
tejasgokhale.com

Lecture 2: Neural Networks
CMSC 475/675 Neural Networks

Some slides from Suren Jayasuriya (ASU), Phillip Isola (MIT)

0

1

Limitations to linear classifiers

+-

0 1

0 0 1

1 1 0

XOR

+ -

Limitations to linear classifiers
Wrong!

+-

+ -

Wrong!

0

1

0 1

0 0 1

1 1 0

XOR

Limitations to linear classifiers

+-

+ -

Wrong!

Wrong!

0

1

0 1

0 0 1

1 1 0

XOR

Goal: Non-linear decision boundary

+-

+ -

0

1

0 1

0 0 1

1 1 0

XOR

A brief history of Neural Networks

time

enthusiasm

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.335.3398&rep=rep1&type=pdf

Perceptrons, 1958

http://www.ecse.rpi.edu/homepages/nagy/PDF_chrono/
2011_Nagy_Pace_FR.pdf. Photo by George Nagy

Rosenblatt

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.335.3398&rep=rep1&type=pdf
http://www.ecse.rpi.edu/homepages/nagy/PDF_chrono/

time

enthusiasm

Perceptrons,
1958

Minsky and Papert, Perceptrons, 1972

time

enthusiasm

Perceptrons,
1958

Minsky and Papert,
1972

Parallel Distributed Processing (PDP), 1986

XOR problem

Inputs Output

0 0 0
1 0 1
0 1 1
1 1 0

0 1

PDP authors pointed to the backpropagation algorithm
as a breakthrough, allowing multi-layer neural networks to be
trained. Among the functions that a multi-layer network can
represent but a single-layer network cannot: the XOR function.

0
1

time

enthusiasm

Perceptrons,
1958

Minsky and Papert,
1972

PDP book,
1986

LeCun convolutional neural networks

Demos:
http://yann.lecun.com/exdb/lenet/index.html

Source: Isola, Torralba, Freeman

http://yann.lecun.com/exdb/lenet/index.html

Yann LeCun

Was at Bell Labs when
this video was recorded

Now
Prof @ NYU

Chief Scientist @ Meta

Turing Award 2018
(shared with Hinton and

Bengio)

Neural Information Processing Systems 2000

• Neural Information Processing Systems is the premier conference on machine
learning.

• Evolved from an interdisciplinary conference to a machine learning
conference.

• For the 2000 conference:
o title words predictive of paper acceptance: “Belief Propagation” and “Gaussian”.

o title words predictive of paper rejection: “Neural” and “Network”.

time

enthusiasm

Perceptrons,
1958

Minsky and Papert,
1972

PDP book,
1986

AI winter,
2000

ImageNet:
First (?) large-scale computer vision dataset

• Millions of images; 1000 categories
• PI: Fei-Fei Li

• Then: Prof, Princeton
• Now: Prof, Stanford

• 2019 Longuet-Higgins Prize
• Some argued that Li deserved

the 2018 Turing Award along with
Hinton, LeCun, Bengio

• Their work could not have been
empirically tested without ImageNet!

Krizhevsky, Sutskever, and Hinton, NeurIPS 2012

“AlexNet”

Got all the “pieces” right, e.g.,
• Trained on ImageNet
• 8 layer architecture (for reference: today we have architectures with 100+ layers)
• Allowed for multi-GP training

Krizhevsky, Sutskever, and Hinton, NeurIPS 2012

time

enthusiasm

Perceptrons,
1958

Minsky and Papert,
1972

PDP book,
1986

AI winter,
2000

Krizhevsky,
Sutskever,
Hinton, 2012

28 years 28 years

time

enthusiasm

Perceptrons,
1958

Minsky and Papert,
1972

PDP book,
1986

AI winter,
2000

Krizhevsky,
Sutskever,
Hinton, 2012

28 years 28 years

What comes next?

2028 ?

What comes next?

Perceptrons,
1958

Minsky and Papert,
1972

PDP book,
1986

AI winter,
2000 time

enthusiasm

28 years 28 years

Krizhevsky,
Sutskever,
Hinton, 2012

2028 ?

