
tejasgokhale.com

Lecture 18:
Image Synthesis

CMSC 472 / 672

Computer Vision

tejasgokhale.com

Lecture 18:
Image Synthesis

CMSC 472 / 672

Computer Vision

Machine Learning Problems

SUPERVISED LEARNING

‣ setting : ‣ setting :

• Training time

‣ data :

{x(t), y(t)}

• Test time

‣ data :

{x(t), y(t)}

x(t), y(t) ⇠ p(x, y) x(t), y(t) ⇠ p(x, y)

Example

𝐼𝑛𝑝𝑢𝑡: 𝑥(𝑡) is an image

𝑂𝑢𝑡𝑝𝑢𝑡: 𝑦(𝑡) is an image

category

ONE-SHOT LEARNING
11

• Training time

‣ data :

{x(t), y(t)}

• Test time

‣ data :

{x(t), y(t)}

• Example

‣ recognizing a person

based on a single

picture of them

subject to y(t) 2 {1,. .., C} subject to y(t) 2 {C + 1,. .., C + M }

‣ side information :

- a single labeled example from

each of the M new classes

‣ setting :

x(t), y(t) ⇠ p(x, y)

‣ setting :

x(t), y(t) ⇠ p(x, y)

ZERO-SHOT LEARNING
13

• Training time

‣ data :

{x(t), y(t)}

• Test time

‣ data :

{x(t), y(t)}

• Example

‣ recognizing an object

based on a sentence

description of it

subject to y(t) 2 {1,. .., C}

‣ side information :

- description vector zc of each of
the C classes

subject to y(t) 2 {C + 1,. .., C + M }

‣ side information :

- description vector zc of each of
the new M classes

‣ setting :

x(t), y(t) ⇠ p(x, y)

‣ setting :

x(t), y(t) ⇠ p(x, y)

UNSUPERVISED LEARNING

‣ setting : ‣ setting :

• Test time

‣ data :

{x (t)}

• Training time

‣ data :

{x (t)}

x(t) ⇠ p(x) x(t) ⇠ p(x)

How can we train models “unsupervised”?

How can we train models “unsupervised”?

This is the focus of representation learning
and generative models

How can we train models “unsupervised”?

This is the focus of representation learning

There’s an entire conference on Representation Learning

ICLR has become one of the top
CS and Engineering (not just AI)
publication although it just started
in 2013.

In fact top-10 in ALL OF
SCIENCE

How can we train models “unsupervised”?

This is the focus of representation learning

There’s an entire conference on Representation Learning

ICLR has become one of the top
CS and Engineering (not just AI)
publication although it just started
in 2013.

In fact top-10 in ALL OF
SCIENCE

Warning

I might use the terms “latent”, “embedding”,
“representation”, “feature” interchangeably.

Motivation (kind of): Compression

• The idea is similar to compression (signal processing) or hashing (data structures):

o encode an image into a smaller vector s.t. you can decode it back to its original form

‒ Example: images, audio, video are stored in a compressed form on your computer using compression
algorithms like JPEG, MP3, MPEG etc. The computer has software to decode it back so that you can
view it (everytime you “open” a JPEG file to view an image, the decoder runs and converts code to RGB)

Motivation (kind of): Compression

• The idea is similar to compression (signal processing) or hashing (information theory):

o encode an image into a smaller vector s.t. you can decode it back to its original form

‒ Example: images, audio, video are stored in a compressed form on your computer using compression
algorithms like JPEG, MP3, MPEG etc. The computer has software to decode it back so that you can view it
(everytime you “open” a JPEG file to view an image, the decoder runs and converts code to RGB)

• Representation Learning
∼ convert inputs automatically into “codes” (called representations/embeddings / features)
s.t. the representations are:

o Useful for downstream tasks (e.g. classification, regression, …)

o “explain the data” and are “meaningful”

• Main difference: “meaningful” representation spaces to do “tasks”

(The goal for compression is only efficient storage — not data classification/clustering etc.)

Representation Learning Paradigm

Raw Data
(e.g. text, image, audio,

video, …)

Representation
Learning

(Encoding)

Do tasks / actions
with these

representations

Typical Goals for Representations

Source: Pankaj Gupta (LMU Munich)

Similar representations for similar concepts

Typical Goals for Representations

Source: Pankaj Gupta (LMU Munich)

A Semblance of “Context” should be encoded …

If you know the answer,
don’t share it with the class yet.

