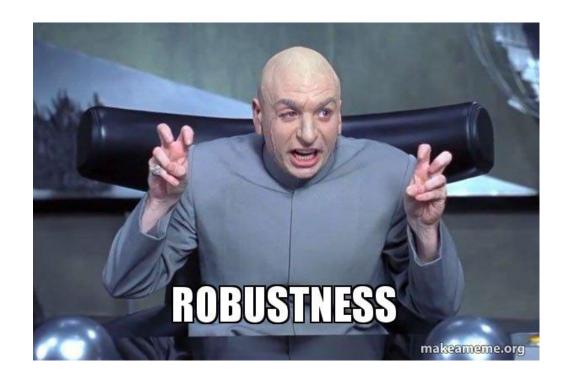
Lecture 20b

Robustness in Computer Vision



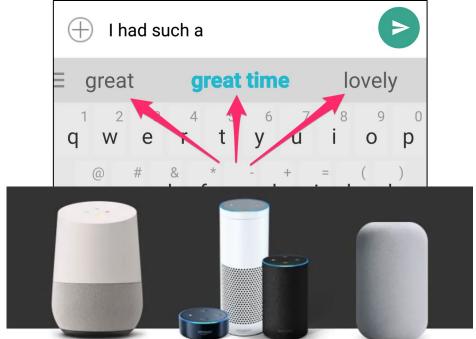
Machine Learning: The Success Story

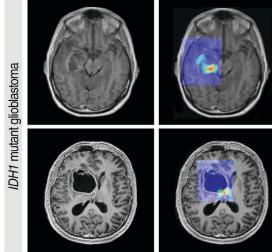
"Al is the new electricity!" Electricity transformed countless industries; AI will now do the same.

2016: The Year That Deep Learning Took Over to

WHY DEEP LEARNING IS SUDDENLY **CHANGING YOUR LIFE**

Models that learn from data are embedded in our lives





Models that learn from data are embedded in our lives

Recent advances have been rapidly adopted by common, non-expert users

DALL·E Now Available Without Waitlist

New users can start creating straight away. Lessons learned from deployment and improvements to our safety systems make wider availability possible.

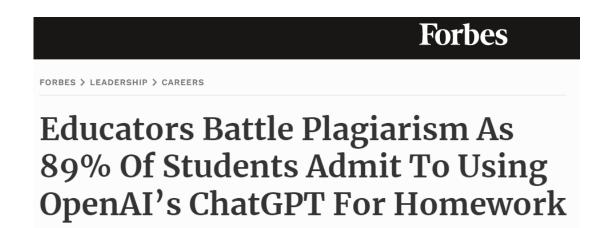
SIGN UP 7

The New York Times

THE SHIFT

An A.I.-Generated Picture Won an Art Prize. Artists Aren't Happy.

"I won, and I didn't break any rules," the artwork's creator says.



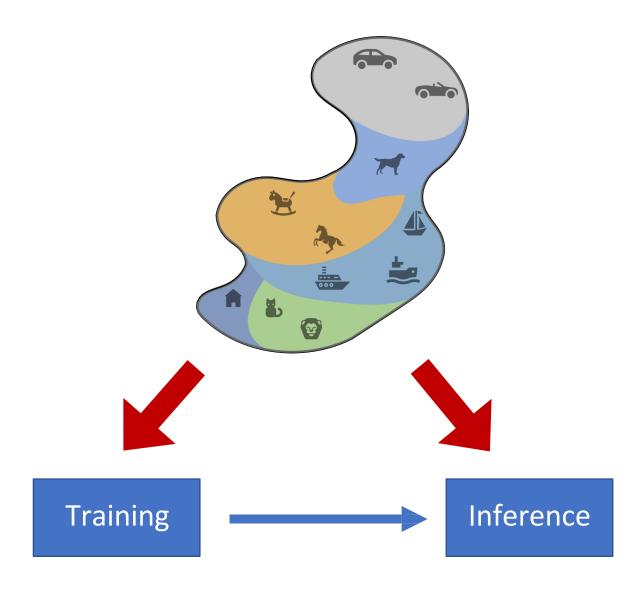
MICROSOFT / TECH / ARTIFICIAL INTELLIGENC

Microsoft announces new Bing and Edge browser powered by upgraded ChatGPT Al

/ Microsoft says it's using conversational AI to create a new way to browse the web. Users will be able to chat to Bing like ChatGPT, asking questions and receiving answers in natural language.

But ...