[Serre, 2014]

Inspiration: Hierarchical Representations

Source: Isola, Torralba, Freeman

Best to treat as inspiration.

The neural nets we’ll talk about
aren’t very biologically plausible.

Object recognition

Is dog?
Neural Network

Pixel 1

Pixel 2

Dog

Not dog

Pixel 1

Pi
xe

l2

Input Space

Fur

Pa
w

Feature Space

Goal: automatically learn a function that maps data from the input space to a
feature space, i.e., "feature learning”, rather than use hand-crafted features

f(x)

Parametric Approach

Image

f(x,W) 10 numbers giving
class scores

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 -

28 April 6, 2023

Array of 32x32x3 numbers
(3072 numbers total) W

parameters
or weights

Parametric Approach: Linear Classifier

Image

W
parameters
or weights

f(x,W) 10 numbers giving
class scores

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 -

29 April 6, 2023

Array of 32x32x3 numbers
(3072 numbers total)

f(x,W) = Wx

Image

W
parameters
or weights

10 numbers giving
class scores

Array of 32x32x3 numbers
(3072 numbers total)

f(x,W) = Wx
10x1 10x3072

f(x,W)

Parametric Approach: Linear Classifier
3072x1

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 -

30 April 6, 2023

Image

W
parameters
or weights

10 numbers giving
class scores

Array of 32x32x3 numbers
(3072 numbers total)

f(x,W) = Wx + b

Parametric Approach: Linear Classifier
3072x1

10x1 10x3072
f(x,W)

10x1

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 -

31 April 6, 2023

Computation in a neural net
Let’s say we have some 1D input that we want to convert to some new feature space:

Linear layer

Output
representation

𝑤𝑤𝑖𝑖j

𝑦𝑦j

Input
representation

𝑥𝑥𝑖𝑖 𝑦𝑦j = ∑𝑖𝑖 𝑤𝑤𝑖𝑖j𝑥𝑥𝑖𝑖

weights

Adapted from: Isola, Torralba, Freeman

Neuron (a.k.a unit)

Computation in a neural net
Let's say wehave some 1D input that we want to convert to some new feature space