People from lands between Greece and India
might know the answer …

Typical Goals for Representations

Source: Pankaj Gupta (LMU Munich)

A Semblance of “Context” should be encoded …

Typical Goals for Representations

A Semblance of “Context” should be encoded …

food

If you speak Marathi, this word has two meanings depending on context

Halwa (1): a food item derived from: Farsi
Halwa (2): (an instruction to) move (something) derived from: Sanskrit

Typical Goals for Representations

Source: Pankaj Gupta (LMU Munich)

A Semblance of “Context” should be encoded …

Typical Goals for Representations

Source: Pankaj Gupta (LMU Munich)

A Semblance of “Context” should be encoded …

dessert

Typical Goals for Representations

Source: Pankaj Gupta (LMU Munich)

A Semblance of “Context” should be encoded …

sugary
dessert

Oh no! I forgot to put sugar in the

Typical Goals for Representations

• “bird” has “wing”, “beak”, “feathers”

• “bird” can “fly”

• “bird” is under category “animal”

• “bird” has subcategories “eagle”, “peacock”, “sparrow”, “seagull”, “pigeon”

Source: Pankaj Gupta (LMU Munich)

Parts, properties, attributes, ontology ?

Representation Learning is a Philosophy for Learning

Parallel Work in Cog.Sci.
Key assumptions in this philosophy:

• You can convert a high-dimensional input space
into a low-dimensional representation space

o Example: RGB images → 100 dim vectors

• A good representation space will have a
“structure”

o Example: Similarity, Symmetry, Relations will be
easy to understand

o Why? So that we can do arithmetic in
representation space to do tasks

• Representations can be learned from data

• Representations can be leveraged for doing
tasks

Representation Learning is a Philosophy for Learning

Key assumptions in this philosophy:

• You can convert a high-dimensional input space
into a low-dimensional representation space

o Example: RGB images → 100 dim vectors

• A good representation space will have a
“structure”

o Example: Similarity, Symmetry, Relations will be
easy to understand

o Why? So that we can do arithmetic in
representation space to do tasks

• Representations can be learned from data

• Representations can be leveraged for doing
tasks

Parallel Work in Cog.Sci.

Ok whatever. Tell us how it works …

Types of Modeling (Probabilistic Interpretation)

 Data: x; Label: y

 Density Function: 𝑝 𝑥

𝑋׬
𝑝 𝑥 𝑑𝑥 = 1

(probabilities of all inputs sum to 1)

“cat”

Discriminative Model

Learn Prob. Dist. 𝑃(𝑦|𝑥)

∀𝑥, σ𝑐 𝑃 𝑦 = 𝑐 𝑥 = 1

01

Cat HorseTiger

P(y|x= …

01

Cat HorseTiger

P(y|x= …

Types of Modeling (Probabilistic Interpretation)

 Data: x; Label: y

 Density Function: 𝑝 𝑥

𝑋׬
𝑝 𝑥 𝑑𝑥 = 1

(probabilities of all inputs sum to 1)

“cat”

Generative Model

Learn Marginal Prob. Dist. 𝑃(𝑥)

Conditional Generative Model

Learn conditional probability 𝑃(𝑥|𝑦)

0

0.5

P()P() P()

Types of Modeling (Probabilistic Interpretation)

 Data: x; Label: y

 Density Function: 𝑝 𝑥

𝑋׬
𝑝 𝑥 𝑑𝑥 = 1

(probabilities of all inputs sum to 1)

“cat”

• Discriminative Model

Learn Prob. Dist. 𝑃(𝑦|𝑥)

• Generative Model

Learn Marginal Prob. Dist. 𝑃 𝑥

• Conditional Generative Model

Learn conditional probability 𝑃(𝑥|𝑦)

Types of Modeling (Probabilistic Interpretation)

• Discriminative Model

Learn Prob. Dist. 𝑃(𝑦|𝑥)

• Generative Model

Learn Marginal Prob. Dist. 𝑃 𝑥

• Conditional Generative Model

Learn conditional probability 𝑃(𝑥|𝑦)

APPLICATIONS

Classification, Regression,
Representation Learning

(with labels)

Types of Modeling (Probabilistic Interpretation)

• Discriminative Model

Learn Prob. Dist. 𝑃(𝑦|𝑥)

• Generative Model

Learn Marginal Prob. Dist. 𝑃 𝑥

• Conditional Generative Model

Learn conditional probability 𝑃(𝑥|𝑦)

APPLICATIONS

Data Generation
Outlier Detection

Representation Learning
(without labels)

Types of Modeling (Probabilistic Interpretation)

