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Machine Learning Problems



SUPERVISED LEARNING

‣ setting : ‣ setting :

• Training time

‣ data :

{x(t), y(t)}

• Test time

‣ data :

{x(t), y(t)}

x(t), y(t) ⇠ p(x, y) x(t), y(t) ⇠ p(x, y)

Example

𝐼𝑛𝑝𝑢𝑡: 𝑥(𝑡) is an image

𝑂𝑢𝑡𝑝𝑢𝑡: 𝑦(𝑡) is an image 

category



ONE-SHOT LEARNING
11

• Training time

‣ data :

{x(t), y(t)}

• Test time

‣ data :

{x(t), y(t)}

• Example

‣ recognizing a person 

based on a single 

picture of them

subject to y(t) 2 {1,. .., C} subject to y(t) 2 {C + 1,. .., C + M }

‣ side information :

- a single labeled example from 

each of the M new classes

‣ setting :

x(t), y(t) ⇠ p(x, y)

‣ setting :

x(t), y(t) ⇠ p(x, y)



ZERO-SHOT LEARNING
13

• Training time

‣ data :

{x(t), y(t)}

• Test time

‣ data :

{x(t), y(t)}

• Example

‣ recognizing an object 

based on a sentence

description of it

subject to y(t) 2 {1,. .., C}

‣ side information :

- description vector zc of each of 
the C classes

subject to y(t) 2 {C + 1,. .., C + M }

‣ side information :

- description vector zc of each of 
the new M classes

‣ setting :

x(t), y(t) ⇠ p(x, y)

‣ setting :

x(t), y(t) ⇠ p(x, y)



UNSUPERVISED LEARNING

‣ setting : ‣ setting :

• Test time

‣ data :

{x ( t)}

• Training time

‣ data :

{x ( t)}

x(t) ⇠ p(x) x(t) ⇠ p(x)



How can we train models “unsupervised”?



How can we train models “unsupervised”?

This is the focus of representation learning 
and generative models



How can we train models “unsupervised”?

This is the focus of representation learning

There’s an entire conference on Representation Learning

ICLR has become one of the top 
CS and Engineering (not just AI) 
publication although it just started 
in 2013.

In fact top-10 in ALL OF 
SCIENCE



How can we train models “unsupervised”?

This is the focus of representation learning

There’s an entire conference on Representation Learning

ICLR has become one of the top 
CS and Engineering (not just AI) 
publication although it just started 
in 2013.

In fact top-10 in ALL OF 
SCIENCE



Warning

I might use the terms “latent”, “embedding”, 
“representation”, “feature” interchangeably.



Motivation (kind of): Compression

• The idea is similar to compression (signal processing) or hashing (data structures):

o encode an image into a smaller vector s.t. you can decode it back to its original form

‒ Example:  images, audio, video are stored in a compressed form on your computer using compression 
algorithms like JPEG, MP3, MPEG etc.  The computer has software to decode it back so that you can 
view it (everytime you “open” a JPEG file to view an image, the decoder runs and converts code to RGB)



Motivation (kind of): Compression

• The idea is similar to compression (signal processing) or hashing (information theory):

o encode an image into a smaller vector s.t. you can decode it back to its original form

‒ Example:  images, audio, video are stored in a compressed form on your computer using compression 
algorithms like JPEG, MP3, MPEG etc.  The computer has software to decode it back so that you can view it 
(everytime you “open” a JPEG file to view an image, the decoder runs and converts code to RGB)

• Representation Learning 
∼ convert inputs automatically into “codes” (called representations/embeddings / features) 
s.t. the representations are:

o Useful for downstream tasks (e.g. classification, regression, …)

o “explain the data” and are “meaningful”

• Main difference:   “meaningful” representation spaces to do “tasks”

(The goal for compression is only efficient storage — not data classification/clustering etc.) 



