definition of filtering as convolution:

1D Convolution. Example

Suppose our input 1D image is:

f=[10]50[60[10]20[4030]

g=|1/311/3[1/3

and our kernel is:

Let’s call the output image h. What is the value of h(3)?

[] Area under fI:T.:Iglft-T.:l
fl o)
qit-)

(T+gxt}

T O: 1

1D Convolution. Example

Suppose our input 1D image is:

f=[10]50]60]10]20 40730

g=|[1/311/3]1/3]

and our kernel is:

“Box” Filter that causes “Blur” or “Smoothing”

Let’s call the output image h. What is the value of h(3)?

h =20 |40 |40 |30 |20 |30 |23.333 |

Convolution for 2D discrete signals

Definition of filtering as convolution: notice the flip

o0 /
(fxg)@y)= > fli,)(x—iy—j)
. . — 1,]=—00 ™~ ™~ .
filtered image filter input image

Convolution for 2D discrete signals

Definition of filtering as convolution: notice the flip

/
(f *g)(x,y) Z f(@,) I(x =i,y —)

. . — 1,]=—00 ™~ ™~ .

filtered image ’ filter input image
It the filter ..\ IS non-zero only within Lo ,
then f(?’?j) Y _]-S?’:jg]-

1
(f*g)(xy)= > fli,)(x—iy—j)
i, j=—1

The kernel we saw earlier is the 3x3 matrix representation of f(?,’ j) .

An Image Is a matrix of pixels

F[x,y]

An array of numbers ("pixels”)
X,y are integer column/row indices

Point Processing vs Image Filtering

Point Operation

point processing

Examples of point processing

darken

original

[7

Invert

r — 128

lighten

lower contrast

raise contrast

f
Vo - »
“
&
: i’—’
T X 2

non-linear lower contrast

> S

.\ 1/3
— 2
(255) X 255

non-linear raise contrast

Point Processing vs Image Filtering

Point Operation

point processing

Neighborhood Operation

“filtering”

How come every time something convoluted
needs explaining, you always show up?

Image Filtering
IS

Image Convolution Examples

Image Convolution Examples

Image Convolution Examples

Image Convolution Examples

0|0 O
ylo |l o 1 1ol o p—
>I< | 0|00
ylo | o
)] Kernel (k) Shifted left
Original (1) Identical image (g)

By 1 pixel

Image Convolution Examples

Original (f)

0 () 0

[dentical image (g)

Onemal

xR

Shifted left

By 1 pixel

Original (f)

Image Convolution Examples

i) { | ()
000 >I< 1l 01| 0O —
>I< 0|l1/|0 —) |
i {] []
I,-hl |:| I,-hl
: ﬂ Kermel (k) Original Shifted lefi
Original (1) Identical image (o) ' -
e (£ By 1 pixel

Blur (with a mean filter) (g

Original (f)

Image Convolution Examples

oo |lo
0| =
e il

Image Convolution Examples

Original (f)

000
0|00

Kernel (k)
Identical image (g)

Original (f)

Kemel (k)
Blur (with a mean filter) (g

(] [] ()
1 (0] 0 e 4
i [] (]
Orniginal Shifted lefi
By 1 pixel
0|0 1111
1
O] = —}11 (11
9
0|0 1111

Original

Sharpening filter
(accentuates edges)

Example: box filter

11| 1
1
— 1 1] 1
O

11| 1

Slide credit: David Lowe (UBC)

Image filtering

Image filtering

Image filtering

Image filtering

Image filtering

Image filtering

Image filtering

/1]

hlm,n]

10

20

30

30

50

/]

Image filtering of- -]

Practice with linear filters

Original

Source: D. Lowe

Practice with linear filters

Original Filtered
(no change)

Source: D. Lowe

Practice with linear filters

Original

Source: D. Lowe

Practice with linear filters

Original Shifted left
By 1 pixel

Source: D. Lowe

Practice with linear filters

0,00 . 1111

02 0| ™= —(11]1
9

0,00 1111

(Note that filter sums to 1)

Original

Source: D. Lowe

Practice with linear filters

0,00 . 1111

02 0| ™= —(11]1
9

0,00 1111

Original

Sharpening filter
- Accentuates differences with local
average

Source: D. Lowe

Sharpening

before

Source: D. Lowe

Ok now we know what a Convolution is.

Next:
Convolutional Neural Networks

= a Classifier

Rird

Bird

Bird

—>

Classifier

—>

Sky

Problem:

What if objects don't fit neatly into these patches?

How to increase the resolution of the output map?

What's the object class of the center pixel?

:f> Bird
:J,‘\> Bird
j‘> Sky
j‘> Sky

What's the object class of the center pixel?