• Discriminative Model

Learn Prob. Dist. 𝑃(𝑦|𝑥)

• Generative Model

Learn Marginal Prob. Dist. 𝑃 𝑥

• Conditional Generative Model

Learn conditional probability 𝑃(𝑥|𝑦)

APPLICATIONS

Machine Translation
Text-to-image generation

(pretty much every “GenAI”
product you see is a

conditional generative model)

Generative Models

• What’s a Generative Model?

o A model for the probability distribution of data 𝑥 P(x)

o A model that can be used to “generate” data marketing term “genAI”

• Generative Models can be learned

o You are given some observed data X (e.g. face images)

o You choose a function (e.g. neural network) to model 𝑃(𝑥; 𝜃) using parameters 𝜃

o You estimate 𝜃 s.t. 𝑃 𝑥; 𝜃 best fits the observations X

“Generative
Model”

Seed x

Ok whatever. Tell us how it works …

Let’s start simple …

The idea of an “Auto-encoder”

• NN trained to reproduce the input ො𝑥 = 𝐹(𝑥)

• 𝐹() is a composition of two functions: encoder 𝐸() and decoder 𝐷()

o Embedding / Feature / Latent 𝑧 = 𝐸(𝑥)

o Output ො𝑥 = 𝐷 𝑧 = 𝐷 𝐸 𝑥

How would you train an autoencoder?

Loss Function?

Autoencoder: Loss Function

• The objective is to minimize the “distance” between 𝑥 and ො𝑥

o If 𝑑 𝑥, ො𝑥 = 0 then we get perfect reconstruction

• Mean squared error!

• Cross Entropy (for binary inputs)

• For both cases, gradient is very simple: ∇𝑥 𝐿 𝑓 𝑥 , 𝑥 = ො𝑥 − 𝑥

Autoencoder: Simple Example

Source: Sebastian Raschka

Convolutional Autoencoder

Source: Sebastian Raschka

Convolutional Autoencoder

Convolutional Autoencoder:
Expand Dimensions? Transposed Convolution!

• The decoder needs to “expand dimensions”

o Convert a small feature z into a large input x

• Use transposed convolution! A.K.A. fractionally stride convolution

o Often (incorrectly) called “de”convolution

o This is an incorrect term because mathematically “deconvolution” is “inverse of convolution”

Convolutional Autoencoder:
Expand Dimensions? Transposed Convolution!

Transposed Conv in PyTorch

Denoising Autoencoder

• The input is “noisy” ෤𝑥 . The expected output is a clean image (denoised image)

• Noise Examples:

o Gaussian: ෤𝑥 = 𝑥 + 𝑧; 𝑧 ∼ 𝑁(0, 𝜎2𝐼)

o Masking: Zero-out some of the components of x
 (for images, make some pixels 0)

‒ Can be random masks

‒ Can be square masks

• Adding noise makes representations more robust

o Expect 𝐷(𝐸 ෤𝑥 = 𝑥 for all 𝑧

Vincent, Larochelle, Bengio, Manzagol. ICML 2008

Example: Face Auto-Encoder

Once trained, what can you do
with this model?

Example: Face Auto-Encoder

Once trained, what can you do
with this model?

Example: Face Auto-Encoder

Once trained, what can you do
with this model?

(1) Encode images into
vectors

(throw away the decoder …)

Example: Face Auto-Encoder

Once trained, what can you do
with this model?

(1) Encode images into vectors

(2) Generate new faces …

(throw away the encoder)

With Generative Models, there are 2 objectives:

𝑃𝑚𝑜𝑑𝑒𝑙(𝑥)

figure adapted from Ranjay Krishna

An Auto-Encoder is a Generative Model

Probabilistic Interpretation:

• Encoder 𝐸() estimates 𝑃𝜃𝐸
(𝑧|𝑥)

• Decoder 𝐷() estimates 𝑃𝜃𝐷
(𝑥|𝑧)

• The marginal 𝑃 𝑥 = 𝑧׬
𝑃 𝑥, 𝑧 𝑑𝑧 = 𝑧׬

𝑃 𝑧 𝑃(𝑥|𝑧)
 Bayes/Chain Rule …

• Once the AE is “trained”

o you get a generative model that generates “x” given a latent code “z”

o A conditional generative model takes an additional input “y” 𝑃 𝑥 𝑧, 𝑦

‒ E.g. generating images from text y=text, x = image

‒ More on this later …

Types of Autoencoders

So far, we have not enforced any “structure” on the latents z

But a structure is desirable

(Remember our motivations / goals for representation learning)

So far, we have not enforced any “structure” on the latents z

We can’t generate new images from D() if we don’t understand the z-
space

So far, we have not enforced any “structure” on the latents z

We can’t generate new images from D() if we don’t understand the z-
space

For example, if I ask you to generate a “face with beard, glasses, brown
hair”

which z would you choose?

