tejasgokhale.com

CMSC 475/675 Neural Networks

Lecture 3: Gradient Descent

Some slides adapted from Suren Jayasuriya (ASU), Matt Gormley (CMU)

Recap: Linear Regression

Q: What is the function that best fits these points?

Recap: Linear Regression

Q: What is the function that best fits these points?

x, # of mountains

Naïve Idea:

Linear Regression by Random Guessing

!!!

Linear Regression by Rand. Guessing

Optimization Method #0: Random Guessing

- Pick a random $\boldsymbol{\theta}$ 1.
- Evaluate J(**θ**) 2.
- Repeat steps 1 and 2 many 3. times
- Return **\theta** that gives 4. smallest $J(\theta)$

For Linear Regression:

- target function h*(x) is **unknown**
- only have access to h*(x) through training examples (x⁽ⁱ⁾,y⁽ⁱ⁾)
- want h(x; $\theta^{(t)}$) that best • **approximates** h*(x)
- enable generalization w/inductive • bias that restricts hypothesis class to linear functions

- 1.
- times
- 4. smallest $J(\theta)$

0.9

4

- Better Idea:
- An optimization algorithm called
 - "Gradient Descent"

Recall: Gradient of a vector

Def: The gradient of $J : \mathbb{R}^M \to \mathbb{R}$ is

Each entry is a first-order partial derivative

Topographical Maps

Gradients

0.200 In this picture, each arrow is a 2D vector consisting of two partial derivatives. $\frac{\partial J}{\partial \theta_1}$ 0.200 $\nabla J(\theta_1, \theta_2) =$ $\frac{\partial J}{\partial \theta_2}$. The vector is evaluated at the point $[\theta_1, \theta_2]^T$ and plotted with its origin there as well. 000 1,200 0.6 8.0 1.0 θ_1

These are the gradients that Gradient **Ascent** would follow.

These are the **negative** gradients that Gradient **Descent** would follow.

0.20 In this picture, each arrow is a 2D vector consisting of two partial derivatives. $-\frac{\partial J}{\partial \theta_1}$ $-\nabla J(\theta_1,\theta_2) =$ $-\frac{\partial J}{\partial J}$ The vector is evaluated at the point $[\theta_1, \theta_2]^T$ and plotted with its origin there as well. ·000. * 204 0.6 0.8 1.0 θ_1

• Go down the path of "steepest descent"

• Go down the path of steepest descent

Alg	gorithm 1 Gradi
1:	procedure GD(
2:	$oldsymbol{ heta} \leftarrow oldsymbol{ heta}^{(0)}$
3:	while not con
4:	$oldsymbol{ heta} \leftarrow oldsymbol{ heta} - \gamma$
5:	$\mathbf{return}\ \boldsymbol{ heta}$

In order to apply GD to Linear Regression all we need is the **gradient** of the objective function (i.e. vector of partial derivatives).

• Go down the path of steepest descent

Alg	gorithm 1 Gradie
1:	procedure GD(
2:	$oldsymbol{ heta} \leftarrow oldsymbol{ heta}^{(0)}$
3:	while not cor
4:	$oldsymbol{ heta} \leftarrow oldsymbol{ heta} - \gamma$
5:	return $ heta$

There are many possible ways to detect **convergence**. For example, we could check whether the L2 norm of the gradient is below some small tolerance.

 $\nabla_{\boldsymbol{\theta}} J(\boldsymbol{u})$ Alternatively we could check that the reduction in the

$$\boldsymbol{\theta})||_2 \leq \epsilon$$

objective function from one iteration to the next is small.

