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Lecture 2: Neural Networks
CMSC 475/675 Neural Networks

Some slides from Suren Jayasuriya (ASU), Phillip Isola (MIT)
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Goal: Non-linear decision boundary
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A brief history of Neural Networks

time

enthusiasm



http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.335.3398&rep=rep1&type=pdf

Perceptrons, 1958

http://www.ecse.rpi.edu/homepages/nagy/PDF_chrono/
2011_Nagy_Pace_FR.pdf. Photo by George Nagy

Rosenblatt

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.335.3398&rep=rep1&type=pdf
http://www.ecse.rpi.edu/homepages/nagy/PDF_chrono/


time

enthusiasm

Perceptrons, 
1958



Minsky and Papert, Perceptrons, 1972
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Parallel Distributed Processing (PDP), 1986



XOR problem

Inputs Output

0 0 0
1 0 1
0 1 1
1 1 0

0 1

PDP authors pointed to the backpropagation algorithm
as a breakthrough, allowing multi-layer neural networks to be 
trained. Among the functions that a multi-layer network can 
represent but a single-layer network cannot: the XOR function.

0
1
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LeCun convolutional neural networks

Demos: 
http://yann.lecun.com/exdb/lenet/index.html

Source: Isola, Torralba, Freeman

http://yann.lecun.com/exdb/lenet/index.html


Yann LeCun

Was at Bell Labs when 
this video was recorded

Now 
Prof @ NYU

Chief Scientist @ Meta

Turing Award 2018
(shared with Hinton and 

Bengio)



Neural Information Processing Systems 2000

• Neural Information Processing Systems is the premier conference on machine 
learning.  

• Evolved from an interdisciplinary conference to a machine learning 
conference.

• For the 2000 conference:
o title words predictive of paper acceptance: “Belief Propagation” and “Gaussian”.

o title words predictive of paper rejection:  “Neural” and “Network”.
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AI winter, 
2000



ImageNet: 
First (?) large-scale computer vision dataset

• Millions of images; 1000 categories
• PI: Fei-Fei Li

• Then: Prof, Princeton
• Now: Prof, Stanford

• 2019 Longuet-Higgins Prize
• Some argued that Li deserved 

the 2018 Turing Award along with 
Hinton, LeCun, Bengio

• Their work could not have been 
empirically tested without ImageNet!



Krizhevsky, Sutskever, and Hinton, NeurIPS 2012 

“AlexNet”

Got all the “pieces” right, e.g.,
• Trained on ImageNet
• 8 layer architecture (for reference: today we have architectures with 100+ layers)
• Allowed for multi-GP training



Krizhevsky, Sutskever, and Hinton, NeurIPS 2012
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What comes next?

Perceptrons, 
1958

Minsky and Papert, 
1972

PDP book, 
1986

AI winter, 
2000 time

enthusiasm

28 years 28 years

Krizhevsky, 
Sutskever, 
Hinton, 2012

2028 ?



[Serre, 2014]

Inspiration: Hierarchical Representations

Source: Isola, Torralba, Freeman

Best to treat as inspiration.

The neural nets we’ll talk about
aren’t very biologically plausible.



Object recognition

Is dog?
Neural Network

Pixel 1

Pixel 2

Dog

Not dog

Pixel 1

Pi
xe

l2

Input Space

Fur

Pa
w

Feature Space

Goal: automatically learn a function that maps data from the input space to a 
feature space, i.e., "feature learning”, rather than use hand-crafted features

f(x)



Parametric Approach

Image

f(x,W) 10 numbers giving 
class scores

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 -

28 April 6, 2023

Array of 32x32x3 numbers 
(3072 numbers total) W

parameters
or weights



Parametric Approach: Linear Classifier
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Image

W
parameters
or weights

10 numbers giving 
class scores

Array of 32x32x3 numbers 
(3072 numbers total)

f(x,W) = Wx
10x1 10x3072

f(x,W)

Parametric Approach: Linear Classifier
3072x1

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 -

30 April 6, 2023



Image

W
parameters
or weights

10 numbers giving 
class scores

Array of 32x32x3 numbers 
(3072 numbers total)

f(x,W) = Wx + b

Parametric Approach: Linear Classifier
3072x1

10x1 10x3072
f(x,W)

10x1

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 -

31 April 6, 2023



Computation in a neural net
Let’s say we have some 1D input that we want to convert to some new feature space:

Linear layer

Output 
representation

𝑤𝑤𝑖𝑖j

𝑦𝑦j

Input 
representation

𝑥𝑥𝑖𝑖 𝑦𝑦j  = ∑𝑖𝑖 𝑤𝑤𝑖𝑖j𝑥𝑥𝑖𝑖 

weights

Adapted from: Isola, Torralba, Freeman

Neuron (a.k.a unit)



Computation in a neural net
Let's say wehave some 1D input that we want to convert to some new feature space

Linear layer

Output 
representation

𝑤𝑤𝑖𝑖j

𝑦𝑦j

Input 
representation

𝑥𝑥𝑖𝑖

weights

𝑦𝑦j  = ∑𝑖𝑖 𝑤𝑤𝑖𝑖j𝑥𝑥𝑖𝑖+ 𝑏𝑏j

bias

𝑏𝑏j

Adapted from: Isola, Torralba, Freeman



Example: Linear Regression

Input 
representation

Output 
representation

Linear layer

𝑥𝑥 𝑤𝑤 𝑦𝑦

𝑏𝑏

Adapted from: Isola, Torralba, Freeman

3
8



Computation in a neural net – Full Layer

Input 
representation

Output 
representation

Linear layer

𝑥𝑥 𝑤𝑤j

𝑦𝑦j𝑏𝑏j

𝑦𝑦1
𝑦𝑦2
𝑦𝑦3

…

𝑦𝑦 = 𝑊𝑊𝑥𝑥 + 𝑏𝑏

𝑤𝑤11 ⋯ 𝑤𝑤1𝑛𝑛
⋮ ⋱ ⋮
𝑤𝑤j1 ⋯ 𝑤𝑤j𝑛𝑛

𝑦𝑦
parameters of the model:𝜽𝜽 = {𝑾𝑾,𝒃𝒃}

𝑥𝑥1
𝑥𝑥2…
𝑥𝑥𝑛𝑛

𝑏𝑏1

+ 𝑏𝑏2…
𝑏𝑏j

=

𝑦𝑦1

Adapted from: Isola, Torralba, Freeman

3
9

𝑦𝑦2…
𝑦𝑦j



Computation in a neural net – Full Layer

Input 
representation

Output 
representation

Linear layer Full layer

𝑥𝑥 𝑤𝑤j

𝑦𝑦j𝑏𝑏j

𝑦𝑦1
𝑦𝑦2
𝑦𝑦3

…

𝑦𝑦 = 𝑊𝑊𝑥𝑥 + 𝑏𝑏
𝑤𝑤11 ⋯
⋮ ⋱ ⋮
𝑤𝑤j1 ⋯

𝑤𝑤j𝑛𝑛 𝑏𝑏1
⋮

𝑤𝑤j𝑛𝑛 𝑏𝑏j

𝑦𝑦

𝑥𝑥1
𝑥𝑥…2
𝑥𝑥𝑛𝑛
1

=

𝑦𝑦

Adapted from: Isola, Torralba, Freeman

4
0

1
𝑦𝑦2…
𝑦𝑦j

Can again simplify notation by 
appending a 1 to 𝐱𝐱



Input 
representation

Output 
representation

Connectivity patterns

Fully connected layer Locally connected layer 
(Sparse W)

Input 
representation

Output 
representation



Computation in a neural net – Recap

41

Input 
representation

Output 
representation

𝑥𝑥 𝑦𝑦

We can now transform our input representation vector into some output 
representation vector using a bunch of linear combinations of the input:

𝑧𝑧 We can repeat this as 
many times as we want!



What is the problem with this idea?

𝐖𝐖1𝐱𝐱 𝐖𝐖2𝐖𝐖1𝐱𝐱 𝐖𝐖3𝐖𝐖2𝐖𝐖1𝐱𝐱𝐱𝐱



What is the problem with this idea?

𝐖𝐖1𝐱𝐱 𝐖𝐖2𝐖𝐖1𝐱𝐱 𝐖𝐖3𝐖𝐖2𝐖𝐖1𝐱𝐱𝐱𝐱

Can be expressed as single linear layer!

�𝑾𝑾𝒙𝒙
Limited power: can’t solve XOR  



Pointwise 
Non-linearity

Solution: simple nonlinearity

Input 
representation

Output 
representation

Linear layer

𝑥𝑥 𝑤𝑤j

𝑏𝑏j 𝑦𝑦 𝑔𝑔(𝑦𝑦)



The Perceptron





Example: linear classification with a perceptron

Source: Isola, Torralba, Freeman



Example: linear classification with a perceptron



Example: linear classification with a perceptron

“when y is greater than 0, set all 
pixel values to 1 (green), 
otherwise, set all pixel values to 0 
(red)”



Example: linear classification with a perceptron

“when y is greater than 0, set all 
pixel values to 1 (green), otherwise,
set all pixel values to 0 (red)”



Computation in a neural net - nonlinearity

Input 
representation

Linear layer

𝑥𝑥 𝑤𝑤j

𝑏𝑏j 𝑦𝑦 𝑔𝑔(𝑦𝑦)

𝛛𝛛
Can’t use with gradient descent, 𝛛𝛛𝑦𝑦 𝑔𝑔 = 0

Output 
representation



Computation in a neural net - nonlinearity

Input 
representation

Linear layer

𝑥𝑥 𝑤𝑤j

𝑏𝑏j 𝑦𝑦 𝑔𝑔(𝑦𝑦)

Sigmoid

Output 
representation



Sigmoid• Bounded between [0,1]

• Saturation for large +/- inputs

• Gradients go to zero

Computation in a neural net - nonlinearity



Rectified linear unit (ReLU)• Unbounded output (on positive side)

• Efficient to implement:

• Also seems to help convergence (6x 
speedup vs. tanh in [Krizhevsky et al. 
2012])

• Drawback: if strongly in negative 
region, unit is dead forever (no gradient).

• Default choice: widely used in current 
models!

Computation in a neural net — nonlinearity



Leaky ReLU• where α is small (e.g.,
0.02)

• Efficient to implement:

• Has non-zero gradients
everywhere (unlike ReLU)

Computation in a neural net — nonlinearity





Output 
representation

Intermediate 
representation

Input 
representation

Stacking layers

𝐡𝐡 = “hidden units”



Input 
representation

Stacking layers

Output 
representation

𝑾𝑾2

𝜃𝜃 = {𝑾𝑾1, … ,𝑾𝑾𝐿𝐿, 𝒃𝒃1, … ,𝒃𝒃𝐿𝐿}
Source: Isola, Torralba, Freeman

ReLU

𝒃𝒃1

𝒉𝒉 = 𝑔𝑔(𝑾𝑾1𝒙𝒙 + 𝒃𝒃1)
𝒃𝒃2

𝒚𝒚 = 𝑔𝑔(𝑾𝑾2𝒉𝒉 + 𝒃𝒃2)

Intermediate 
representation

𝒉𝒉

𝒙𝒙

𝑾𝑾1

𝒚𝒚



Input 
representation

Stacking layers

Output 
representation

𝑾𝑾2

𝜃𝜃 = {𝑾𝑾1, … ,𝑾𝑾𝐿𝐿, 𝒃𝒃1, … ,𝒃𝒃𝐿𝐿}ReLU

𝒃𝒃1

𝒉𝒉 = 𝑔𝑔(𝑾𝑾1𝒙𝒙 + 𝒃𝒃1)
𝒃𝒃2

𝒚𝒚 = 𝑔𝑔(𝑾𝑾2𝒉𝒉 + 𝒃𝒃2)

Intermediate 
representation

𝒉𝒉

𝒙𝒙

𝑾𝑾1

𝒚𝒚 positive

negative



Input 
representation

Stacking layers

Output 
representation

𝑾𝑾2

positive

negative

𝜃𝜃 = {𝑾𝑾1, … ,𝑾𝑾𝐿𝐿, 𝒃𝒃1, … ,𝒃𝒃𝐿𝐿}
Source: Isola, Torralba, Freeman

ReLU

𝒃𝒃1

𝒉𝒉 = 𝑔𝑔(𝑾𝑾1𝒙𝒙 + 𝒃𝒃1)
𝒃𝒃2

𝒚𝒚 = 𝑔𝑔(𝑾𝑾2𝒉𝒉 + 𝒃𝒃2)

Intermediate 
representation

𝒉𝒉

𝒙𝒙

𝑾𝑾1

𝒚𝒚



Input 
representation

Stacking layers

Output 
representation

𝑾𝑾2

positive

negative

ReLU

𝒃𝒃1

𝒉𝒉 = 𝑔𝑔(𝑾𝑾1𝒙𝒙 + 𝒃𝒃1)
𝒃𝒃2

𝒚𝒚 = 𝑔𝑔(𝑾𝑾2𝒉𝒉 + 𝒃𝒃2)

Intermediate 
representation

𝒉𝒉

𝜃𝜃 = {𝑾𝑾1, … ,𝑾𝑾𝐿𝐿, 𝒃𝒃1, … ,𝒃𝒃𝐿𝐿}

𝒙𝒙

𝑾𝑾1

𝒚𝒚



Input 
representation

Stacking
layers

Output 
representation

𝑾𝑾2

Intermediate 
representation

𝒉𝒉
positive

negative
𝒙𝒙

𝒃𝒃1

𝒉𝒉 = 𝑔𝑔(𝑾𝑾1𝒙𝒙 + 𝒃𝒃1)
𝒃𝒃2

𝒚𝒚 = 𝑔𝑔(𝑾𝑾2𝒉𝒉 + 𝒃𝒃2)
𝜃𝜃 = {𝑾𝑾1, … ,𝑾𝑾𝐿𝐿, 𝒃𝒃1, … ,𝒃𝒃𝐿𝐿}ReLU

𝑾𝑾1

𝒚𝒚



Input 
representation

Stacking layers

Output 
representation

𝑾𝑾2

Intermediate 
representation

𝒉𝒉
positive

negative
𝒙𝒙

𝒃𝒃1

𝒉𝒉 = 𝑔𝑔(𝑾𝑾1𝒙𝒙 + 𝒃𝒃1)
𝒃𝒃2

𝒚𝒚 = 𝑔𝑔(𝑾𝑾2𝒉𝒉 + 𝒃𝒃2)
ReLU

𝑾𝑾1

𝒚𝒚

𝜃𝜃 = {𝑾𝑾1, … ,𝑾𝑾𝐿𝐿, 𝒃𝒃1, … ,𝒃𝒃𝐿𝐿}



Stacking layers - What’s actually happening?

Low level features: 
e.g., edge, texture, …

higher level features: 
e.g., shape

even higher level features: 
e.g., “paw”, “fur”



“dog”…

Deep nets

= 𝑓𝑓𝐿𝐿( …𝑓𝑓3(𝑓𝑓2(𝑓𝑓1(𝑥𝑥)))𝑓𝑓 𝑥𝑥
Source: Isola, Torralba, Freeman

6
5



“dog”…

Deep nets - Intuition

“has horizontal edge” 
“has vertical edge”

Source: Isola, Torralba, Freeman

6
6



“dog”…

Deep nets - Intuition

“has rounded edge”

Source: Isola, Torralba, Freeman

6
7



…

Deep nets - Intuition
“has white fur” 

“has paw”
etc

How do we 
make a 

classification?

“dog”

Source: Isola, Torralba, Freeman

6
8



“dog”…

Deep nets - Intuition
“has white fur” 

“has paw”
etc

Classify

Fur

Source: Isola, Torralba, Freeman

6
9

Pa
w

Recall:
Feature Space



Computation has a simple form

• Composition of linear functions with nonlinearities in between

• E.g. matrix multiplications with ReLU, 𝑚𝑚𝑎𝑎𝑥𝑥(0, 𝐱𝐱) afterwards

• Do a matrix multiplication, set all negative values to 0, repeat

But where do we get the weights from?



Computation has a simple form

• Composition of linear functions with nonlinearities in between

• E.g. matrix multiplications with ReLU, 𝑚𝑚𝑎𝑎𝑥𝑥(0, 𝐱𝐱) afterwards

• Do a matrix multiplication, set all negative values to 0, repeat

But where do we get the weights from?



“dog”

Learned

How would we learn the parameters?

predicted ground truth



Training neural networks



Let’s start easy



world’s smallest neural network!
(a “perceptron”)

(a.k.a. line equation, linear regression)



Given a set of samples and a Perceptron

Estimate the parameter of the Perceptron

Training a Neural Network



What do you think the weight parameter is?

1 1.1

2 1.9

3.5 3.4

10 10.1

Given training data:



What do you think the weight parameter is?

1 1.1

2 1.9

3.5 3.4

10 10.1

Given training data:

not so obvious as the network gets more complicated so we use …



Given several examples 

An Incremental Learning Strategy
(gradient descent)

and a perceptron



Given several examples 

Modify weight        such that gets ‘closer’ to 

and a perceptron

An Incremental Learning Strategy
(gradient descent)



Given several examples 

Modify weight        such that gets ‘closer’ to 

and a perceptron

perceptron 
output

true 
label

perceptron 
parameter

An Incremental Learning Strategy
(gradient descent)





L1 Loss L2 Loss

Zero-One Loss Hinge Loss



Gradient descent:

update rule:



Backpropagation



Backpropagation



…is the rate at which this will change…

… per unit change of this

the loss function

the weight parameter

Let’s compute the derivative…



Compute the derivative

That means the weight update for gradient descent is:

move in direction of negative gradient



Gradient Descent (world’s smallest perceptron)

For each sample

1. Predict

a. Forward pass

b. Compute Loss

2. Update

a. Back Propagation

b. Gradient update



multi-layer perceptron

function of FOUR parameters and FOUR layers!



hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1



hidden
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hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1
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weightinput
activationsum

weight weight
activation activation

input
layer 1
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weightinput
activationsum

weight weight
activation activation

input
layer 1
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activation activation
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weight weight
activation activation
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weightinput
activationsum

weight weight
activation activation
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hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1



hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1



Entire network can be written out as one long equation

What is known? What is unknown?
We need to train the network:



Entire network can be written out as a long equation

What is known? What is unknown?

known

We need to train the network:



Entire network can be written out as a long equation

What is known? What is unknown?

unknown

We need to train the network:

activation function 
sometimes has 

parameters



Given a set of samples and a MLP

Estimate the parameters of the MLP

Learning an MLP



Gradient Descent

For each random sample

1. Predict

a. Forward pass

b. Compute Loss

2. Update

a. Back Propagation

b. Gradient update
vector of parameter update equations

vector of parameter partial derivatives



So we need to compute the partial derivatives



Partial derivative describes…

(loss layer)

Remember,



rest of the network

Intuitively, the effect of weight on loss function :

depends on

depends on
depends on

According to the chain rule…



rest of the network

Chain Rule!



rest of the network

Just the partial 
derivative of L2 loss



rest of the network

Let’s use a Sigmoid function



rest of the network





already computed.
re-use (propagate)!



The chain rule says…

depends ondepends on
depends on

depends ondepends on

depends on

depends on



The chain rule says…

depends ondepends on
depends on

depends ondepends on

depends on

depends on

already computed.
re-use (propagate)!



depends ondepends on
depends on

depends ondepends on

depends on

depends on



depends ondepends on
depends on

depends ondepends on

depends on

depends on



depends ondepends on
depends on

depends ondepends on

depends on

depends on



Gradient Descent

For each example sample

1. Predict

a. Forward pass

b. Compute Loss

2. Update

a. Back Propagation

b. Gradient update



vector of parameter update equations

vector of parameter partial derivatives

Gradient Descent

For each example sample

1. Predict

a. Forward pass

b. Compute Loss

2. Update

a. Back Propagation

b. Gradient update



Step size: learning rate
Too big: will miss the minimum
Too small: slow convergence

-

Learning rates
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