VAE: Variational Autoencoder

• Force a “prior” distribution on the latent space

o Example: Gaussian 𝑁 0, 𝐼

• Gaussians are nice because they are
perfectly symmetrical in every dimension

o Isotropic (covariance matrix is identity 𝐼)

o Dimensions are independent,

i.e. P z1 𝑧2) = 𝑃 𝑧1 = 𝑁 0, 𝐼 ∀𝑧1, 𝑧2

o Property holds for any linear combination
of 𝑧 elements

‒ i.e. 𝑃 𝑧1 𝑎𝑧2 + 𝑏𝑧3 = 𝑁(0, 𝐼)

Kingma and Welling. Auto-Encoding Variational Bayes. ICLR 2014

Decoder network

Sample z from

Encoder network

Input Data

Variational Autoencoders

Key idea:

Force a Gaussian distribution on the

latent space 𝑧

Details: take my NN class!

Ranjay Krishna, Sarah Pratt

Variational Autoencoders: Generating Data!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Sample from

true prior

Decoder

network

Our assumption about data generation

process

Sample from

true conditional

Ranjay Krishna, Sarah Pratt

Variational Autoencoders: Generating Data!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Sample from

true prior

Sample from

true conditional

Decoder

network

Our assumption about data generation

process

Decoder network

Sample z from

Sample x|z from

Now given a trained VAE:

Ranjay Krishna, Sarah Pratt

use decoder network & sample z from prior!

Decoder network

Sample x|z from

Variational Autoencoders: Generating Data!

Sample z from

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Use decoder network. Now sample z from prior!

Ranjay Krishna, Sarah Pratt

Decoder network

Sample x|z from

Variational Autoencoders: Generating Data!

Sample z from

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Use decoder network. Now sample z from prior! Data manifold for 2-d z

Vary z
1

Vary z
2

Ranjay Krishna, Sarah Pratt

Variational Autoencoders: Generating Data!

Vary z
1

Vary z
2

Degree of smile

Head pose

Diagonal prior on z

=> independent

latent variables

Ranjay Krishna, Sarah Pratt

Different

dimensions of z

encode

interpretable factors

of variation

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Generating Data!

Vary z
1

Vary z
2

Degree of smile

Head pose

Diagonal prior on z

=> independent

latent variables

Different

dimensions of z

encode

interpretable factors

of variation

Also good feature representation that

can be computed using q
ɸ
(z|x)!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Ranjay Krishna, Sarah Pratt

Variational Autoencoders: Generating Data!

32x32 CIFAR-10

Ranjay Krishna, Sarah Pratt

Labeled Faces in the Wild

Editing images with VAEs

1. Run input data through

encoder to get a distribution

over latent codes

Encoder network

Input Data

Ranjay Krishna, Sarah Pratt

Editing images with VAEs

1. Run input data through

encoder to get a distribution

over latent codes

2. Sample code z from encoder

output

Sample z from

Encoder network

Input Data

Ranjay Krishna, Sarah Pratt

Editing images with VAEs

1. Run input data through

encoder to get a distribution

over latent codes

2. Sample code z from encoder

output

3. Modify some dimensions of

sampled code
Sample z from

Encoder network

Input Data

Ranjay Krishna, Sarah Pratt

modified

Editing images with VAEs

1. Run input data through

encoder to get a distribution

over latent codes

2. Sample code z from encoder

output

3. Modify some dimensions of

sampled code

4. Run modified z through

decoder to get a distribution

over data sample
Encoder network

Decoder network

Sample z from

Input Data

Ranjay Krishna, Sarah Pratt

modified

Editing images with VAEs

1. Run input data through

encoder to get a distribution

over latent codes

2. Sample code z from encoder

output

3. Modify some dimensions of

sampled code

4. Run modified z through

decoder to get a distribution

over data sample

5. Sample new data from (4)

Encoder network

Decoder network

Sample z from

Input Data

Ranjay Krishna, Sarah Pratt

modified

Editing images with VAEs

Ranjay Krishna, Sarah Pratt

To Summarize: AE, VAE

Generative Adversarial Networks

• Problem: We want to sample from a high-dimensional
training distribution 𝑝(𝑥)

o But there is no direct way to do this …

o We don’t know which z maps to which image
(so we can’t use autoencoders)

• We know how to sample from a random distribution (e.g.
Gaussian)

o Can we map a random distribution directly to 𝑝 𝑥 ?

