tejasgokhale.com

CMSC 475/675 Neural Networks

Lecture 1

Computer Systems that Learn

Some slides from Suren Jayasuriya (ASU), Zico Kolter (CMU)

BUNKE

Get Ready for The Good Stuff

Wall Street / Silicon Valley can you please stop

When someone uses 'Machine learning', 'Al' and 'deep learning' interchangeably in a discussion

You keep using that word.

I do not think it means what you think it means.

Know your ancestors

Data Structures and Algorithms

Mathematics

ML/AU

Computer Newbies

The Open Secret

The Open Secret

"Learn"?

- Let's look at a "programming" task
- The task: Write a program that outputs the number in a 28x28 grayscale image

"Learn" ?

• Approach 1: try to write a program by hand • How would you do it ?

"Learn"?

- Approach 1: try to write a program by hand • How would you do it ?
- **Approach 2:** (the machine learning approach) • Collect a large "dataset" of digit images \circ "Label" them with the corresponding numbers (0, 1, ..., 9) Let the system "write its own program" to map from images to numbers
 - o more precisely, this is "supervised learning" — more on that later

- Approach 1: try to write a program by hand • How would you do it ?
- **Approach 2:** (the machine learning approach) • Collect a large "dataset" of digit images \circ "Label" them with the corresponding numbers (0, 1, ..., 9)
 - Let the system "write its own program" to map from images to numbers
 - o more precisely, this is "supervised learning" — more on that later

Machine Learning

- 1. Collect a dataset of images and labels
- 3. Evaluate the classifier on new images

def train(images, labels): # Machine learning! return model

def predict(model, test_images): # Use model to predict labels return test_labels

bird cat deer

2. Use Machine Learning algorithms to train a classifier

Example training set

An image classifier

def classify_image(image):
 # Some magic here?
 return class_label

Unlike e.g. sorting a list of numbers,

no obvious way to hard-code the algorithm for recognizing a cat, or other classes.

nference

Da

def train(images, labels): # Machine learning! return model

return test_labels

def predict(model, test_images): # Use model to predict labels

tput

Nearest Neighbor Classifier

def train(images, labels):
 # Machine learning!
 return model

def predict(model, test_images):
 # Use model to predict labels
 return test_labels

Memorize all data and labels

Predict the label of the most similar training image

Nearest Neighbor Classifier

deer

bird

plane

cat

Training data with labels

Distance Metric

car

7

Distance Metric to compare images

L1 distance:

$d_1(I_1, I_2) =$

test image

training image

56	32	10	18
90	23	128	133
24	26	178	200
2	0	255	220

10	20	24	17
8	10	89	100
12	16	178	170
4	32	233	112

$$=\sum_{p}|I_1^p-I_2^p|$$

pixel-wise absolute value differences

3	10	20	24	17	46	12	14	1
	8	10	89	100	82	13	39	33
	12	16	178	170	12	10	0	30
	4	32	233	112	2	32	<mark>22</mark>	108

nference

Da

def train(images, labels): # Machine learning! return model

return test_labels

def predict(model, test_images): # Use model to predict labels

tput

to extract lessons from past experience

The goal of learning is

in order to solve future problems.

Let's LEARN. What does \$\primes do?

- $2 rac{1}{3} = 36$
- 7 ☆ 1 = 49
- $5 \approx 2 = 100$
- $2 \approx 2 = 16$

Goal: answer future queries involving ☆

Approach: figure out what \Rightarrow is doing by observing its behavior on examples

Past experience

- 2 ☆ 3 = 36
- 7 ☆ 1 = 49
- 5 ☆ 2 = 100
- 2 ☆ 2 = 16

3 ☆ 5 = ?

Your brain

3 ☆ 5

Learning from examples (aka supervised learning)

Training data

{input:[2,3],output:36}
{input:[7,1],output:49}
{input:[5,2],output:100}
{input:[2,2],output:16}

to extract lessons from past experience

The goal of learning is

in order to solve future problems.