Training data j> Bird
| j“> Bird
) j‘> Sky
N Bird
| f Sky

(1

(Colors represent one-hot codes)

This problem is called semantic segmentation

What's the object class of the center pixel?

:J,‘\> Rird
:J,‘\> Rird

Sky

Sky

0 N

Translation invariance: process
each patch in the same way.

An equivariant mapping:
f (translate(x)) = translate(f(x))

W computes a weighted sum of all pixels in the patch

O-
O =)
O

— O W is a convolutional kernel applied to the full image!

Convolution

Linear, shift-invariant transformation

K
Yourloml=b+ Y wlki,ko)xi[n+k,m+k;]

k1,kr=—K

Fully-connected network

Fully-connected (fc) layer

OOQTQOOO

Locally connected network

Often, we assume output is a
local function of input.

If we use the same weights

(weight sharing) to compute
each local function, we get a
convolutional neural network.

Conv layer

Convolutional neural network

OO00000OOO

Z

W X+ b

Often, we assume output is a
local function of input.

If we use the same weights

(weight sharing) to compute
each local function, we get a
convolutional neural network.

Weight sharing

Conv layer

& O_O:: Often, we assume output is a
O— — —O—0O local function of input.
O= — =(—C0

— =(—0
O= — =(—0 If we use the same weights
8F 38:8 (weight sharing) to compute

g(z) each local function, we get a

convolutional neural network.

Z = WX+ Db

(Fully-connected) linear layer

Xout = WXin + b

OOO0000O0

:
)

\
A\
AL

)
NN
W
)

\

’0{’11

N /I
~

X 254 7547
&S \.q‘l‘ilf,
XN XL B 755
XN LEZ K7
K BIAESE?
2788 ES0SK 2

X XX XS
; Q’ ‘:\{ }0:' '; ‘

7 SBSHK »éz/""
‘ Y, ‘ XA LIK KRR

() &

#0

b

l

46‘010

(

g
{

N A‘

: o N\
@;@'&V&\y‘g‘;\’A

L2257 B3

27X /‘:‘§, ‘\“

XK
'[//}o.

¢
Al

il

Xout Xin

Convolutional layer

Xout = W Xin + D

=

n
O C
g
-

]

()

OO00000O00OO0

Xout Xin

QQi?;Qi

X
=

Xout

Toeplitz matrix

a b ¢ d e

f a b c¢ d
g [a b c
h g f a b

r h g f a

e.g., pixel image

» Constrained linear layer

* Fewer parameters —> easier to learn, less overfitting

Y
Conv layers can be applied to arbitrarily-sized inputs

(generalizes beyond the training data due to an architectural structure!)

Flve views on convolutional layers

. Equivariant with translation f (translate(x)) = translate (f(x))

. Patch processing

Image filter

. Parameter sharing

|

. A way to process variable-sized tensors

ConvNets

They're just neural networks with
3D activations and weight sharing

3D Activations

before:

output layer
Input
layer hidden layer (1D vectors)

Figure: Andrej Karpathy

3D Activations

before:
output layer
Input
layer hidden layer (1D vectors)
NOW: ¥ - h, T h,
(3D arrays)

Figure: Andrej Karpathy

3D Activation

All Neural Net
activations

arranged in 3
dimensions:

Figure: Andrej Karpathy

L

&

HEIGHT

/ WIDTH
>

DEPTH

3D Activation
All Neural Net / ‘

activations
arranged in 3
dimensions:

HEIGHT

/ WIDTH

For example, a CIFAR-10 image is a 3x32x32 volume
(3 depth — RGB channels, 32 height, 32 width)

DEPTH

Figure: Andrej Karpathy

3D Activations

1D Activations:

Figure: Andrej Karpathy

3D Activations

1D Activations: 3D Activations:

a hidden neuron in

32

Figure: Andrej Karpathy

3D Activations

a hidden neuron In

32

Figure: Andrej Karpathy

- The Input Is 3x32x32

- This neuron depends

on a 3xb5x5 chunk of
the Input

- The neuron also has a

3x5x5 set of weights
and a bias (scalar)

3D Activations

Example: consider the
32 region of the input “X’”
xr a hidden neuron in
next layer , r
>® With output neuron A
5 h
32

Figure: Andrej Karpathy

3D Activations

Example: consider the
N region of the input “X’”

X a hidden neuron in

next layer , r
>® With output neuron A
h?‘

5 Then the output Is:

32

h' = z xrijkVVijk +b

ijk

Figure: Andrej Karpathy

Feb 12, 2025

3D Activations

32
xr a hidden neuron in

next layer
>®
h v

S

32

Figure: Andrej Karpathy

Example: consider the
region of the input “X’”