NIPS 2014

Generative Adversarial Networks

Goal: Map all 𝒛 to some realistic-looking 𝒙

Image synthesis from “noise”

Generator

Image synthesis from “noise”

Generator

© aleju/cat-generator

G(z)

G

fake image

[Goodfellow et al. 2014]

z

Random code
Generator

A two-player game:

• 𝐺 tries to generate fake images that can fool 𝐷.
• 𝐷 tries to detect fake images.

[Goodfellow et al. 2014]

G(z)

G

z

Random code
Generator

D

Discriminator
fake image

Real (1) or

fake (0)?

fake (0.1)

G(z)

G

z

Random code
Generator

D

Discriminator
fake image

[Goodfellow et al. 2014]

Learning objective (GANs)

x

D real (0.9)

[Goodfellow et al. 2014]

fake (0.1)

G(z)

G

z

Random code
Generator

D

Discriminator
fake image

real image

Learning objective (GANs)

x

D real (0.9)

fake

(0.3)

[Goodfellow et al. 2014]

G(z)

G

z

Generator

D

Discriminator
fake image

Random code

real image

Learning objective (GANs)

• From the discriminator D’s perspective:

o binary classification: real vs. fake.

o Nothing special: similar to 1 vs. 7 or cat vs. dog

GAN Training Breakdown

• From the discriminator D’s perspective:

o binary classification: real vs. fake.

o Nothing special: similar to 1 vs. 7 or cat vs. dog

o From the generator G’s perspective:

‒ Optimizing a loss that depends on a classifier D

GAN loss for G Perceptual Loss for G

GAN Training Breakdown

• Training: iterate between training D and G with backprop.

• Global optimum when G reproduces data distribution.

G tries to synthesize fake images that fool D

D tries to identify the fakes

real or fake?

[Goodfellow et al., 2014]

G(z)

G

z

Generator

D

Discriminator

GAN Training Breakdown

Training GANs: Two-player game

May 18, 2023

Lecture 15 -134

Ranjay Krishna, Aditya Kusupati

Discriminator network: try to distinguish between real and fake images

Generator network: try to fool the discriminator by generating real-looking images

Training GANs: Two-player game

May 18, 2023

Lecture 15 -

135

Ranjay Krishna, Aditya Kusupati

Discriminator network: try to distinguish between real and fake images

Generator network: try to fool the discriminator by generating real-looking images

Connection to Game Theory: Zero-Sum “Minimax” Game
• Each player trying to minimize the opponent’s profits
• Each player trying to maximize their own profits

Training GANs: Two-player game

May 18, 2023

Lecture 15 -

136

zRandom noise

Generator Network

Discriminator Network

Fake Images

(from generator)

Real Images

(from training set)

Real or Fake

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.

Ranjay Krishna, Aditya Kusupati

Discriminator network: try to distinguish between real and fake images

Generator network: try to fool the discriminator by generating real-looking images

Training GANs: Two-player game

May 18, 2023

Lecture 15 -

137

zRandom noise

Generator Network

Discriminator Network

Fake Images

(from generator)

Real Images

(from training set)

Generator learning signal

Discriminator learning signal

Real or Fake

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.

Ranjay Krishna, Aditya Kusupati

Discriminator network: try to distinguish between real and fake images

Generator network: try to fool the discriminator by generating real-looking images

Training GANs: Two-player game

Train jointly in minimax game

Minimax objective function:

May 18, 2023

Lecture 15 -

138

Generator

objective
Discriminator

objective

Ranjay Krishna, Aditya Kusupati

Discriminator network: try to distinguish between real and fake images

Generator network: try to fool the discriminator by generating real-looking images

Training GANs: Two-player game

Train jointly in minimax game

Minimax objective function:Lecture 15 -

139

Ranjay Krishna, Aditya Kusupati

Discriminator outputs likelihood in (0,1) of real image

- Discriminator (θ
d
) wants to maximize objective s.t.

 D(x) is close to 1 (real) and D(G(z)) is close to 0 (fake)

- Generator (θ
g
) wants to minimize objective s.t.