Learning from examples (aka supervised learning)

Training data

 $\{x^{(1)}, y^{(1)}\}$ $\{x^{(2)}, y^{(2)}\} \quad \longrightarrow \quad$ ${x^{(3)}, y^{(3)}}$

• • •

Test query

Real-World Application: A Model for Predicting Electricity Use

• What will the peak power consumption be in <your-favorite-city> tomorrow?

- Difficult to answer this question without data
 O Difficult to build an "a priori" model from first principles …
- Relatively easy to record consumption hist (the utility company has this data)
- Relatively easy to record features that may affect consumption:
 temperature

	Date	High Temperature (F)	Peak Demand (G)
	2011-06-01	84.0	2.651
tory	2011-06-02	73.0	2.081
	2011-06-03	75.2	1.844
	2011-06-04	84.9	1.959

Real-World Application: A Model for Predicting Electricity Use

• What will the peak power consumption be in <your-favorite-city> tomorrow?

example from Zico Kolter

Real-World Application: A Model for Predicting Electricity Use

• What will the peak power consumption be in <your-favorite-city> tomorrow?

×х ← PREDICTION 95 100

example from Zico Kolter

The essence of machine learning:

- A pattern exists
- We cannot pin down the pattern as an equation
- Using data!

• We need to approximate the pattern as a function of the input

Test query

Hypothesis space The relationship between X and Y is roughly linear: $y pprox heta_1 x + heta_0$

Search for the **parameters**, $\theta = \{\theta_0, \theta_1\}$, that best fit the data.

$$f_{\theta}(x) = \theta_1 x + \theta_0$$

Best fit in what sense?

Search for the **parameters**, $\theta = \{\theta_0, \theta_1\}$, that best fit the data.

$$f_{\theta}(x) = \theta_1 x + \theta_0$$

Best fit in what sense?

The least-squares **objective** (aka **loss**) says the best fit is the function that minimizes the squared error between predictions and target values:

$$\mathcal{L}(\hat{y}, y) = (\hat{y} - y)^2 \quad \hat{y} \equiv f_{\theta}(x)$$

Search for the **parameters**, $\theta = \{\theta_0, \theta_1\}$, that best fit the data.

$$f_{\theta}(x) = \theta_1 x + \theta_0$$

Best fit in what sense?

The least-squares **objective** (aka **loss**) says the best fit is the function that minimizes the squared error between predictions and target values:

$$\mathcal{L}(\hat{y}, y) = (\hat{y} - y)^2 \quad \hat{y} \equiv f_{\theta}(x)$$

Complete learning problem:

$$\theta^* = \arg\min_{\theta} \sum_{i=1}^{N} (f_{\theta}(x^{(i)}) - y^{(i)})^2$$
$$= \arg\min_{\theta} \sum_{i=1}^{N} (\theta_1 x^{(i)} + \theta_0 - y^{(i)})^2$$

Test query

Training data

Test query

Use an **optimizer**!

Machine with knobs

How to minimize the objective w.r.t. θ ?

N $\theta^* = \underset{\theta}{\operatorname{arg\,min}} \sum_{i=1}^{\infty} (f_{\theta}(x^{(i)}) - y^{(i)})^2$

Output Score

In the linear case:

$$egin{aligned} & heta^* = rgmin_{ heta} \sum_{i=1}^N (heta_1 x^{(i)} + heta_0 - y^{(i)}) \ & extstyle & exts$$

$$\begin{aligned} \theta^* &= \operatorname*{arg\,min}_{\theta} J(\theta) \\ \frac{\partial J(\theta)}{\partial \theta} &= 0 \\ \frac{\partial J(\theta)}{\partial \theta} &= 2(\mathbf{X}^T \mathbf{X} \theta - \mathbf{X}^T \mathbf{y}) \end{aligned}$$

How to minimize the objective w.r.t. θ ?