With output neuron A’

Then the output Is:

h' = z xrijkVVijk +b

ijk

\

Sum over 3 axes

3D Activations

32
xr a hidden neuron Iin
next layer
E hr
5 1

32

Figure: Andrej Karpathy

3D Activations

32
xr a hidden neuron Iin
next layer
E r r
5 h 1 h 2

Figure: Andrej Karpathy

3D Activations

2 With 2 output neurons

X a hidden neuron in

e h| = zx riikwlzjk +b,
5 O Ijk
h' h,

h, = ZJC ijkW2zjk + b,

1k

Figure: Andrej Karpathy

3D Activations

2 With 2 output neurons

xr a hidden neuron in

next layer ro r
boo 1= 2 i
1k
r r
h | h 2

> h', = zxrijkwﬁzjk T

1k

32

Figure: Andrej Karpathy

3D Activations

32
xr a hidden neuron Iin
next layer
E hr
5 1

32

Figure: Andrej Karpathy

3D Activations

- depth dimension

>

00000

32

Figure: Andrej Karpathy

3D Activations

We can keep adding

MOore outputs

- depth dimension

>

These form a column

O0000 in the output volume:

[depth x 1 x 1]

32

Figure: Andrej Karpathy

3D Activations

We can keep adding

more outputs

- depth dimension

>

These form a column

O0000 in the output volume:

[depth x 1 x 1]
\I/

39 Fach neuron has its
own 3D filter and
own (scalar) bias

Figure: Andrej Karpathy

3D Activations

Now repeat this
across the input

>

D sets of weights
(also called filters)

Figure: Andrej Karpathy

3D Activations

>

D sets of weights
(also called filters)

Figure: Andrej Karpathy

Now repeat this
across the input

Weight sharing:

Each filter shares
the same weights
(but each depth
iINndex has its own
set of weights)

3D Activations

D sets of weights
(also called filters)

Figure: Andrej Karpathy

3D Activations

With weight

sharing,

this Is called
convolution

>

D sets of weights
(also called filters)

Figure: Andrej Karpathy

3D Activations

>

D sets of weights
(also called filters)

Figure: Andrej Karpathy

With weight

sharing,

this Is called
convolution

Without weight
sharing,

this Is called a
locally
connected layer

3D Activations

0 f one fi . |
Jtputotone fiter one set of weights gives

/ one slice In the output

To get a 3D output of depth D,
use D different filters

In practice, ConvNets use
~many filters (~64 to 1024)

(input (output
depth) depth)

<+

(Input

deptr

)

3D Activations

Qutput of one filter

/

(oL

tput

de

oth)

One set of weights gives
one slice In the output

To get a 3D output of depth D,
use D different filters

In practice, ConvNets use

- many filters (~64 to 1024)

All together, the weights are 4 dimensional:
(output depth, input depth, kernel height, kernel width)

3D Activations

We can unravel the 3D cube and show each layer separately:
(Input)

Activations:

GINSEESENNZITAYREERESESAEIEESRRSR S
one filter = one depth slice (or activation map) (32 fi "[ersj each 3)(5)(5)

....E E'; H ‘ -

Figure: Andrej Karpatny

3D Activations

We can unravel the 3D cube and show each layer separately:

(Input)
. PRCINEERDNEIIANEENESEORENINEERESR S

“ one filter = one depth slice (or activation map) (3 2 f| \terS, eaCh 3)(5)(5)

Acﬂ:

4= \ '
l

- y Ly = I
: |
i N =N N
[ASRR
Bed: AN 7SN

*

Figure: Andrej Karpatny

3D Activations

We can unravel the 3D cube and show each layer separately:

(Input)
. > dihll!ﬂﬂ:lﬂl!lIIBIHHSIHIIEIIBIS

one filter =\gne depth slice (or activation map) (3 2 f| \terS, eaCh 3)(5)(5)

. -\‘

i..lll A A7

- Il"j

Figure: Andrej Karpathy

3D Activations

We can unravel the 3D cube and show each layer separately:
(Input)

’
«

o :Ehlllunn:unnllln:manlauls-luq/il
one filter =\gne depth slice (or activation map) (32 f”’[ers each 3)(5)(5)

%’/

jgure: A ndrej Karpathy

A ConvNet is a sequence of convolutional layers, interspersed with
activation functions (and possibly other layer types)

CONV, CONV, CONV,
RelLU RelLU RelLU

e.q.6 e.q. 10
5x5x3 5x5x6
32 filters 28 filters 24

Convolution Layer

32x32x3 image

32 height

3 depth

Convolution Layer

32x32x3 image

32

32

5x5x3 filter

J

Convolve the filter with the image
I.e. “slide over the image spatially,
computing dot products”

CO nVOI Ution Layer Filters always extend the full

depth of the input volume

32x32x3 image /
ox5x3 filter
32
Convolve the filter with the image

32

I.e. "slide over the image spatially,
computing dot products”

Convolution Layer

_— 32x32x3 Image

5x5x3 filter w
32

~ 1 number:
the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image
32 (i.e. 5*5*3 = 75-dimensional dot product + bias)

’ wlz +b

What will the output size be?

| You will need to make some
Convolution Layer assumptions ...