 D(G(z)) is close to 1 (discriminator is fooled into thinking generated G(z) is real)

Discriminator network: try to distinguish between real and fake images

Generator network: try to fool the discriminator by generating real-looking images

Training GANs: Two-player game

May 18, 2023

Lecture 15 -

140

Minimax objective function:

Alternate between:

1. Gradient ascent on discriminator

2. Gradient descent on generator

In practice, optimizing this generator objective

does not work well!

When sample is likely

fake, want to learn from

it to improve generator

(move to the right on X

axis).

Ranjay Krishna, Aditya Kusupati

Training GANs: Two-player game

May 18, 2023

Lecture 15 -

141

Minimax objective function:

Alternate between:

1. Gradient ascent on discriminator

2. Gradient descent on generator

In practice, optimizing this generator objective

does not work well!

When sample is likely

fake, want to learn from

it to improve generator

(move to the right on X

axis).

But gradient in this

region is relatively flat!

Gradient signal

dominated by region

where sample is

already good

Ranjay Krishna, Aditya Kusupati

Training GANs: Two-player game

May 18, 2023

Lecture 15 -

142

Minimax objective function:

Alternate between:

1. Gradient ascent on discriminator

2. Instead: Gradient ascent on generator, different objective

Instead of minimizing likelihood of discriminator being correct, now

maximize likelihood of discriminator being wrong.

Same objective of fooling discriminator, but now higher gradient

signal for bad samples => works much better! Standard in practice.

High gradient signal

Low gradient signal

Ranjay Krishna, Aditya Kusupati

Training GANs: Two-player game
Putting it together: GAN training algorithm

Ranjay Krishna, Aditya Kusupati

Training GANs: Two-player game

May 18, 2023

Lecture 15 -

144

Putting it together: GAN training algorithm

Some find k=1

more stable,

others use k > 1,

no best rule.

Followup work

(e.g. Wasserstein

GAN, BEGAN)

alleviates this

problem, better

stability!

Ranjay Krishna, Aditya Kusupati
Arjovsky et al. "Wasserstein gan." arXiv preprint arXiv:1701.07875 (2017)

Berthelot, et al. "Began: Boundary equilibrium generative adversarial networks." arXiv preprint arXiv:1703.10717 (2017)

Training GANs: Two-player game

May 18, 2023

Lecture 15 -

145

z

Generator Network

Discriminator Network

Fake Images

(from generator)

Random noise

Real Images

(from training set)

After training, use generator network to

generate new images

Ranjay Krishna, Aditya Kusupati

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.

Real or Fake

Discriminator network: try to distinguish between real and fake images

Generator network: try to fool the discriminator by generating real-looking images

Generative Adversarial Nets: ConvolutionalArchitectures

Radford et al, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR 2016

Generator is an upsampling network with fractionally-strided convolutions

Discriminator is a convolutional network

Ranjay Krishna, Aditya Kusupati

Samples

from the

model look

much

better!

Radford et al,

ICLR 2016

Generative Adversarial Nets: Convolutional Architectures

May 18, 2023

147

Ranjay Krishna, Aditya Kusupati

nt

Interpolating

between

random

points in late

space

Generative Adversarial Nets: Convolutional Architectures

Radford et al,

ICLR 2016

Ranjay Krishna, Aditya Kusupati

Generative Adversarial Nets: Interpretable Vector
Math

May 18, 2023

Lecture 15 -

149

Smiling woman Neutral woman Neutral man

Ranjay Krishna, Aditya Kusupati

Samples

from the

model

Radford et al, ICLR 2016

Smiling woman Neutral woman Neutral man

Generative Adversarial Nets: Interpretable Vector
Math

May 18, 2023

Lecture 15 -

150

Ranjay Krishna, Aditya Kusupati

Samples

from the

model

Average Z

vectors, do

arithmetic

Radford et al, ICLR 2016

Smiling woman Neutral woman Neutral man

Smiling Man
Samples

from the

model

Generative Adversarial Nets: Interpretable Vector
Math

May 18, 2023

Lecture 15 -

151

Ranjay Krishna, Aditya Kusupati

Average Z

vectors, do

arithmetic

Radford et al, ICLR 2016

Glasses man No glasses man No glasses woman

Generative Adversarial Nets: Interpretable Vector
Math

May 18, 2023

Lecture 15 -

152

Ranjay Krishna, Aditya Kusupati

Woman with glasses

Radford et al,

ICLR 2016

GAN in PyTorch

https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.ht
ml

https://github.com/soumith/ganhacks for tips and tricks for training GANs

https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html
https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html
https://github.com/soumith/ganhacks

https://github.com/hindupuravinash/the-gan-zoo

Since then: Explosion of GANs

Lecture 15 -
May 18, 2023
154

Ranjay Krishna, Aditya Kusupati

“The GAN Zoo”

Better training and generation

LSGAN, Zhu 2017.