A Limitation of the (Supervised) ML Framework



Measure of performance:

Fraction of mistakes during testing

But: In reality, the distributions we **use** ML on are NOT the ones we **train** it on

A Limitation of the (Supervised) ML Framework



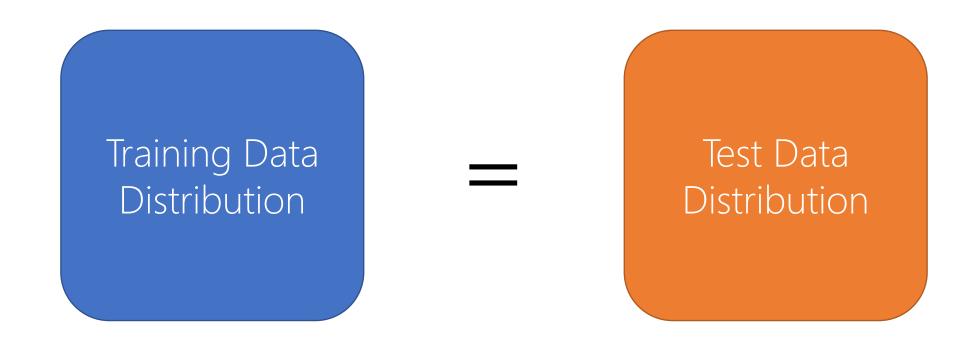
Measure of performance:

Fraction of mistakes during testing

But: In reality, the distributions we **use** ML on are NOT the ones we **train** it on

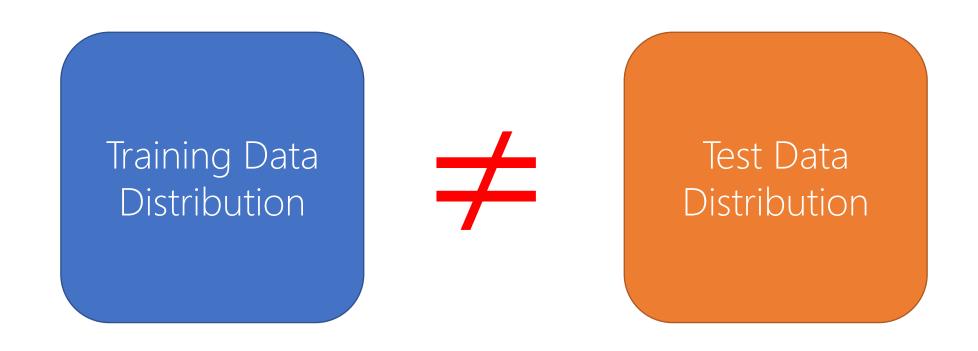
What can go wrong?

Standard i.i.d. Assumption in Machine Learning



"Independent and Identically Distributed" Models learn useful patterns

Standard i.i.d. Assumption in Machine Learning



IID Assumption collapses in real-world "in-the-wild" settings Model performance deteriorates

Robustness and Generalization

Findings from Previous Work

Poses can fool Image Classifiers

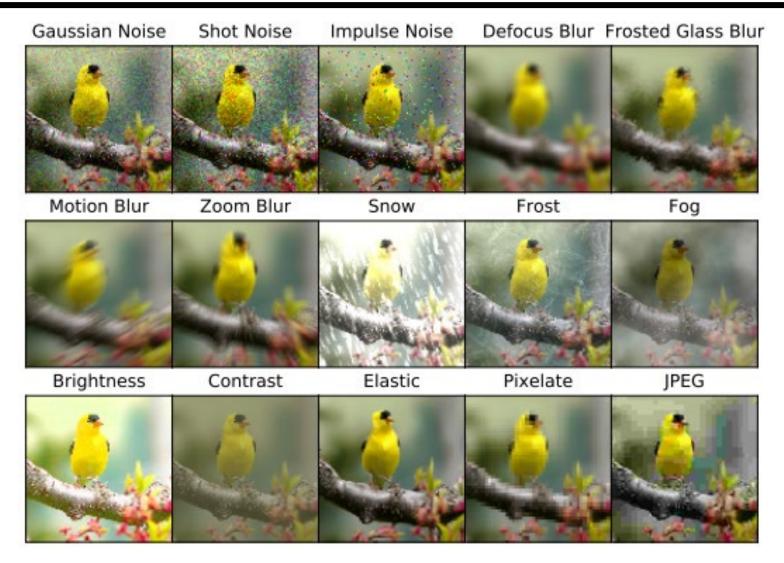
school bus 1.0 garbage truck 0.99 punching bag 1.0 snowplow 0.92