— 32x32x3 Image
o5x5x3 filter w

~ 1 number:
the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image
32 (i.e. 5*5*3 = 75-dimensional dot product + bias)

’ wlz +b

Convolution Layer

activation map

__— 32x32x3 Image

5x5x3 filter
32

convolve (slide) over all
spatial locations

32

Convolution Layer Consider a second filter ...

_— 32x32x3 image activation maps
- OxOxa3 filter

ii 28
convolve (slide) over all

spatial locations

32 28

What will the output size be if
Convolution Layer we have 6 filters?

_— 32x32x3 image activation maps
_ OxOx3 filter

TI; 28
convolve (slide) over all

spatial locations

‘—""'f

28

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

activation maps

32
28

-

Convolution Layer

32 28
3 6

We stack these up to get a “"new image” of size 28x28x6!

2-dimensional output
Input features A bank of 2 filters feature maps

Convolution: Stride

During convolution, the weights “slide™ along the input to
generate each output

Weights

Output

Input

Convolution: Stride

During convolution, the weights “slide™ along the input to
generate each output

Output

Input

Convolution: Stride

During convolution, the weights “slide™ along the input to
generate each output

Output

Input

Convolution: Stride

During convolution, the weights “slide™ along the input to
generate each output

Output

Input

Convolution: Stride

During convolution, the weights “slide™ along the input to
generate each output

Output

Input

Convolution: Stride

During convolution, the weights “slide™ along the input to
generate each output

Output

Input

Convolution: Stride

During convolution, the weights “slide™ along the input to

generate each output

Input

Recall that at each position,
we are doing a 3D sum:

h' = Zx’"ljkW.. +b

1k
Ik

(channel, row, column)

Convolution: Stride

But we can also convolve with a stride, e.g. stride = 2

Output

Input

Convolution: Stride

But we can also convolve with a stride, e.g. stride = 2

Output

Input

Convolution: Stride

But we can also convolve with a stride, e.g. stride = 2

Output

Input

Convolution: Stride

But we can also convolve with a stride, e.g. stride = 2

Output

- Notice that with certain
strides, we may not be able to
cover all of the input

- The output is also half the
Size of the input

Input

Convolution: Padding

We can also pad the input with zeros.
Here, pad = 1, stride = 2

O101 0101071010

Output

O |1 O | O] O |]O]1O O | O | O
O 1 O | OO]|]O] O |O]|]CO]| O

Input

Convolution: Padding

We can also pad the input with zeros.
Here, pad = 1, stride = 2

O PO O30 O |00

Output

O 1 O | OO]|]O] O |O]|]CO]| O
O 1 O | OO]|]O] O |O]|]CO]| O

Input

Convolution: Padding

We can also pad the input with zeros.
Here, pad = 1, stride = 2

010 (0 pQCFO 0| O

Output

O 1 O | OO]|]O] O |O]|]CO]| O
O 1 O | OO]|]O] O |O]|]CO]| O

Input

Convolution: Padding

We can also pad the input with zeros.
Here, pad = 1, stride = 2

01001010 pQC | 0O

Output

O 1 O | OO]|]O] O |O]|]CO]| O
O |1 O | OO |]O 1O 10O | O | O

Input

Convolution:
How big Is the output?

stride s
« >
O1O1O]1O0O1O1O]lO]101]O0
0| | , 0
0 kernel &k 0
O O 1 In general, the output has size:
. - w. +2p—k [
O Wout T T
| - S —
0
0
O1O1O]1O0O1O1O]JTO]101]O0

p width w._ p

Convolution:

How big Is the output?

stride s

«

010 0101 O 0
0 0
0 kerrnel| & 0
0 0
0 0
0

0

0

010 0101 O 0
28 width w,_ D

Example: k=3, s=1, p=1

- +2p—k
Win T 2P +1
— S -
w. +2—3
1 + 1

= W.

1n

VGGNet [Simonyan 2014]
uses filters of this shape

Feature maps

conv1 (after flrst conv layer)

e Each layer can be thought of as a set of C feature maps aka channels

e Each feature map is an NxM image

Knowledge Check ...