Linear layer

Output
representation

𝑤𝑤𝑖𝑖j

𝑦𝑦j

Input
representation

𝑥𝑥𝑖𝑖

weights

𝑦𝑦j = ∑𝑖𝑖 𝑤𝑤𝑖𝑖j𝑥𝑥𝑖𝑖+ 𝑏𝑏j

bias

𝑏𝑏j

Adapted from: Isola, Torralba, Freeman

Example: Linear Regression

Input
representation

Output
representation

Linear layer

𝑥𝑥 𝑤𝑤 𝑦𝑦

𝑏𝑏

Adapted from: Isola, Torralba, Freeman

3
8

Computation in a neural net – Full Layer

Input
representation

Output
representation

Linear layer

𝑥𝑥 𝑤𝑤j

𝑦𝑦j𝑏𝑏j

𝑦𝑦1
𝑦𝑦2
𝑦𝑦3

…

𝑦𝑦 = 𝑊𝑊𝑥𝑥 + 𝑏𝑏

𝑤𝑤11 ⋯ 𝑤𝑤1𝑛𝑛
⋮ ⋱ ⋮
𝑤𝑤j1 ⋯ 𝑤𝑤j𝑛𝑛

𝑦𝑦
parameters of the model:𝜽𝜽 = {𝑾𝑾,𝒃𝒃}

𝑥𝑥1
𝑥𝑥2…
𝑥𝑥𝑛𝑛

𝑏𝑏1

+ 𝑏𝑏2…
𝑏𝑏j

=

𝑦𝑦1

Adapted from: Isola, Torralba, Freeman

3
9

𝑦𝑦2…
𝑦𝑦j

Computation in a neural net – Full Layer

Input
representation

Output
representation

Linear layer Full layer

𝑥𝑥 𝑤𝑤j

𝑦𝑦j𝑏𝑏j

𝑦𝑦1
𝑦𝑦2
𝑦𝑦3

…

𝑦𝑦 = 𝑊𝑊𝑥𝑥 + 𝑏𝑏
𝑤𝑤11 ⋯
⋮ ⋱ ⋮
𝑤𝑤j1 ⋯

𝑤𝑤j𝑛𝑛 𝑏𝑏1
⋮

𝑤𝑤j𝑛𝑛 𝑏𝑏j

𝑦𝑦

𝑥𝑥1
𝑥𝑥…2
𝑥𝑥𝑛𝑛
1

=

𝑦𝑦

Adapted from: Isola, Torralba, Freeman

4
0

1
𝑦𝑦2…
𝑦𝑦j

Can again simplify notation by
appending a 1 to 𝐱𝐱

Input
representation

Output
representation

Connectivity patterns

Fully connected layer Locally connected layer
(Sparse W)

Input
representation

Output
representation

Computation in a neural net – Recap

41

Input
representation

Output
representation

𝑥𝑥 𝑦𝑦

We can now transform our input representation vector into some output
representation vector using a bunch of linear combinations of the input:

𝑧𝑧 We can repeat this as
many times as we want!

What is the problem with this idea?

𝐖𝐖1𝐱𝐱 𝐖𝐖2𝐖𝐖1𝐱𝐱 𝐖𝐖3𝐖𝐖2𝐖𝐖1𝐱𝐱𝐱𝐱

What is the problem with this idea?

𝐖𝐖1𝐱𝐱 𝐖𝐖2𝐖𝐖1𝐱𝐱 𝐖𝐖3𝐖𝐖2𝐖𝐖1𝐱𝐱𝐱𝐱

Can be expressed as single linear layer!

�𝑾𝑾𝒙𝒙
Limited power: can’t solve XOR

Pointwise
Non-linearity

Solution: simple nonlinearity

Input
representation

Output
representation

Linear layer

𝑥𝑥 𝑤𝑤j

𝑏𝑏j 𝑦𝑦 𝑔𝑔(𝑦𝑦)

The Perceptron

Example: linear classification with a perceptron

Source: Isola, Torralba, Freeman

Example: linear classification with a perceptron

Example: linear classification with a perceptron

“when y is greater than 0, set all
pixel values to 1 (green),
otherwise, set all pixel values to 0
(red)”

Example: linear classification with a perceptron

“when y is greater than 0, set all
pixel values to 1 (green), otherwise,
set all pixel values to 0 (red)”

Computation in a neural net - nonlinearity

Input
representation

Linear layer

𝑥𝑥 𝑤𝑤j

𝑏𝑏j 𝑦𝑦 𝑔𝑔(𝑦𝑦)

𝛛𝛛
Can’t use with gradient descent, 𝛛𝛛𝑦𝑦 𝑔𝑔 = 0

Output
representation

Computation in a neural net - nonlinearity

Input
representation

Linear layer

𝑥𝑥 𝑤𝑤j

𝑏𝑏j 𝑦𝑦 𝑔𝑔(𝑦𝑦)

Sigmoid

Output
representation

Sigmoid• Bounded between [0,1]

• Saturation for large +/- inputs

• Gradients go to zero

Computation in a neural net - nonlinearity

Rectified linear unit (ReLU)• Unbounded output (on positive side)

• Efficient to implement:

• Also seems to help convergence (6x
speedup vs. tanh in [Krizhevsky et al.
2012])

• Drawback: if strongly in negative
region, unit is dead forever (no gradient).

• Default choice: widely used in current
models!