Optimization Method #1: Gradient Descent

- Pick a random $\boldsymbol{\theta}$ 1.
- Repeat: 2.
 - a. Evaluate gradient $\nabla J(\boldsymbol{\theta})$ b. Step opposite gradient
- Return **\theta** that gives 3. smallest J(**θ**)

t	θ	θ_2	$J(\theta_1, \theta_2)$
1	0.01	0.02	25.2
2	0.30	0.12	8.7
3	0.51	0.30	1.5
4	0.59	0.43	0.2

- 1.
- - b. Step opposite gradient
- Return $\boldsymbol{\theta}$ that gives 3. smallest $J(\theta)$

t	θ_1	θ_2	$J(\theta_1, \theta_2)$
1	0.01	0.02	25.2
2	0.30	0.12	8.7
3	0.51	0.30	1.5
4	0.59	0.43	0.2

t	θ_1	θ_2	$J(\theta_1, \theta_2)$
1	0.01	0.02	25.2
2	0.30	0.12	8.7
3	0.51	0.30	1.5
4	0.59	0.43	0.2

- For each example sample $\{x_i, y_i\}$
 - 1. Predict
 - a. Forward pass
 - b. Compute Loss
 - 2. Update
 - a. Back Propagation

b. Gradient update

$$\hat{y} = f_{\mathrm{MLP}}(x_i;\theta)$$

 \mathcal{L}_i

 $\partial \mathcal{L}$ $\frac{\partial \theta}{\partial \theta}$

vector of parameter partial derivatives

$$\theta \leftarrow \theta - \eta \frac{\partial \mathcal{L}}{\partial \theta}$$

vector of parameter update equations

GD for LR: Python Step-by-Step Example

 <u>https://colab.research.google.com/drive/</u> 17dK6cynECzk2ObyCqDk5gKcUyN1kMj SR?usp=sharing

Learning rates

negative gradient direction

$$\theta \leftarrow \theta - \eta \frac{\partial \mathcal{L}}{\partial \theta}$$

Step size: learning rate Too big: will miss the minimum Too small: slow convergence

Another way to draw it...

(2) suppress the bias term (less clutter)

$$a = \sum_i w_i x_i$$
 $y = f(a)$

 $x_N = 1$ $w_N = b$

Programming the 'forward pass'

Activation function (sigmoid, logistic function)

Neural networks

Connect a bunch of perceptrons together ...

a collection of connected perceptrons

a collection of connected perceptrons

a collection of connected perceptrons

'one perceptron'

a collection of connected perceptrons

'two perceptrons'

a collection of connected perceptrons

'three perceptrons'

a collection of connected perceptrons

'four perceptrons'

a collection of connected perceptrons

'five perceptrons'

a collection of connected perceptrons

'six perceptrons'

Some terminology...

'input' layer

...also called a Multi-layer Perceptron (MLP)

Some terminology...

...also called a Multi-layer Perceptron (MLP)

Some terminology...

'input' layer

'hidden' layer

...also called a Multi-layer Perceptron (MLP)

all pairwise neurons between layers are connected

all pairwise neurons between layers are connected

How many weights (edges)?

How many learnable parameters total?

How many weights (edges)?

How many learnable parameters total?

4 + 2 = 6

How many weights (edges)?

How many learnable parameters total?

4 + 2 = 6

$(3 \times 4) + (4 \times 2) = 20$

How many weights (edges)?

How many learnable parameters total?

ons)? 4 + 2 = 6

$(3 \times 4) + (4 \times 2) = 20$

20 + 4 + 2 = 26

bias terms

Single Output Neural Networl Let's write the equation

Objective Functions for NNs

1. Quadratic Loss:

- the same objective as Linear Regression
- i.e. mean squared error

$$J = \ell_Q(y, y^{(i)}) = \frac{1}{2}(y - y^{(i)})^2$$
$$\frac{dJ}{dy} = y - y^{(i)}$$

- 2. Binary Cross-Entropy:
 - the same objective as Binary Logistic Regression
 - i.e. negative log likelihood
 - This requires our output y to be a probability in [0,1]

$$J = \ell_{CE}(y, y^{(i)}) = -(y^{(i)} \log(y) + (1))$$
$$\frac{dJ}{dy} = -\left(y^{(i)} \frac{1}{y} + (1 - y^{(i)}) \frac{1}{y - 1}\right)$$

Objective Functions for NNs

Cross-entropy vs. Quadratic loss

Figure 5: Cross entropy (black, surface on top) and quadratic (red, bottom surface) cost as a function of two weights (one at each layer) of a network with two layers, W_1 respectively on the first layer and W_2 on the second, output layer.