/ /// 128
|%|> Filter Bank with |%|>
3x43 filters
128

3 06

How many parameters does each filter have?

128

@9 ()27 ()96 (d)864

Knowledge Check ...

/ /// 128
|%|> Filter Bank with |%|>
3x43 filters
128

3 06

How many filters are in the bank?

128

(a) 3 (b)27 ()96 (d)can't say

Input image (RGB) Layer 1 feature maps Layer 2 feature maps

[H xW x3] [H/4 x W/4 xC1] [H/8 x W/8 x (3]
“. " -) > .

/) /! H

— "

_ EE E N] o

- T EE E N —

5.5 B i 1: B8
%) - L "'H. 1% » g 1%
S I.- oN f E u . _ E %
: - l | am ® B: | MW

Cq filters > . :‘ . . = n

B B =r 2 ==

E B Ll o

Layer 1 _ _ _

filters L

(4x zoom) C; filters =

N

Layer 2 .

filters 7

(4x zoom) _

Filter

Pooling

Pool

OOQTQOOO

5855068

>
< 00000000

Max pooling
y; = max h;
JEN (J)

Mean pooling

Zh

JGN(J)

Vlax Pooling

Single depth slice

1111 2 | 4
max pool with 2x2 filters
516 |7 |8 and stride 2 6 | 8
3121|110 3 | 4
1121 3| 4
y

What's the backprop rule for max pooling”
- In the forward pass, store the index that took the max
- The backprop gradient is the input gradient at that index

Figure: Andrej Karpathy

Pooling — Why?

Pooling across spatial locations achieves
stability w.r.t. small translations:

>

Pooling — Why?

Pooling across spatial locations achieves
stability w.r.t. small translations:

large response
regardless of exact
position of edge

Pooling — Why?

Pooling across spatial locations achieves
stability w.r.t. small translations:

Pooling across channels — \Why?

Pooling across feature channels (filter outputs)

can achieve other kinds of invariances:

PAANN

!
/
-

\
.

large response
for any edge,
regardless of its
orientation

Pooling vs Downsampling

Computation in a neural net

Cowd £
N2 2
< s 0"
X
— L = =1 = sheron

fx)=fu(...fa(f1(x)))

C
O
m
pu
ta
{
O
o
N a
N
e
u
ral
N
et

&
\Q)
00$06@®Q
— C}@%&*
>,:
\\ h
eron”

f
(x)
= f
L(
. f2(f1(
X))
)

Filter

OOQTQOOO

Downsampling

Pool and downsample

00000000

Filter

OOQTQOOO

Downsampling

Downsample

O

O O O

Dilated Convolutions

Allows increasing the receptive field
of the convolutional layer

Useful for looking at larger spatial
context without looking at every pixel

Transposed Convolution

The transposed convolution a.k.a

- deconvolution layer
- fractionally strided convolution

VS. Dilated Conv

Transposed Conv

1x1 convolution

How Is this not just multiplication?

Multiplications followed by a RELU

activation

9

)

9

%

9

%

Good for dimensionality reduction

efficient storage

%

A
[L L L L L/

I AL L L L[/
X =
[s L L L L L

NT777777
[7777777
[7777777
NT777777
NT7777777<T
& 7777777

ORI R

AW

=

Used in GoogleNet as Inception Layers

Inception architecture

Used in GoogleNet in the ”iifﬁ s

Able to get large layer network by
doing this

. . . . o
Task: Object classification concutmtn
/ 3x3 convolutions 5x5 convolutions 1x1 convolutions
1x1 convolutions & 4 B
1x1 convolutions 1x1 lutio 3x3 max pooling

(b) Inception module with dimension reductions

Example ConvNet

CONV

—

POOL
RelU

—

U

D —>

—

CONV

girplane

ERARAFTEIN
EAEEANYEIN
TFLELET B

BRREMEENENE

HEEFEAATINE
HEATEAAVINE
DAVE B A8 B BV IS
HENEMRANEIEN
Wi A= 1dE IR I |
A EEFEF NN
dACHER RN
UE AP REE R
SEE1'FFEINCEBR

H

Figure: Andrej Karpatny

Example ConvNet

—

CONV POOL
l RelLU

SEWMIFIE AT

eLU
;

R

—IRRRENSYE WD
| 1 E [EEY] [

pdl | E T A B0]
md | E AR LY

CONV POOL CONV
RelLU

RelU
.