Computation in a neural net — nonlinearity

Leaky ReLU• where α is small (e.g.,
0.02)

• Efficient to implement:

• Has non-zero gradients
everywhere (unlike ReLU)

Computation in a neural net — nonlinearity

Output
representation

Intermediate
representation

Input
representation

Stacking layers

𝐡𝐡 = “hidden units”

Input
representation

Stacking layers

Output
representation

𝑾𝑾2

𝜃𝜃 = {𝑾𝑾1, … ,𝑾𝑾𝐿𝐿, 𝒃𝒃1, … ,𝒃𝒃𝐿𝐿}
Source: Isola, Torralba, Freeman

ReLU

𝒃𝒃1

𝒉𝒉 = 𝑔𝑔(𝑾𝑾1𝒙𝒙 + 𝒃𝒃1)
𝒃𝒃2

𝒚𝒚 = 𝑔𝑔(𝑾𝑾2𝒉𝒉 + 𝒃𝒃2)

Intermediate
representation

𝒉𝒉

𝒙𝒙

𝑾𝑾1

𝒚𝒚

Input
representation

Stacking layers

Output
representation

𝑾𝑾2

𝜃𝜃 = {𝑾𝑾1, … ,𝑾𝑾𝐿𝐿, 𝒃𝒃1, … ,𝒃𝒃𝐿𝐿}ReLU

𝒃𝒃1

𝒉𝒉 = 𝑔𝑔(𝑾𝑾1𝒙𝒙 + 𝒃𝒃1)
𝒃𝒃2

𝒚𝒚 = 𝑔𝑔(𝑾𝑾2𝒉𝒉 + 𝒃𝒃2)

Intermediate
representation

𝒉𝒉

𝒙𝒙

𝑾𝑾1

𝒚𝒚 positive

negative

Input
representation

Stacking layers

Output
representation

𝑾𝑾2

positive

negative

𝜃𝜃 = {𝑾𝑾1, … ,𝑾𝑾𝐿𝐿, 𝒃𝒃1, … ,𝒃𝒃𝐿𝐿}
Source: Isola, Torralba, Freeman

ReLU

𝒃𝒃1

𝒉𝒉 = 𝑔𝑔(𝑾𝑾1𝒙𝒙 + 𝒃𝒃1)
𝒃𝒃2

𝒚𝒚 = 𝑔𝑔(𝑾𝑾2𝒉𝒉 + 𝒃𝒃2)

Intermediate
representation

𝒉𝒉

𝒙𝒙

𝑾𝑾1

𝒚𝒚

Input
representation

Stacking layers

Output
representation

𝑾𝑾2

positive

negative

ReLU

𝒃𝒃1

𝒉𝒉 = 𝑔𝑔(𝑾𝑾1𝒙𝒙 + 𝒃𝒃1)
𝒃𝒃2

𝒚𝒚 = 𝑔𝑔(𝑾𝑾2𝒉𝒉 + 𝒃𝒃2)

Intermediate
representation

𝒉𝒉

𝜃𝜃 = {𝑾𝑾1, … ,𝑾𝑾𝐿𝐿, 𝒃𝒃1, … ,𝒃𝒃𝐿𝐿}

𝒙𝒙

𝑾𝑾1

𝒚𝒚

Input
representation

Stacking
layers

Output
representation

𝑾𝑾2

Intermediate
representation

𝒉𝒉
positive

negative
𝒙𝒙

𝒃𝒃1

𝒉𝒉 = 𝑔𝑔(𝑾𝑾1𝒙𝒙 + 𝒃𝒃1)
𝒃𝒃2

𝒚𝒚 = 𝑔𝑔(𝑾𝑾2𝒉𝒉 + 𝒃𝒃2)
𝜃𝜃 = {𝑾𝑾1, … ,𝑾𝑾𝐿𝐿, 𝒃𝒃1, … ,𝒃𝒃𝐿𝐿}ReLU

𝑾𝑾1

𝒚𝒚

Input
representation

Stacking layers

Output
representation

𝑾𝑾2

Intermediate
representation

𝒉𝒉
positive

negative
𝒙𝒙

𝒃𝒃1

𝒉𝒉 = 𝑔𝑔(𝑾𝑾1𝒙𝒙 + 𝒃𝒃1)
𝒃𝒃2

𝒚𝒚 = 𝑔𝑔(𝑾𝑾2𝒉𝒉 + 𝒃𝒃2)
ReLU

𝑾𝑾1

𝒚𝒚

𝜃𝜃 = {𝑾𝑾1, … ,𝑾𝑾𝐿𝐿, 𝒃𝒃1, … ,𝒃𝒃𝐿𝐿}

Stacking layers - What’s actually happening?