2017: Explosion of GANs

Lecture 15 -
May 18, 2023
155

Ranjay Krishna, Aditya Kusupati

Wasserstein GAN,

Arjovsky 2017.

Improved Wasserstein

GAN, Gulrajani 2017.

Progressive GAN, Karras 2018.

Some challenges with GANs …

Challenges with GANs

• Vanishing gradients:

o the discriminator becomes too good and the generator gradient vanishes.

• Non-Convergence:

o the generator and discriminator oscillate without reaching an equilibrium.

• Mode Collapse:

o the generator distribution collapses to a small set of examples.

• Mode Dropping:

o the generator distribution doesnt fully cover the data distribution.

Challenges with GANs: Vanishing Gradients

Challenges with GANs: Vanishing Gradients

Potential Solutions:

1. Explore other training

objectives?

2. Discriminator Capacity:

- make it small ?

- train it less ?

- slow learning rate?

3. Learning Schedule:

- try to balance training

 G and D

Problems: Nonconvergence

Challenges with GANs: Non-Convergence

• Simultaneous gradient descent is

not guaranteed to converge for

minimax objectives.

• Goodfellow et al. only showed

convergence when updates are

made in the function space.

• The parameterization of D and G

results in highly non-convex

objective.

• In practice, training tends to

oscillate – updates undo each

other!

Challenges with GANs: Non-Convergence

• Simultaneous gradient descent is

not guaranteed to converge for

minimax objectives.

• Goodfellow et al. only showed

convergence when updates are

made in the function space.

• The parameterization of D and G

results in highly non-convex

objective.

• In practice, training tends to

oscillate – updates undo each

other!

Potential Solutions (HACKS) https://github.com/soumith/ganhacks

https://github.com/soumith/ganhacks

Challenges with GANs: Mode Collapse

The generator maps all z values to the x that is mostly likely to fool the discriminator.

Challenges with GANs: Mode Collapse

Possible Solutions: Wasserstein GAN

Wasserstein GANs

Wasserstein GANs

Additional Sources:

There are lots of excellent references on GANs:

• Sebastian Nowozins presentation at MLSS 2018:
https://github.com/nowozin/mlss2018-madrid-gan

• NIPS 2016 tutorial on GANs by Ian Goodfellow:
https://arxiv.org/abs/1701.00160

• A nice explanation of Wasserstein GANs by Alex Irpan:
https://www.alexirpan.com/2017/02/22/wasserstein-gan.html

https://github.com/nowozin/mlss2018-madrid-gan
https://github.com/nowozin/mlss2018-madrid-gan
https://github.com/nowozin/mlss2018-madrid-gan
https://github.com/nowozin/mlss2018-madrid-gan
https://github.com/nowozin/mlss2018-madrid-gan
https://arxiv.org/abs/1701.00160
https://www.alexirpan.com/2017/02/22/wasserstein-gan.html
https://www.alexirpan.com/2017/02/22/wasserstein-gan.html
https://www.alexirpan.com/2017/02/22/wasserstein-gan.html