Poses can fool Image Classifiers

- Goal: correctly classify previously unseen test images.
- Statistical ML operates with the "i.i.d." assumption
- But real-world test inputs are often NOT i.i.d. !!!
 - Poses can fool classifiers
 - Rotation
 - Translation
 - Scale
 - Occlusion
 - ...

school bus 1.0 garbage truck 0.99 punching bag 1.0 snowplow 0.92

Natural Corruptions affect accuracy



Spurious Correlations / Biased Datasets

Common training examples

Waterbirds

y: waterbird a: water background

a: female

y: landbird a: land background

y: dark hair a: male

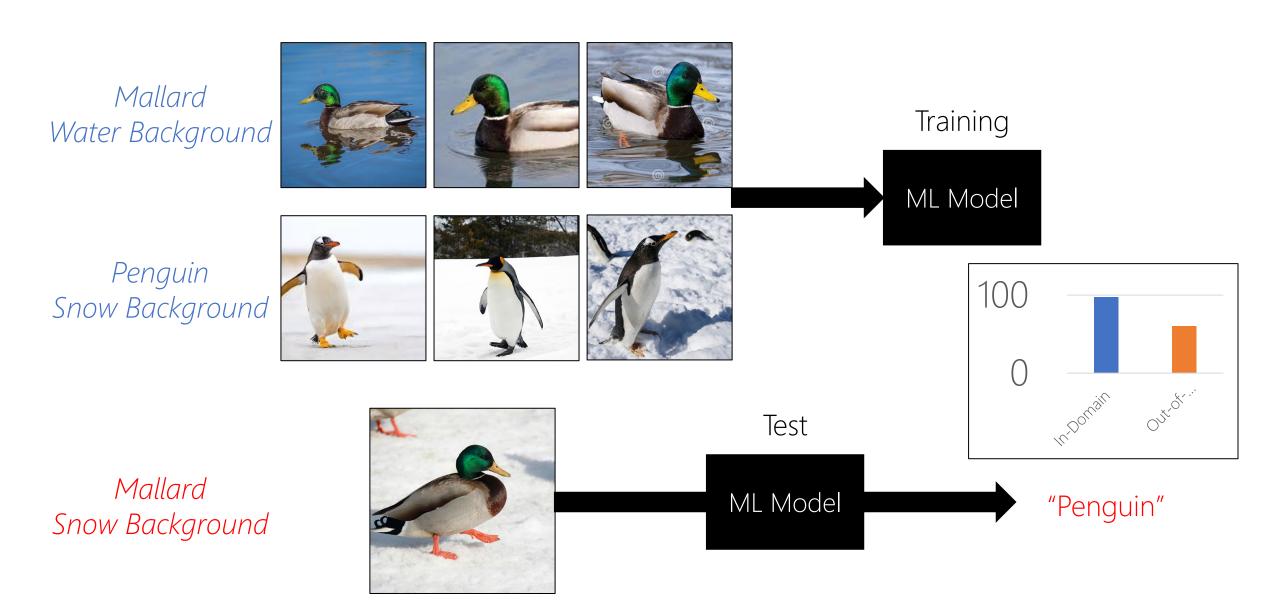
Test examples

y: waterbird a: land background

y: blond hair a: male

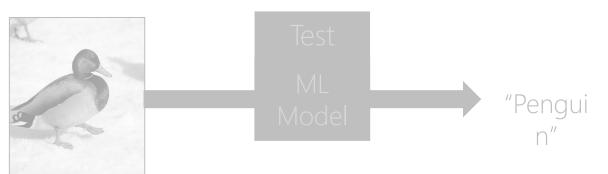
CelebA

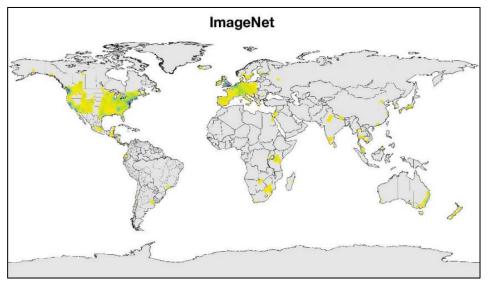
Lack of Diverse Data hurts Reliability

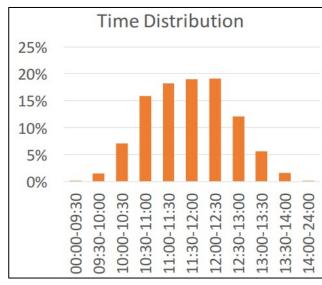


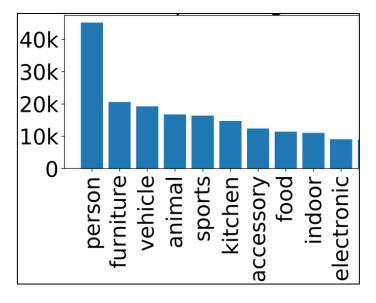
Lack of Diverse Data hurts Reliability

Mallard Snow Background

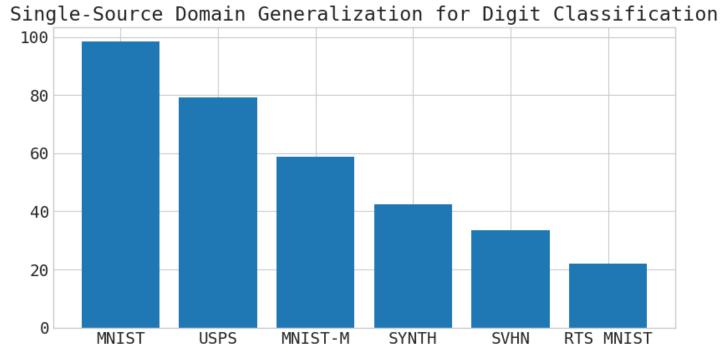




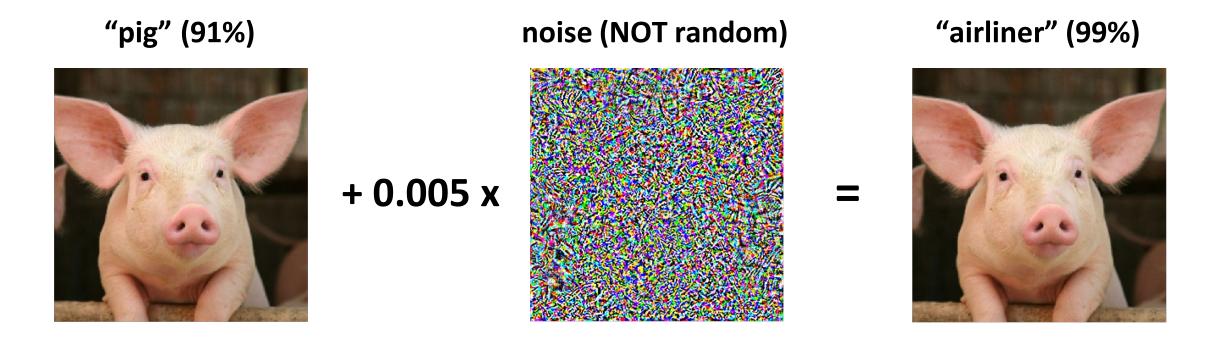