Representation Learning Paradigm

Raw Data
(e.g. text, image, audio, 

video, …)

Representation 
Learning

(Encoding)

Do tasks / actions 
with these 

representations



Typical Goals for Representations

Source:  Pankaj Gupta (LMU Munich)

Similar representations for similar concepts



Typical Goals for Representations

Source:  Pankaj Gupta (LMU Munich)

A Semblance of “Context” should be encoded …

If you know the answer, 
don’t share it with the class yet.

People from lands between Greece and India 
might know the answer …



Typical Goals for Representations

Source:  Pankaj Gupta (LMU Munich)

A Semblance of “Context” should be encoded …



Typical Goals for Representations

A Semblance of “Context” should be encoded …

food

If you speak Marathi, this word has two meanings depending on context

Halwa (1):  a food item    derived from: Farsi
Halwa (2): (an instruction to) move (something) derived from: Sanskrit



Typical Goals for Representations

Source:  Pankaj Gupta (LMU Munich)

A Semblance of “Context” should be encoded …



Typical Goals for Representations

Source:  Pankaj Gupta (LMU Munich)

A Semblance of “Context” should be encoded …

dessert



Typical Goals for Representations

Source:  Pankaj Gupta (LMU Munich)

A Semblance of “Context” should be encoded …

sugary
dessert

Oh no! I forgot to put sugar in the 



Typical Goals for Representations

• “bird” has  “wing”, “beak”, “feathers”

• “bird” can  “fly”

• “bird” is under category  “animal”

• “bird” has subcategories “eagle”, “peacock”, “sparrow”, “seagull”, “pigeon”

Source:  Pankaj Gupta (LMU Munich)

Parts, properties, attributes, ontology ?



Representation Learning is a Philosophy for Learning

Parallel Work in Cog.Sci.
Key assumptions in this philosophy:

• You can convert a high-dimensional input space 
into a low-dimensional representation space

o Example:  RGB images → 100 dim vectors

• A good representation space will have a 
“structure”

o Example: Similarity, Symmetry, Relations will be 
easy to understand

o Why?  So that we can do arithmetic in 
representation space to do tasks

• Representations can be learned from data

• Representations can be leveraged for doing 
tasks



Representation Learning is a Philosophy for Learning

Key assumptions in this philosophy:

• You can convert a high-dimensional input space 
into a low-dimensional representation space

o Example:  RGB images → 100 dim vectors

• A good representation space will have a 
“structure”

o Example: Similarity, Symmetry, Relations will be 
easy to understand

o Why?  So that we can do arithmetic in 
representation space to do tasks

• Representations can be learned from data

• Representations can be leveraged for doing 
tasks

Parallel Work in Cog.Sci.



Ok whatever.  Tell us how it works …



Types of Modeling (Probabilistic Interpretation)

 Data: x; Label: y

    Density Function: 𝑝 𝑥

𝑋׬ 
𝑝 𝑥  𝑑𝑥 = 1

(probabilities of all inputs sum to 1)

“cat”

Discriminative Model
 

Learn Prob. Dist. 𝑃(𝑦|𝑥)

∀𝑥, σ𝑐 𝑃 𝑦 = 𝑐 𝑥 = 1  

01

Cat HorseTiger

P(y|x=     …

01

Cat HorseTiger

P(y|x=     …



Types of Modeling (Probabilistic Interpretation)

 Data: x; Label: y

    Density Function: 𝑝 𝑥

𝑋׬ 
𝑝 𝑥  𝑑𝑥 = 1

(probabilities of all inputs sum to 1)

“cat”

Generative Model
 

Learn Marginal Prob. Dist. 𝑃(𝑥)

 

Conditional Generative Model
 

Learn conditional probability 𝑃(𝑥|𝑦)

0

0.5

P(       )P(      ) P(       )



Types of Modeling (Probabilistic Interpretation)

 Data: x; Label: y

    Density Function: 𝑝 𝑥

𝑋׬ 
𝑝 𝑥  𝑑𝑥 = 1

(probabilities of all inputs sum to 1)

“cat”

• Discriminative Model

Learn Prob. Dist. 𝑃(𝑦|𝑥)

• Generative Model

 

Learn Marginal Prob. Dist. 𝑃 𝑥

• Conditional Generative Model

 