Low level features:
e.g., edge, texture, …

higher level features:
e.g., shape

even higher level features:
e.g., “paw”, “fur”

“dog”…

Deep nets

= 𝑓𝑓𝐿𝐿(…𝑓𝑓3(𝑓𝑓2(𝑓𝑓1(𝑥𝑥)))𝑓𝑓 𝑥𝑥
Source: Isola, Torralba, Freeman

6
5

“dog”…

Deep nets - Intuition

“has horizontal edge”
“has vertical edge”

Source: Isola, Torralba, Freeman

6
6

“dog”…

Deep nets - Intuition

“has rounded edge”

Source: Isola, Torralba, Freeman

6
7

…

Deep nets - Intuition
“has white fur”

“has paw”
etc

How do we
make a

classification?

“dog”

Source: Isola, Torralba, Freeman

6
8

“dog”…

Deep nets - Intuition
“has white fur”

“has paw”
etc

Classify

Fur

Source: Isola, Torralba, Freeman

6
9

Pa
w

Recall:
Feature Space

Computation has a simple form

• Composition of linear functions with nonlinearities in between

• E.g. matrix multiplications with ReLU, 𝑚𝑚𝑎𝑎𝑥𝑥(0, 𝐱𝐱) afterwards

• Do a matrix multiplication, set all negative values to 0, repeat

But where do we get the weights from?

Computation has a simple form

• Composition of linear functions with nonlinearities in between

• E.g. matrix multiplications with ReLU, 𝑚𝑚𝑎𝑎𝑥𝑥(0, 𝐱𝐱) afterwards

• Do a matrix multiplication, set all negative values to 0, repeat

But where do we get the weights from?

“dog”

Learned

How would we learn the parameters?

predicted ground truth

Training neural networks

Let’s start easy

world’s smallest neural network!
(a “perceptron”)

(a.k.a. line equation, linear regression)

Given a set of samples and a Perceptron

Estimate the parameter of the Perceptron

Training a Neural Network

What do you think the weight parameter is?

1 1.1

2 1.9

3.5 3.4

10 10.1

Given training data:

What do you think the weight parameter is?

1 1.1

2 1.9

3.5 3.4

10 10.1

Given training data:

not so obvious as the network gets more complicated so we use …

Given several examples

An Incremental Learning Strategy
(gradient descent)

and a perceptron

Given several examples

Modify weight such that gets ‘closer’ to

and a perceptron

An Incremental Learning Strategy
(gradient descent)

Given several examples

Modify weight such that gets ‘closer’ to

and a perceptron

perceptron
output

true
label

perceptron
parameter

An Incremental Learning Strategy
(gradient descent)

L1 Loss L2 Loss

Zero-One Loss Hinge Loss

Gradient descent:

update rule:

Backpropagation

Backpropagation

…is the rate at which this will change…

… per unit change of this

the loss function

the weight parameter

Let’s compute the derivative…

Compute the derivative

That means the weight update for gradient descent is:

move in direction of negative gradient

Gradient Descent (world’s smallest perceptron)

For each sample

1. Predict

a. Forward pass

b. Compute Loss

2. Update

a. Back Propagation

b. Gradient update

multi-layer perceptron

function of FOUR parameters and FOUR layers!

hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1

hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1

hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1

hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1

hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1

hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1

hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1

hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1

hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1

Entire network can be written out as one long equation

What is known? What is unknown?
We need to train the network:

Entire network can be written out as a long equation

What is known? What is unknown?

known

We need to train the network:

Entire network can be written out as a long equation

What is known? What is unknown?

unknown

We need to train the network:

activation function
sometimes has

parameters

Given a set of samples and a MLP

Estimate the parameters of the MLP

Learning an MLP

Gradient Descent

For each random sample

1. Predict

a. Forward pass

b. Compute Loss

2. Update

a. Back Propagation

b. Gradient update
vector of parameter update equations

vector of parameter partial derivatives

So we need to compute the partial derivatives

Partial derivative describes…

(loss layer)

Remember,

rest of the network

Intuitively, the effect of weight on loss function :

depends on

depends on
depends on

According to the chain rule…

rest of the network

Chain Rule!

rest of the network

Just the partial
derivative of L2 loss

rest of the network

Let’s use a Sigmoid function

rest of the network

already computed.
re-use (propagate)!