Domain Shift is a Nuisance



ML Predictions Are (Mostly) Accurate but Brittle

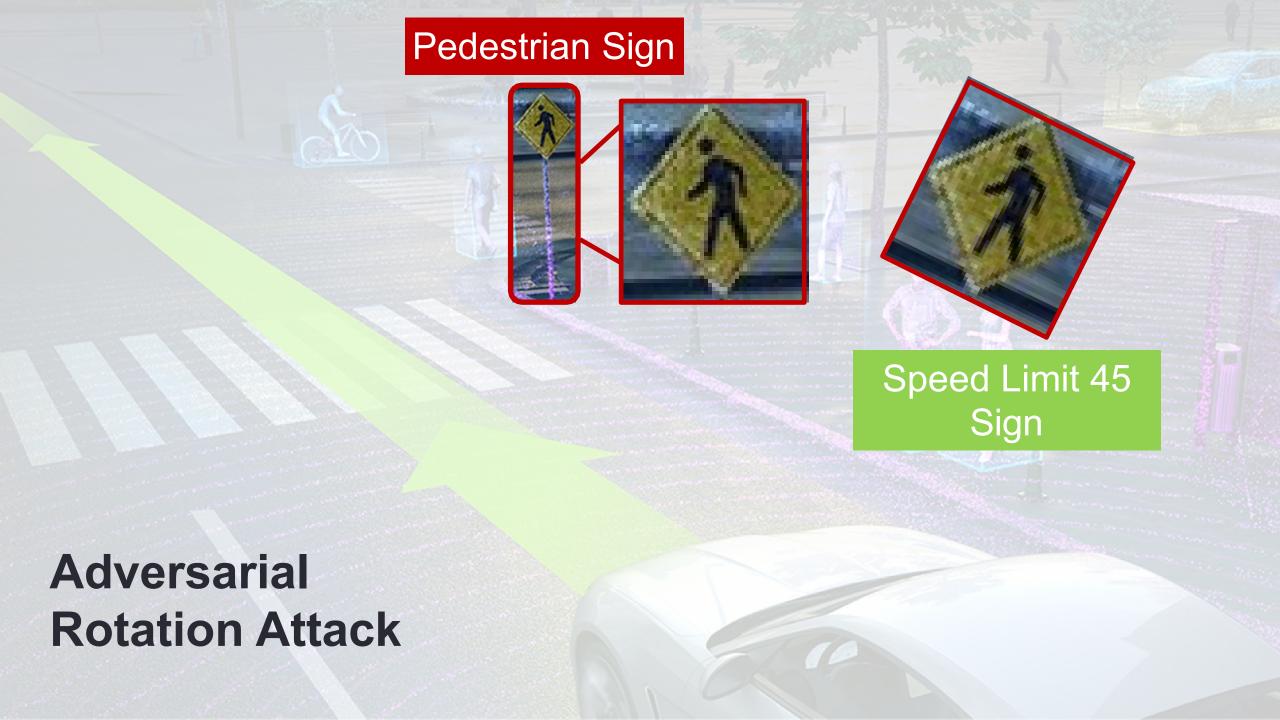


[Szegedy Zaremba Sutskever Bruna Erhan Goodfellow Fergus 2013] [Biggio Corona Maiorca Nelson Srndic Laskov Giacinto Roli 2013]

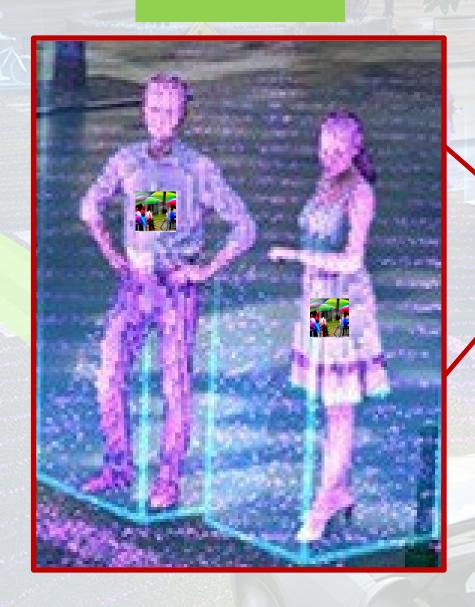
But also: [Dalvi Domingos Mausam Sanghai Verma 2004][Lowd Meek 2005] [Globerson Roweis 2006][Kolcz Teo 2009][Barreno Nelson Rubinstein Joseph Tygar 2010] [Biggio Fumera Roli 2010][Biggio Fumera Roli 2014][Srndic Laskov 2013]