Figure from Glorot & Bentio (2010)

Training

Forward-Computation

Case 2: Neural Network

		Forward	Backward
$a_{11} a_{12} a_{12} a_{13} a_{13}$	Loss	$J = y^* \log y + (1 - y^*) \log(1 - y)$	$g_y = \frac{y^*}{y} + \frac{(1-y^*)}{y-1}$
x ₁ x ₂ x ₁	Sigmoid	$y = \frac{1}{1 + \exp(-b)}$	$g_b = g_y \frac{\partial y}{\partial b}, \ \frac{\partial y}{\partial b} = \frac{\exp(-b)}{(\exp(-b) + 1)^2}$
	Linear	$b = \sum_{j=0}^{D} \beta_j z_j$	$\begin{split} g_{\beta_j} &= g_b \frac{\partial b}{\partial \beta_j}, \ \frac{\partial b}{\partial \beta_j} = z_j \\ g_{z_j} &= g_b \frac{\partial b}{\partial z_j}, \ \frac{\partial b}{\partial z_j} = \beta_j \end{split}$
	Sigmoid	$z_j = \frac{1}{1 + \exp(-a_j)}$	$g_{a_j} = g_{z_j} \frac{\partial z_j}{\partial a_j}, \ \frac{\partial z_j}{\partial a_j} = \frac{\exp(-a_j)}{(\exp(-a_j)+1)^2}$
	Linear	$a_j = \sum_{i=0}^M \alpha_{ji} x_i$	$g_{\alpha_{ji}} = g_{a_j} \frac{\partial a_j}{\partial \alpha_{ji}}, \ \frac{\partial a_j}{\partial \alpha_{ji}} = x_i$ $g_{x_i} = \sum_{j=0}^{D} g_{a_j} \frac{\partial a_j}{\partial x_i}, \ \frac{\partial a_j}{\partial x_i} = \alpha_{ji}$

Backpropagation

Backward
$$og(1-y)$$
 $g_y = \frac{y^*}{y} + \frac{(1-y^*)}{y-1}$ $g_b = g_y \frac{\partial y}{\partial b}, \frac{\partial y}{\partial b} = \frac{\exp(-b)}{(\exp(-b)+1)^2}$ $g_{\beta_j} = g_b \frac{\partial b}{\partial \beta_j}, \frac{\partial b}{\partial \beta_j} = z_j$ $g_{z_j} = g_b \frac{\partial b}{\partial z_j}, \frac{\partial b}{\partial z_j} = \beta_j$ $g_{a_j} = g_{z_j} \frac{\partial z_j}{\partial a_j}, \frac{\partial z_j}{\partial a_j} = \frac{\exp(-a_j)}{(\exp(-a_j)+1)^2}$ $g_{\alpha_{ji}} = g_{a_j} \frac{\partial a_j}{\partial \alpha_{ji}}, \frac{\partial a_j}{\partial \alpha_{ji}} = x_i$ $g_{x_i} = \sum_{j=0}^D g_{a_j} \frac{\partial a_j}{\partial x_i}, \frac{\partial a_j}{\partial x_i} = \alpha_{ji}$

Multi-class Output

 $\beta_0 \in \mathbb{R}$ $\boldsymbol{\alpha}^{(2)} \in \mathbb{R}^{M \times D_2}$ $\boldsymbol{b}^{(2)} \in \mathbb{R}^{D_2}$ $\boldsymbol{\alpha}^{(1)} \in \mathbb{R}^{M \times D_1}$ $\boldsymbol{h}^{(1)} \in \mathbb{R}^{D_1}$

Two-Layer NN: How do we train this model?

 $\boldsymbol{\beta} \in \mathbb{R}^{D_2}$

 $y = \sigma((\boldsymbol{\beta})^T \boldsymbol{z}^{(2)} + \beta_0)$ $\boldsymbol{z}^{(2)} = \sigma((\boldsymbol{\alpha}^{(2)})^T \boldsymbol{z}^{(1)} + \boldsymbol{b}^{(2)})$ $z^{(1)} = \sigma((\alpha^{(1)})^T x + b^{(1)})$