Empirical Risk Minimization

(formalization of supervised learning)

Linear least squares learning problem

Empirical Risk Minimization

(formalization of supervised learning)

Hypothesis space

Data $\{x^{(i)}, y^{(i)}\}_{i=1}^N \longrightarrow$ A^* —

Case study #1: Linear least squares

Learner

- Objective $\mathcal{L}(f_{\theta}(x), y) = (f_{\theta}(x) - y)^2$
 - Hypothesis space
 - $f_{\theta}(x) = \theta_1 x + \theta_0$
 - Optimizer

$$(\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

$$\rightarrow f$$

Data \rightarrow

Compute

Example 1: Linear least squares

Example 2: Program Induction

Example 3: "Deep" Learning (with Neural Networks)

Space we will search

Hypothesis space (haystack)

True solution (needle)

Linear functions

True solution is linear

True solution (needle)

Linear functions

True solution is nonlinear

True solution (needle)

Hypotheses consistent with data

True solution (needle)

Hypotheses consistent with data

What happens as we increase the data?

True solution (needle)

Hypotheses consistent with data

What happens as we shrink the hypothesis space?

The essence of machine learning:

- A pattern exists
- We cannot pin down the pattern as an equation
- Using a set of observations (data) to uncover an underlying process

• We need to approximate the pattern as a function of the input

Regression vs. Classification

- Regression tasks: predicting real-valued outputs $y \in \mathbb{R}$
- Classification tasks: predicting discrete-valued quantity y

OBinary ClassificationOMulticlass Classification

$$y \in \{-1, 1\}$$

 $y \in \{1, 2, ..., k\}$

- Using machine learning to diagnose whether a tumor is benign or malignant
- Setting:
 - o physician extracts a sample of fluid from tumor
 - \circ Stains the cell \rightarrow creates a "slide"
 - Computes features for each cell such as area, perimeter, concavity, texture etc.
- Want:

• A system that can process the "features" and predict whether the tumor is benign or malignant

- Approach:
 - Collect a dataset (hospitals have this data from previous patients)
 - Store "features" for sample and it's label
 - What type of classification problem is this? Binary or Multiclass?
- Data:

two features: mean area vs. mean concave points, for two classes

• Linear Classification:

drawing a line separating the classes

Input features:
$$x^{(i)} \in \mathbb{R}^n, i = 1, ..., m$$

E.g.: $x^{(i)} = \begin{bmatrix} Mean_Area^{(i)} \\ Mean_Concave_Points^{(i)} \\ 1 \end{bmatrix}$

Outputs:
$$y^{(i)} \in \{-1, +1\}, i = 1, ..., m$$

E.g.: $y^{(i)} \in \{-1 \text{ (benign)}, +1 \text{ (malignant)}\}$

Model parameters: $\theta \in \mathbb{R}^n$

Hypothesis function: $h_{\theta} : \mathbb{R}^n \to \mathbb{R}$, aims for same sign as the output (informally, a measure of *confidence* in our prediction) E.g.: $h_{\theta}(x) = \theta^T x, \qquad \hat{y} = \operatorname{sign}(h_{\theta}(x))$

Formal Setting

• Color denotes regions where $h_{\theta}(x)$ is >0 or <0

Big Questions:

- 1. How do you represent Input and Output?
- 2. What is the optimization (training) objective?
- 3. What is the hypothesis space?
- 4. How do you optimize (train)?
- 5. What data do you train on?

Application: Image Classification

Big Questions:

How do you represent Input and Output? 1.

- 2. What is the optimization (training) objective?
- 3. What is the hypothesis space?
- 4. How do you optimize (train)?
- 5. What data do you train on?

image **x**

Classifier

image **x**

Classifier

Classifier

image **x**

Classifier

 \mathbf{X}

 $\underset{f \in \mathcal{F}}{\operatorname{arg\,min}} \sum_{i=1}^{\mathcal{L}} \mathcal{L}(f(\mathbf{x}^{(i)}), y^{(i)})$

How to represent class labels?

One-hot vector

What should the loss be?

0-1 loss (number of misclassifications)

$$\mathcal{L}(\hat{\mathbf{y}},\mathbf{y}) = \mathbb{1}(\hat{\mathbf{y}} = \mathbf{y})$$

Cross entropy

$$\mathcal{L}(\hat{\mathbf{y}},\mathbf{y}) = H(\mathbf{y},\hat{\mathbf{y}}) = -\sum_{\mathbf{z}}^{\mathbf{z}}$$

←

discrete, NP-hard to optimize!