Adversarial Perturbation Attack



No Person

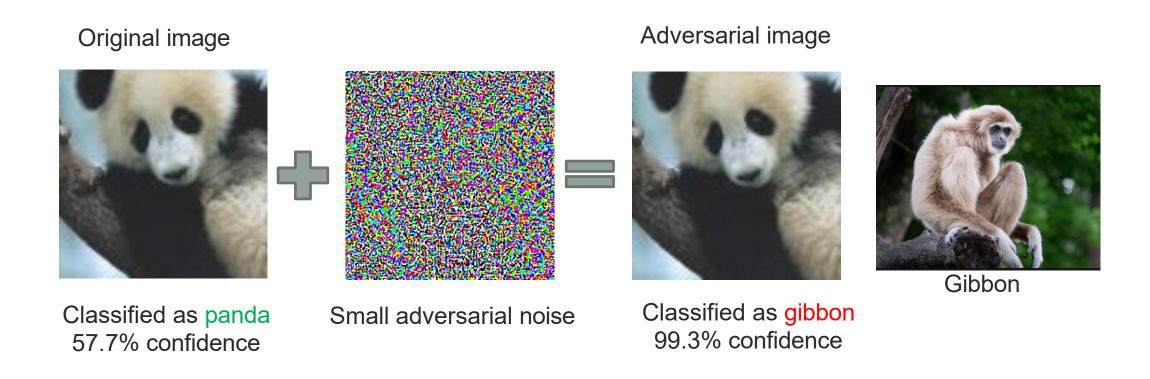


Persons

Adversarial Patch Attack

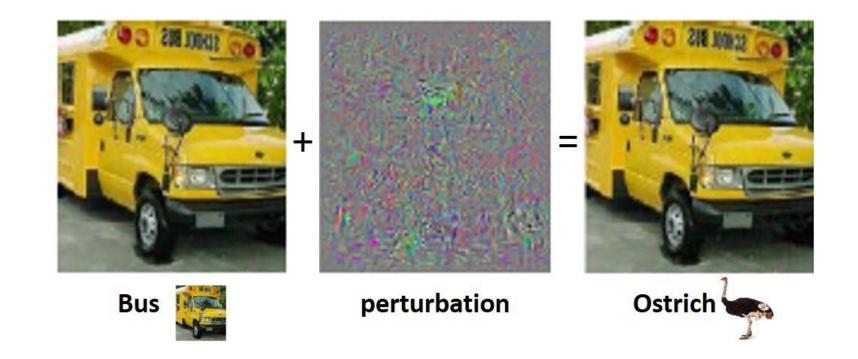
Adversarial Examples

 In 2014, one of the seminal papers of Goodfellow et al. shows that an adversarial image of a panda can fool the ML model to output "gibbon", which started the area of adversarial ML



Adversarial Examples

• Similar example, from Szagedy et al. (2014)



WHO WOULD WIN?

ONE NOISY BOI

"panda"
57.7% confidence

+.007 ×

 $sign(\nabla_{\boldsymbol{x}}J(\boldsymbol{\theta},\boldsymbol{x},y))$ "nematode"
8.2% confidence

 $x + \epsilon sign(\nabla_x J(\theta, x, y))$ "gibbon"

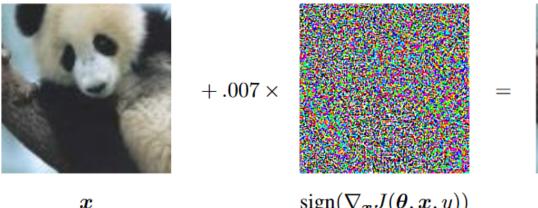
99.3 % confidence

Adversarial Attacks

"panda" 57.7% confidence

Algorithms that can "find" perturbations to add to images, in order to fool classifiers

Given image x, find g(x) s.t. $x + \epsilon g(x)$ fools classifier Perturbations are typically norm-bounded



Adversarial Training

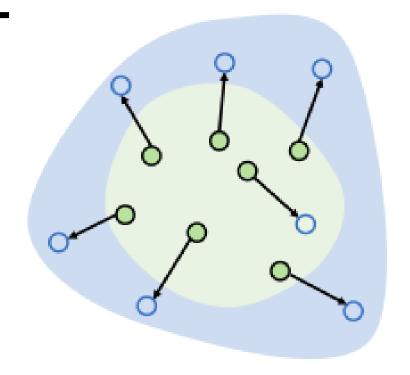
Leverages the concept of adversarial examples, in order to improve classifier robustness to such attacks

min—max optimization

maximization: find adversarial images minimization: train classifier to correctly classify such images