	Slide 1: Lecture 18: Image Synthesis
	Slide 2: Lecture 18: Image Synthesis
	Slide 3: Machine Learning Problems
	Slide 4: SUPERVISED LEARNING
	Slide 11: ONE-SHOT LEARNING
	Slide 13: ZERO-SHOT LEARNING
	Slide 16: UNSUPERVISED LEARNING
	Slide 17: How can we train models “unsupervised”?
	Slide 18: How can we train models “unsupervised”? This is the focus of representation learning and generative models
	Slide 19: How can we train models “unsupervised”? This is the focus of representation learning There’s an entire conference on Representation Learning
	Slide 20: How can we train models “unsupervised”? This is the focus of representation learning There’s an entire conference on Representation Learning
	Slide 21: Warning I might use the terms “latent”, “embedding”, “representation”, “feature” interchangeably.
	Slide 22: Motivation (kind of): Compression
	Slide 23: Motivation (kind of): Compression
	Slide 24: Representation Learning Paradigm
	Slide 25: Typical Goals for Representations
	Slide 26: Typical Goals for Representations
	Slide 27: Typical Goals for Representations
	Slide 28: Typical Goals for Representations
	Slide 29: Typical Goals for Representations
	Slide 30: Typical Goals for Representations
	Slide 31: Typical Goals for Representations
	Slide 32: Typical Goals for Representations
	Slide 33: Representation Learning is a Philosophy for Learning
	Slide 34: Representation Learning is a Philosophy for Learning
	Slide 35: Ok whatever. Tell us how it works …
	Slide 36: Types of Modeling (Probabilistic Interpretation)
	Slide 37: Types of Modeling (Probabilistic Interpretation)
	Slide 38: Types of Modeling (Probabilistic Interpretation)
	Slide 39: Types of Modeling (Probabilistic Interpretation)
	Slide 40: Types of Modeling (Probabilistic Interpretation)
	Slide 41: Types of Modeling (Probabilistic Interpretation)
	Slide 42
	Slide 43
	Slide 44: Generative Models
	Slide 46: Ok whatever. Tell us how it works … Let’s start simple …
	Slide 47: The idea of an “Auto-encoder”
	Slide 48: How would you train an autoencoder? Loss Function?
	Slide 49: Autoencoder: Loss Function
	Slide 50: Autoencoder: Simple Example
	Slide 51: Convolutional Autoencoder
	Slide 52: Convolutional Autoencoder
	Slide 53: Convolutional Autoencoder: Expand Dimensions? Transposed Convolution!
	Slide 54: Convolutional Autoencoder: Expand Dimensions? Transposed Convolution!
	Slide 55: Transposed Conv in PyTorch
	Slide 56: Denoising Autoencoder
	Slide 57: Example: Face Auto-Encoder
	Slide 58: Example: Face Auto-Encoder
	Slide 59: Example: Face Auto-Encoder
	Slide 60: Example: Face Auto-Encoder
	Slide 61: With Generative Models, there are 2 objectives:
	Slide 62: An Auto-Encoder is a Generative Model
	Slide 63: Types of Autoencoders
	Slide 64: So far, we have not enforced any “structure” on the latents z But a structure is desirable (Remember our motivations / goals for representation learning)
	Slide 65: So far, we have not enforced any “structure” on the latents z We can’t generate new images from D() if we don’t understand the z-space
	Slide 66: So far, we have not enforced any “structure” on the latents z We can’t generate new images from D() if we don’t understand the z-space For example, if I ask you to generate a “face with beard, glasses, brown hair” which z would you choose?
	Slide 67: VAE: Variational Autoencoder
	Slide 106: Variational Autoencoders
	Slide 107: Variational Autoencoders: Generating Data!
	Slide 108: Variational Autoencoders: Generating Data!
	Slide 109: Variational Autoencoders: Generating Data!
	Slide 110: Variational Autoencoders: Generating Data!
	Slide 111: Variational Autoencoders: Generating Data!
	Slide 112: Variational Autoencoders: Generating Data!
	Slide 113: Variational Autoencoders: Generating Data!
	Slide 114: Editing images with VAEs
	Slide 115: Editing images with VAEs
	Slide 116: Editing images with VAEs
	Slide 117: Editing images with VAEs
	Slide 118: Editing images with VAEs
	Slide 119: Editing images with VAEs
	Slide 120: To Summarize: AE, VAE
	Slide 122: Generative Adversarial Networks
	Slide 123: Generative Adversarial Networks Goal: Map all bold italic z to some realistic-looking bold italic x
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134: Training GANs: Two-player game
	Slide 135: Training GANs: Two-player game
	Slide 136: Training GANs: Two-player game
	Slide 137: Training GANs: Two-player game
	Slide 138: Training GANs: Two-player game
	Slide 139: Training GANs: Two-player game
	Slide 140: Training GANs: Two-player game
	Slide 141: Training GANs: Two-player game
	Slide 142: Training GANs: Two-player game
	Slide 143: Training GANs: Two-player game
	Slide 144: Training GANs: Two-player game
	Slide 145: Training GANs: Two-player game
	Slide 146
	Slide 147: Generative Adversarial Nets: Convolutional Architectures
	Slide 148: Generative Adversarial Nets: Convolutional Architectures
	Slide 149: Generative Adversarial Nets: Interpretable Vector Math
	Slide 150: Generative Adversarial Nets: Interpretable Vector Math
	Slide 151: Generative Adversarial Nets: Interpretable Vector Math
	Slide 152: Generative Adversarial Nets: Interpretable Vector Math
	Slide 153: GAN in PyTorch
	Slide 154: Since then: Explosion of GANs
	Slide 155: 2017: Explosion of GANs
	Slide 156: Some challenges with GANs …
	Slide 157: Challenges with GANs
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177: Additional Sources:

