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Machine Learning: The Success Story



Models that learn from data are embedded in our lives



Recent advances have been rapidly adopted by common, non-expert users
Models that learn from data are embedded in our lives



But …



A Limitation of the (Supervised) ML Framework

Measure of performance:
Fraction of mistakes during testing

But: In reality, the distributions 
we use ML on are NOT the ones 

we train it on

Training Inference



Training Inference

Measure of performance:
Fraction of mistakes during testing

But: In reality, the distributions 
we use ML on are NOT the ones 

we train it on

What can go wrong?

=
A Limitation of the (Supervised) ML Framework



Standard i.i.d. Assumption in Machine Learning

“Independent and Identically Distributed” 
Models learn useful patterns

Training Data
Distribution

Test Data
Distribution=



Standard i.i.d. Assumption in Machine Learning

IID Assumption collapses in real-world “in-the-wild” settings
Model performance deteriorates

Training Data
Distribution

Test Data
Distribution≠



Robustness and 
Generalization

Findings from Previous Work



Poses can fool Image Classifiers

Alcorn et al. CVPR 2019 



• Goal: correctly classify previously unseen test images.

• Statistical ML operates with the “i.i.d.” assumption
• But real-world test inputs are often NOT i.i.d. !!!

• Poses can fool classifiers
• Rotation
• Translation
• Scale
• Occlusion
• … 

Alcorn et al. CVPR 2019 

Poses can fool Image Classifiers



Natural Corruptions affect accuracy

Hendrycks et al. ICLR 2019



Spurious Correlations / Biased Datasets

Sagawa et al. ICLR 2020



Lack of Diverse Data hurts Reliability
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Lack of Diverse Data hurts Reliability
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Domain Shift is a Nuisance
Training



ML Predictions Are (Mostly) Accurate but Brittle

“pig” (91%) noise (NOT random) “airliner” (99%)

+ 0.005 x =

[Szegedy Zaremba Sutskever Bruna Erhan Goodfellow Fergus 2013] 
[Biggio Corona Maiorca Nelson Srndic Laskov Giacinto Roli 2013]

But also: [Dalvi Domingos Mausam Sanghai Verma 2004][Lowd Meek 2005] 
[Globerson Roweis 2006][Kolcz Teo 2009][Barreno Nelson Rubinstein Joseph Tygar 2010]

[Biggio Fumera Roli 2010][Biggio Fumera Roli 2014][Srndic Laskov 2013]



Pedestrian Sign

Persons

Biker



11
Biker

+ .007 =

Adversarial 
Perturbation Attack

Green Traffic 
Light

Small but carefully-crafted 
adversarial perturbation



Pedestrian Sign

Speed Limit 45 
Sign

Adversarial 
Rotation Attack



No Person

Adversarial 
Patch Attack

Persons



Adversarial Examples
• In 2014, one of the seminal papers of Goodfellow et al. shows that an adversarial image of a 

panda can fool the ML model to output “gibbon”, which started the area of adversarial ML

Small adversarial noiseClassified as panda 
57.7% confidence

Original image

Classified as gibbon 
99.3% confidence

Adversarial image

Gibbon

Picture from: Goodfellow et al. (2014) – Explaining and Harnessing Adversarial Examples



Adversarial Examples
• Similar example, from Szagedy et al. (2014)

Picture from: Szagedy et al. (2014) – Intriguing Properties of Neural Networks





Adversarial Attacks
Algorithms that can “find” perturbations to add to images, in order to fool 
classifiers
Given image 𝒙𝒙,  find 𝒈𝒈(𝒙𝒙) s.t. 𝒙𝒙 + 𝝐𝝐𝝐𝝐(𝒙𝒙) fools classifier
Perturbations are typically norm-bounded

Goodfellow et al. ICLR 2015



Adversarial Training
Leverages the concept of adversarial examples, in 
order to improve classifier robustness to such 
attacks
min—max optimization

maximization: find adversarial images
minimization: train classifier to correctly classify such images 

norm-bounded perturbations 
==> robustness within the norm-ball

Madry et al. ICLR 2018



Physical-World Attack: Printed Adversarial Images
• Not only adversarial examples in the digital world, but printed adversarial 

images can also fool machine learning models



Physical-World Attack: Adversarial STOP Sign
• An example of manipulating a STOP sign with adversarial patches

• Methodology: carefully design a patch and attach it to the STOP sign
• Cause the DL model of a self-driving car to misclassify it as a Speed Limit 45 sign

• The authors achieved 100% attack success in lab test, and 85% in field test

Picture from: Eykholt (2017) - Robust Physical-World Attacks on Deep Learning Visual Classification



Physical-World Attack: Adversarial STOP Sign
• More examples of lab test for STOP signs with a target class Speed Limit 45

Picture from: Eykholt (2017) - Robust Physical-World Attacks on Deep Learning Visual Classification



Physical-World Attack: Adversarial Patch
• Not only adversarial patch can fool a classifier, but also a SOTA detector
• An example of a person wearing an adversarial patch who cannot be detected by a 

YOLOv2 model
• This can be used by intruders to get past security cameras

Thys et al. (2019) - Fooling automated surveillance cameras: adversarial patches to attack person detection



Physical-WorldAttack: Attack Tesla Autopilot System
• Non-scientific example: a Tesla owner checks if the car can distinguish a person wearing a 

cover-up from a traffic cone



Why should we care?
→ People suffer consequences because of use in real-world systems

→ Safety, security, trust in the systems that we engineer

https://www.youtube.com/watch?v=TIUU1xNqI8w

https://www.youtube.com/watch?v=_1MHGUC_BzQ

http://www.youtube.com/watch?v=TIUU1xNqI8w
http://www.youtube.com/watch?v=_1MHGUC_BzQ


Data Poisoning
Goal: Maintain training accuracy but hamper generalization



Data Poisoning
Goal: Maintain training accuracy but hamper generalization

→ Fundamental problem
in “classic” ML (robust statistics)

→ But: seems less so in deep learning
→ Reason: Memorization?



Data Poisoning
Goal: Maintain training accuracy but hamper generalization

[Koh Liang 2017]: Can manipulate many
predictions with a single “poisoned” input

“van” “dog”

[Gu Dolan-Gavitt Garg 2017][Turner Tsipras M 2018]: 
Can plant an undetectable backdoor that 

gives an almost total control over the model

But: This gets (much) worse
(To learn more about backdoor attacks:
See poster #148 on Wed [Tran Li M 2018])

classification of specific inputs





We look at robustness math and methods
in detail in CMSC 475/675 Neural Networks …

I’ve also taught a seminar class on “Robust ML”
Slides: https://courses.cs.umbc.edu/graduate/691rml/

https://courses.cs.umbc.edu/graduate/691rml/
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