norm-bounded perturbations

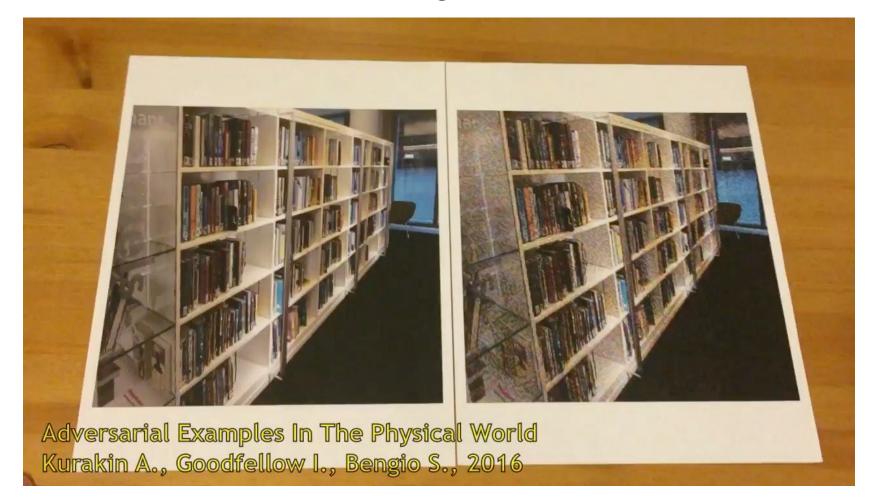
==> robustness within the norm-ball



$$\min_{\theta} \rho(\theta)$$
, where $\rho(\theta) = \mathbb{E}_{(x,y) \sim \mathcal{D}} \left[\max_{\delta \in \mathcal{S}} L(\theta, x + \delta, y) \right]$

Physical-World Attack: Printed Adversarial Images

 Not only adversarial examples in the digital world, but printed adversarial images can also fool machine learning models

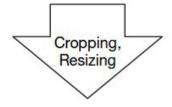


Physical-World Attack: Adversarial STOP Sign

- An example of manipulating a STOP sign with adversarial patches
 - Methodology: carefully design a patch and attach it to the STOP sign
 - Cause the DL model of a self-driving car to misclassify it as a Speed Limit 45 sign
 - The authors achieved 100% attack success in lab test, and 85% in field test

Lab (Stationary) Test

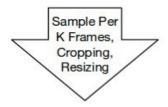
Physical road signs with adversarial perturbation under different conditions



Stop Sign → Speed Limit Sign

Field (Drive-By) Test

Video sequences taken under different driving speeds

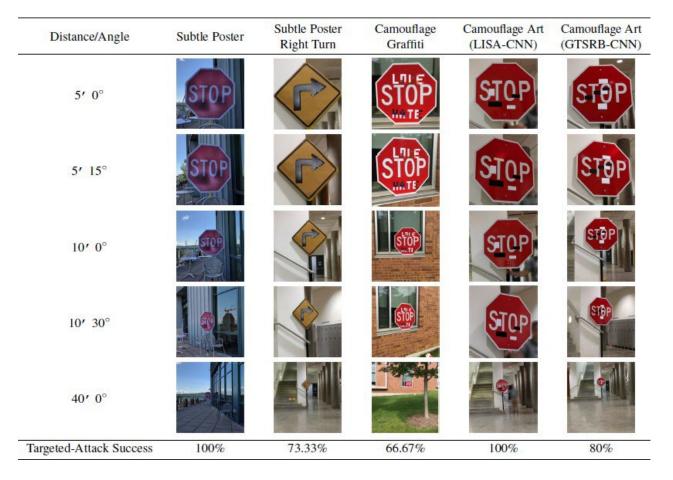


Stop Sign → Speed Limit Sign

Picture from: Eykholt (2017) - Robust Physical-World Attacks on Deep Learning Visual Classification

Physical-World Attack: Adversarial STOP Sign

More examples of lab test for STOP signs with a target class Speed Limit 45



Picture from: Eykholt (2017) - Robust Physical-World Attacks on Deep Learning Visual Classification

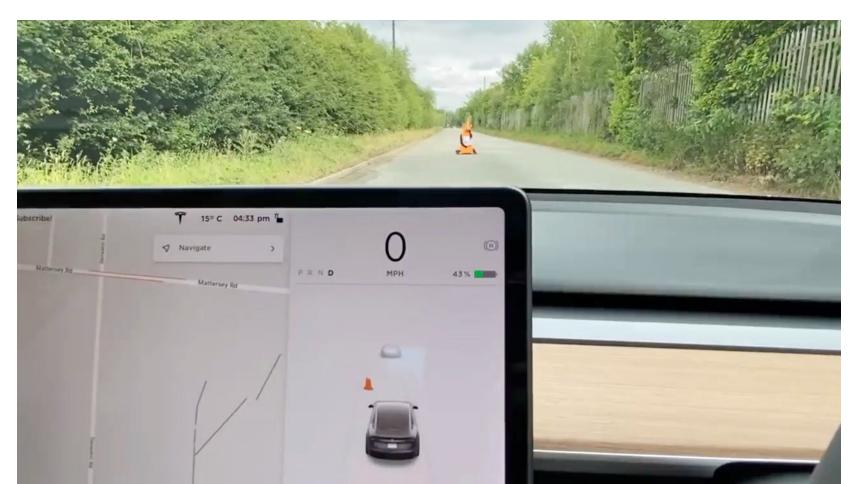
Physical-World Attack: Adversarial Patch

- Not only adversarial patch can fool a classifier, but also a SOTA detector
- An example of a person wearing an adversarial patch who cannot be detected by a YOLOv2 model
 - This can be used by intruders to get past security cameras



Physical-World Attack: Attack Tesla Autopilot System

 Non-scientific example: a Tesla owner checks if the car can distinguish a person wearing a cover-up from a traffic cone



Why should we care?