— |[HS RSN E NS
— (MBI EENE R
~ NN R
wE NP REBE D
e FE I ' FF I KT
—REATHI IR

CONV POOLCONV
U l RelLU

R

CONV

Figure: Andrej Karpatny

Example ConvNet

(Fully-connected)

ERERANTYE 1K
S FER RS PE

CONV POOL ge
l RelLU l

v

RelLU

—|IRRREREIIENE

— ([HEEFEAAEINE
~ A EAAVINA
S A A8 B0 1YV
-~ HHHEEEENEES
— IHIS RN E NS
— (A HEFEENE R
sl |1 LI e
Wi EHUEPREBE R
ol E FL'FF 7KL
— R ETHIFTRIE Y

H

CONV POOL CONV
RelU

-
=

U

R

RelLU

CONV POOLCONV

RelLU

CONV

Figure: Andrej Karpatny

Example ConvNet

CONV CONV POOLCONV CONV POOL CONV CONV POOL Ec

l RiLU l RiLUl l R(iLU l RiLUl l RFiLU l RiLUl (Fully-connected)
T T .

] BB =R

I RS T -
= o o o < = o -
o o (o e
-] (o o
SN (=S . Lorse
TIHTIRRTCE =S

o T

)T)

10x3x3 conv filters, stride 1, pad 1
2XZ pOO‘ f”terS, stride 2 Figure: Andrej Karpathy

Input image

alexnet

resnetl8

Layer Visualizations

-

e
'.‘:'

-

-d

3
|

Example: AlexNet [Krizhevsky 2012]

convli conv2 conv3 conv4 convs fc6 fc7

class
scores

3 96 256 384 384 256
227x227 55x55 27x27 13x13 13x13 13x13 | 4096 | 4096 1000

conv conv conv conv conv max full

max max full

o $I—| _I_I
Extract high level features Classify

each sample
‘max . max pooling
‘norm’: local response normalization
“Tull”: quy connected Figure: [Karnowski 2015] (with corrections)

Training ConvNets

HOwW dO you actually
train these things”

Roughly speaking:
Gather Find a ConvNet Minimize
labeled data architecture the loss
*ﬁ?‘“i]a_t ST TP TR B ﬁim
JEE e A e v e
ﬂm-“lunnnr. s 8- i pt-++ ==
—L L LLL_LIL Bt
' WiEd _, i
S iTigemeed mm

il T A

g ﬂl&: - -l
mEfsrsRaEn T o
- ETSE UE TI Es -;;(
[ESraE « B 9 m |l S v e

Training a convolutional
neural network

Split and preprocess your data

Choose your network architecture

Initialize the weights

Find a learning rate and regularization strength

Minimize the loss and monitor progress

Fiddle with knobs

Mini-batch Gradient Descent

Loop:

1. Sample a batch of training data (~100 images)
2. Forwards pass: compute loss (avg. over batch)
3. Backwards pass: compute gradient

4. Update all parameters

Note: usually called “stochastic gradient descent” even
though SGD has a batch size of 1

Reqgularization

Regularization reduces overfitting:
| T
L L T L Lreg — /’L_”W||2
2

data

A =0.001 A=0.01

[Andrej Karpathy http.//cs.stanford.edu/people/karpathy/convnetjs/demo/classity2d.html]

Overfitting

Overfitting: modeling noise in the training set instead
of the “true” underlying relationship

Underfitting: insufficiently modeling the relationship in
the training set

15

10

General rule: models that are
‘bigger” or have more capacity
are more likely to overtit

0

-

-10

-15

-6 -4 -2 0 2 4 6

[Image: https://fen. wikipedia.org/wiki/File:Overfitted Data.png]

Summary of things to fiddle

* Network architecture

e |earning rate, decay schedule, update type

* Regularization (L2, L1, maxnorm, dropout, ...)
e Loss function (softmax, SVM, ...)

 Weignht initialization

Neural network
parameters

(Recall) Regularization
reduces overfitting

1
L= Ly + Lig L, =z—||wl|§

data

A =0.001 A =0.01

[Andrej Karpathy http.//cs.stanford.edu/people/karpathy/convnetjs/demo/classity2d.html]

-xample Reqgularizers

Lo
L2 regularization L = ﬂ,—HWH
reg o 2
(L2 regularization encourages small weights)

L1 regularization Lreg = A |W| 1 /12 sz
ij

(L1 regularization encourages sparse weights:
weights are encouraged to reduce to exactly zero)

“Elastic net” Lreg = /11 | |W| |1 T /12 | |W| E

(combine L1 and L2 regularization)

Max norm
Clamp weights to some max norm

Wl <c

“Weight decay”

Regularization is also called “weight decay” because
the weights “decay” each iteration:

| I oL
L. =A-|Wf — =—==aw
reg 2” | 2 aW
Gradient descent step: N7
W W — AW — —2=

- oW

Weight decay: g4 {weights always decay by this amount)

Note: biases are sometimes excluded from regularization

[Andre| Karpathy http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html]

Dropout

Simple but powerful technique to reduce overfitting:

W PW
Present with Always
probability p present
(a) At training time (b) At test time

[Srivasta et al, “Dropout: A Simple Way to Prevent Neural Networks from
Overfitting”, JIMLR 2014]

Dropout

Simple but powerful technique to reduce overfitting:

\Ne7

&
7\

[

Note:

.