The chain rule says…

depends ondepends on
depends on

depends ondepends on

depends on

depends on

The chain rule says…

depends ondepends on
depends on

depends ondepends on

depends on

depends on

already computed.
re-use (propagate)!

depends ondepends on
depends on

depends ondepends on

depends on

depends on

depends ondepends on
depends on

depends ondepends on

depends on

depends on

depends ondepends on
depends on

depends ondepends on

depends on

depends on

Gradient Descent

For each example sample

1. Predict

a. Forward pass

b. Compute Loss

2. Update

a. Back Propagation

b. Gradient update

vector of parameter update equations

vector of parameter partial derivatives

Gradient Descent

For each example sample

1. Predict

a. Forward pass

b. Compute Loss

2. Update

a. Back Propagation

b. Gradient update

Step size: learning rate
Too big: will miss the minimum
Too small: slow convergence

-

Learning rates

	Lecture 2: Neural Networks
	Slide Number 3
	Limitations to linear classifiers
	Limitations to linear classifiersWrong!
	Limitations to linear classifiers
	Goal: Non-linear decision boundary
	A	brief	history	of	Neural	Networks
	Perceptrons, 1958
	Slide Number 10
	Minsky and Papert, Perceptrons, 1972
	Perceptrons, 1958
	Parallel Distributed Processing (PDP), 1986
	XOR problem
	Perceptrons, 1958
	LeCun convolutional neural networks
	Slide Number 17
	Neural Information Processing Systems 2000
	Perceptrons, 1958
	ImageNet: �First (?) large-scale computer vision dataset
	Krizhevsky, Sutskever, and Hinton, NeurIPS 2012 “AlexNet”
	Krizhevsky, Sutskever, and Hinton, NeurIPS 2012
	28 years
	What	comes	next?
	What comes next?
	Inspiration: Hierarchical Representations
	Object recognition
	Slide Number 28
	f(x,W) = Wx
	Slide Number 30
	Slide Number 31
	Computation in a neural net
	Computation in a neural net
	Example: Linear Regression
	𝑦 = 𝑊𝑥 + 𝑏
	Computation in a neural net – Full Layer
	Connectivity patterns
	Computation in a neural net – Recap
	What is the problem with this idea?
	What is the problem with this idea?
	Solution: simple nonlinearity
	The Perceptron
	Slide Number 43
	Example: linear classification with a perceptron
	Example: linear classification with a perceptron
	Example: linear classification with a perceptron
	Example: linear classification with a perceptron
	Computation in a neural net - nonlinearity
	Computation in a neural net - nonlinearity
	Computation in a neural net - nonlinearity
	Computation in a neural net — nonlinearity
	Computation in a neural net — nonlinearity
	Slide Number 53
	Stacking layers
	Stacking layers
	Stacking layers
	Stacking layers
	Stacking layers
	Stacking layers
	Stacking layers
	Stacking layers - What’s actually happening?
	Deep nets
	Deep nets - Intuition
	Deep nets - Intuition
	Deep nets - Intuition
	Deep nets - Intuition
	Computation has a simple form
	Computation has a simple form
	How would we learn the parameters?
	Training neural networks
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Backpropagation
	Backpropagation
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Slide Number 98
	Slide Number 99
	Slide Number 100
	Slide Number 101
	Slide Number 102
	Slide Number 103
	Slide Number 104
	Slide Number 105
	Slide Number 106
	Slide Number 107
	Slide Number 108
	Slide Number 109
	Slide Number 110
	Slide Number 111
	Slide Number 112
	Slide Number 113
	Slide Number 114
	Slide Number 115
	Slide Number 116
	Slide Number 117
	Learning rates
	Slide Number 119
	Slide Number 120