$-\sum_{k=1}^{n} y_k \log \hat{y}_k \quad \longleftarrow \begin{array}{c} \text{continuous,} \\ \text{differentiable,} \\ \text{convex} \end{array}$

<u>Ground truth label</u> y

$[0,0,0,0,0,1,0,0,\ldots]$

<u>Ground truth label</u> У

 $f_{\theta}: X \to \mathbb{R}^K$ $\mathbf{z} = f_{\theta}(\mathbf{x})$ $\hat{\mathbf{y}} = \texttt{softmax}(\mathbf{z})$ $\hat{y}_{j} = \frac{e^{-z_{j}}}{\sum_{k=1}^{K} e^{-z_{k}}}$

Softmax regression (a.k.a. multinomial logistic regression)

---- **logits**: vector of K scores, one for each class

squash into a non-negative vector that sums to 1 — i.e. a probability mass function!

Softmax regression (a.k.a. multinomial logistic regression)

Probabilistic interpretation:

$$H(\mathbf{y}, \hat{\mathbf{y}}) = -\sum_{k=1}^{K} y_k \log \hat{y}_k \quad \longleftarrow \quad \begin{array}{l} \operatorname{pick} & \\ \operatorname{of th} & \\ \operatorname{under} & \end{array}$$

$$f^* = \operatorname*{arg\,min}_{f \in \mathcal{F}} \sum_{i=1}^{N} H(\mathbf{y}^{(i)}, \hat{\mathbf{y}}^{(i)}) \longleftarrow$$

$\hat{\mathbf{y}} \equiv [P_{\theta}(Y = 1 | X = \mathbf{x}), \dots, P_{\theta}(Y = K | X = \mathbf{x})] \longleftarrow$ predicted probability of each class given input x

ks out the -log likelihood he ground truth class \mathbf{y} er the model prediction $\hat{\mathbf{y}}$

max likelihood learner!

Softmax regression (a.k.a. multinomial logistic regression)

 $f_{\theta}: X \to \mathbb{R}^K$ $\mathbf{z} = f_{\theta}(\mathbf{x})$ $\hat{\mathbf{y}} = \texttt{softmax}(\mathbf{z})$ Data $\{x^{(i)}, y^{(i)}\}_{i=1}^N \rightarrow$ $\begin{aligned} \text{Objective} \\ \mathcal{L}(\mathbf{y}, f_{\theta}(\mathbf{x})) &= H(\mathbf{y}, \texttt{softmax}(f_{\theta}(\mathbf{x}))) \end{aligned}$

Learner

Linear Regression (f_{θ} is a linear function)

Recap:

Linear regression

Training data

$f_{\theta}(x) = \theta_0 + \theta_1 x$

Linear regression

Training data

$f_{\theta}(x) = \theta_0 + \theta_1 x$

 $(f_{\theta} \text{ is a lir})$

Linear Regression

(f_{θ} is a linear function)

$(f_{\theta} \text{ is a linear function})$

Polynomial Regression

Linear Regression

$(f_{\theta} \text{ is a polynomial function })$

Polynomial regression

Training data

$f_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2$

K-th degree polynomial regression

$$\sum_{i=1}^{M} (f_{\theta}(x_{\texttt{test}}^{(i)}) - y_{\texttt{test}}^{(i)})^2$$

$$f_{\theta}(x) = \sum_{k=0}^{K} \theta_k x^k$$

This phenomenon is called **overfitting**.

It occurs when we have too high capacity a model, e.g., too many free parameters, too few data points to pin these parameters down.

When the model does not have the capacity to capture the true function, we call this **underfitting**.

An underfit model will have high error on the training points. This error is known as approximation error.

This is a huge assumption! Almost never true in practice!

Much more commonly, we have $p_{\texttt{train}} \neq p_{\texttt{test}}$

 $\hat{y} = \boldsymbol{w}^{\top} \boldsymbol{x} + b$