]
;l
{
a
*
\

Y

Vv
X

\7

\
X

\/
0
7AY "‘
i

\/

a) Standard Neural Net

.

Y

&
NA/S

‘“‘
Y2 ’

‘6

<
\\/
\
AN
XX

‘Q
=’
':‘: \
2

v

/
{ Y/
\
O

4 X8
L L

\

q
el
A }:‘1
R
\

W
and

\TA

3,
X

/

0
4

)\

/]
17/

Dropout can be interpreted as an app

(b) After applying dropout.

roximation to takl

geometric mean o

“an ensemble of exponen

lally many mode

ng the

S

[Srivasta et al, “Dropout: A Simple Way to Prevent Neural Networks from
Overfitting”, JIMLR 2014]

Case study: [Krizhevsky 2012]

Dropout

“‘Without dropout, our network exhibits
substantial overfitting.”

. Stricle
“of 4

25

48

Max
pooling

[Krizhevsky et al, “ImageNet Classification with Deep Convolutiona
Neural Networks”, NIPS 2012]

Dropout here

l

l

i : i j- . II".,‘ - f 3
| '.! b .1 3' ; L 3"
{\ d “J 3
\ 192 192 128 2048 \ / 20as \dense
27 128 —_—
N A\ \13 k 13
- - . | ",_. 11)
IR ENEA 3
! ¥ 3 13 A i kt | — J b » R
k7 3t ~} 3| \ 137 13 dense dense
J \\i 1000
192 192 128 Max
» 2048
128 Max pooling 2048
pooling

T

But not here — why?

summary

Preprocess the data (subtract mean, sub-crops)
Initialize weights carefully

Use Dropout

Use SGD + Momentum

Fine-tune from ImageNet

Babysit the network as it trains

Common Architectures

VGG 224 X 224 x 3 224 x 224 X 64

* Simonyan and Zisserman, /‘mm
“Very Deep Convolutional /7805 v 7 v X7 x512
-----). 114x14x512 44 1x4096 1x1x 1000
Networks for Large-Scale [l =
Image Recognition” /
) convolution+ReLU
) max pooling
fully nected+RelU
e Used to be very common o
(before ResNets)
VGG-16
| N - N (N M [N m - N|(m -
g (442 AR b D42 BbAbD 888 s
2225 225 2225 2223 2225 55802
= 11885 (8185 388/F 888 388c 288 S

ResNet

He, Kaiming; Zhang, Xiangyu; Ren, Shaoqing;
Sun, Jian (2016). "Deep Residual Learning for
Image Recognition" (PDF). Proc. Computer

Vision and Pattern Recognition (CVPR), IEEE.

Deep networks with more layers does not always
mean better performance (vanishing gradient
problem)

Residual blocks = has skip connections

Skipped layers train faster at the beginning, then
later are filled out

34-layer plain

iiiii

] P
gl.15
3 =
- =

—

3x3 conv, 128

-

3x3 conv, 128

o

3x3 conw, 128

-

3x3 conv, 128

[¥5)

a8
- S

=

[y

(=]

33333333333

3333333333

3x3 canv, 256

Ax3 conv, 256

3333333333

3333333333

3333333333

]
<«

3x3 conv, 256

-

3x3 conv, 256

el

I3 conw, 512, /2

-

323 conw, 512

b [P}
8l.l8
'I'él-i-gi-
LA (%]

SSSSSSSSSSS

33333333333

34-layer residual

weight layer

F(x) lrelu

weight layer

X
identity

http://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
http://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf

Autoencoder

* Can be done with either fully connected
or convolutional layers

* |dea is to reduce the input to a bottleneck
or latent code, then reconstruct it again

 Sometimes can be used to train a feature
extractor by enforcing the output =
input, and then use the first part of the
network as a feature extractor

U-Net

 Common architecture for image
reconstruction tasks

* Features skip connections and
transposed convolutions (up-conv)

Input DEM 1 495 195

2562 =~

L::