- → People suffer consequences because of use in real-world systems
- → Safety, security, trust in the systems that we engineer

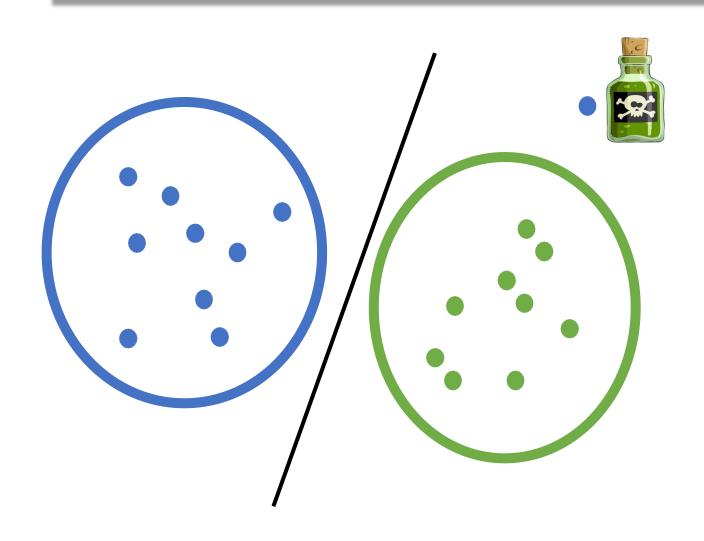
Wrongfully Accused by an Algorithm In what may be the first known case of its kind, a faulty facial recognition match led to a Michigan man's arrest for a crime he did not commit.

TECHNOLOGY

Feds Say Self-Driving Uber SUV Did Not Recognize Jaywalking Pedestrian In Fatal Crash

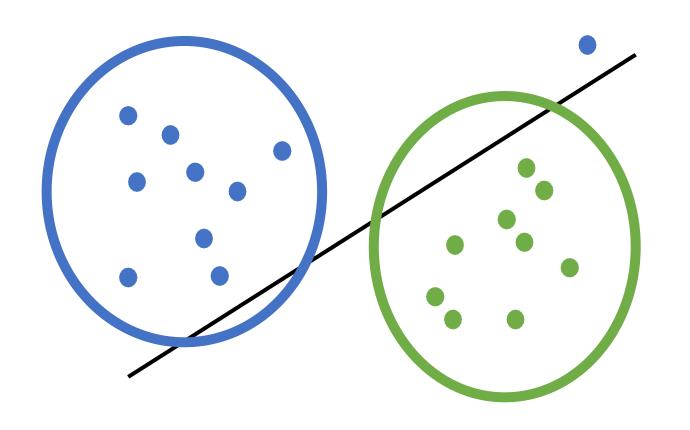
Data Poisoning

Goal: Maintain training accuracy but hamper generalization



Data Poisoning

Goal: Maintain training accuracy but hamper generalization

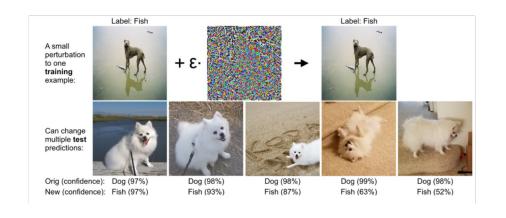


- → Fundamental problem in "classic" ML (robust statistics)
- → But: seems less so in deep learning
- → Reason: Memorization?

Data Poisoning

classification of **specific** inputs

Goal: Maintain training accuracy but hamper generalization



[Koh Liang 2017]: Can manipulate many predictions with a single "poisoned" input

But: This gets (much) worse

[Gu Dolan-Gavitt Garg 2017][Turner Tsipras M 2018]: Can plant an **undetectable backdoor** that gives an almost **total** control over the model

(To learn more about backdoor attacks: See poster #148 on Wed [Tran Li M 2018])

We look at robustness math and methods in detail in CMSC 475/675 Neural Networks ...

I've also taught a seminar class on "Robust ML" Slides: https://courses.cs.umbc.edu/graduate/691rml/