224 112112 1_ Predicted Mask

4::- f
Ty

256¢

112 224 224 448 112 112

128°

224 448 896 224 iid

|~|1 |+|

Conv 3x3, RelLU
MaxPool 2x2

Up-conv 2x2

Dropout, then
conv 3x3, RelLU

v

Copy

y

Conv 1x1, sigmoid

Encoder

B

B

orduresqng

AJLIeUI[UON

UOTIN[OAUO))

Decoder

B

orduwresdn

B

Image-to-image

Skip connection >

v

1.
Non-linearity
Vo
W
Vo
Vi
W

Subsample

conv

=

Image-to-image

relu

Yy v vy vy y vy v vo.©y

conv softmax

=

Yy vy Yy Yy Yy vy v vy

U-net

— — —> —
— —> —> —
— — — —

Skip connection /

Convolutions In time

@l®1 JOlo) I 1) JOl) 10000

éOCOQOOOQOOOQQOOQ

time

	Lecture 4��Convolutional Neural Networks
	Slide Number 12
	Slide Number 13
	Before Deep Learning
	Recall: Tumor Classification
	Before Deep Learning
	Convolutional	Neural	Networks
	Prerequisite: ��What is a convolution?
	 �Convolution
	Convolution for 1D discrete signals
	1D Convolution. Example
	Slide Number 22
	1D Convolution. Example
	Convolution for 2D discrete signals
	Convolution for 2D discrete signals
	An image is a matrix of pixels
	Point Processing vs Image Filtering
	Slide Number 28
	Point Processing vs Image Filtering
	Image Filtering�is�Convolution
	Image Convolution Examples
	Image Convolution Examples
	Image Convolution Examples
	Image Convolution Examples
	Image Convolution Examples
	Image Convolution Examples
	Image Convolution Examples
	Image Convolution Examples
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Practice with linear filters
	Practice with linear filters
	Practice with linear filters
	Practice with linear filters
	Practice with linear filters
	Practice with linear filters
	Sharpening
	Ok now we know what a Convolution is.��Next:�Convolutional Neural Networks
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	What’s the object class of the center pixel?
	Slide Number 65
	Slide Number 66
	Slide Number 67
	W computes a weighted sum of all pixels in the patch
	Convolution
	Fully-connected network
	Locally connected network
	Convolutional neural network
	Weight sharing
	(Fully-connected) linear layer
	Convolutional layer
	Slide Number 76
	Slide Number 77
	Conv layers can be applied to arbitrarily-sized inputs (generalizes beyond the training data due to an architectural structure!)
	Five	views	on	convolutional	layers
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Feb 12, 2025
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Slide Number 98
	Slide Number 99
	Slide Number 100
	Slide Number 101
	Slide Number 102
	Slide Number 103
	Slide Number 104
	Slide Number 105
	Slide Number 106
	Slide Number 107
	Slide Number 108
	Slide Number 109
	Slide Number 110
	Slide Number 111
	Slide Number 112
	Slide Number 113
	Slide Number 114
	Slide Number 115
	Slide Number 116
	Slide Number 117
	Slide Number 118
	Slide Number 119
	Slide Number 120
	2-dimensional output
feature maps
	Slide Number 123
	Slide Number 124
	Slide Number 125
	Slide Number 126
	Slide Number 127
	Slide Number 128
	Slide Number 129
	Slide Number 130
	Slide Number 131
	Slide Number 132
	Slide Number 133
	Slide Number 134
	Slide Number 135
	Slide Number 136
	Slide Number 137
	Slide Number 138
	Slide Number 139
	Feature maps
	Knowledge Check …
	Knowledge Check …
	Layer 1 feature maps
	Pooling
	Slide Number 145
	Pooling — Why?
	Pooling — Why?
	Pooling — Why?
	Pooling across channels — Why?
	Pooling vs Downsampling
	Computation in a neural net
	Computation in a neural net
	Downsampling
	Downsampling
	Dilated Convolutions
	Transposed Convolution
	Transposed Conv			vs.			Dilated Conv
	1x1 convolution
	Used in GoogleNet as Inception Layers
	Slide Number 161
	Slide Number 162
	Slide Number 163
	Slide Number 164
	Slide Number 165
	Layer Visualizations
	Slide Number 167
	Training ConvNets
	Slide Number 169
	Slide Number 170
	Slide Number 171
	Slide Number 172
	Slide Number 173
	Slide Number 174
	Slide Number 175
	Slide Number 176
	Slide Number 177
	Slide Number 178
	Slide Number 179
	Slide Number 180
	Slide Number 181
	Common Architectures
	VGG
	ResNet
	Autoencoder
	U-Net
	Encoder
	Image-to-image
	Image-to-image
	U-net
	Convolutions	in	time
	Slide Number 192