Learn conditional probability 𝑃(𝑥|𝑦)



Types of Modeling (Probabilistic Interpretation)

• Discriminative Model

Learn Prob. Dist. 𝑃(𝑦|𝑥)

• Generative Model

 

Learn Marginal Prob. Dist. 𝑃 𝑥

• Conditional Generative Model

 

Learn conditional probability 𝑃(𝑥|𝑦)

APPLICATIONS

Classification, Regression, 
Representation Learning 

(with labels)



Types of Modeling (Probabilistic Interpretation)

• Discriminative Model

Learn Prob. Dist. 𝑃(𝑦|𝑥)

• Generative Model

 

Learn Marginal Prob. Dist. 𝑃 𝑥

• Conditional Generative Model

 

Learn conditional probability 𝑃(𝑥|𝑦)

APPLICATIONS

Data Generation
Outlier Detection

Representation Learning 
(without labels)



Types of Modeling (Probabilistic Interpretation)

• Discriminative Model

Learn Prob. Dist. 𝑃(𝑦|𝑥)

• Generative Model

 

Learn Marginal Prob. Dist. 𝑃 𝑥

• Conditional Generative Model

 

Learn conditional probability 𝑃(𝑥|𝑦)

APPLICATIONS

Machine Translation
Text-to-image generation

(pretty much every “GenAI” 
product you see is a 

conditional generative model)







Generative Models   

• What’s a Generative Model?

o A model for the probability distribution of data 𝑥  P(x)

o A model that can be used to “generate” data  marketing term “genAI”

• Generative Models can be learned

o You are given some observed data X   (e.g. face images)

o You choose a function (e.g. neural network) to model 𝑃(𝑥; 𝜃) using parameters 𝜃

o You estimate 𝜃 s.t. 𝑃 𝑥; 𝜃  best fits the observations X

“Generative 
Model”

Seed x



Ok whatever.  Tell us how it works …

Let’s start simple …



The idea of an “Auto-encoder”

• NN trained to reproduce the input  ො𝑥 = 𝐹(𝑥)

• 𝐹() is a composition of two functions:   encoder 𝐸() and decoder 𝐷()

o Embedding / Feature / Latent   𝑧 = 𝐸(𝑥)

o Output      ො𝑥 = 𝐷 𝑧 = 𝐷 𝐸 𝑥



How would you train an autoencoder?

Loss Function?



Autoencoder:  Loss Function

• The objective is to minimize the “distance” between 𝑥 and ො𝑥

o If 𝑑 𝑥, ො𝑥 = 0 then we get perfect reconstruction

• Mean squared error!

• Cross Entropy (for binary inputs)

• For both cases, gradient is very simple:  ∇𝑥 𝐿 𝑓 𝑥 , 𝑥 = ො𝑥  − 𝑥



Autoencoder:  Simple Example

Source: Sebastian Raschka



Convolutional Autoencoder

Source: Sebastian Raschka



Convolutional Autoencoder



Convolutional Autoencoder:  
Expand Dimensions?  Transposed Convolution!

• The decoder needs to “expand dimensions” 

o Convert a small feature z into a large input x

• Use transposed convolution!   A.K.A. fractionally stride convolution

o Often (incorrectly) called “de”convolution

o This is an incorrect term because mathematically “deconvolution” is “inverse of convolution”



Convolutional Autoencoder:  
Expand Dimensions?  Transposed Convolution!



Transposed Conv in PyTorch



Denoising Autoencoder

• The input is “noisy” ෤𝑥 .  The expected output is a clean image (denoised image)

• Noise Examples:

o Gaussian:  ෤𝑥 = 𝑥 + 𝑧;  𝑧 ∼ 𝑁(0, 𝜎2𝐼)

o Masking:  Zero-out some of the components of x 
   (for images, make some pixels 0)

‒ Can be random masks

‒ Can be square masks

• Adding noise makes representations more robust

o Expect 𝐷(𝐸 ෤𝑥 = 𝑥   for all 𝑧  

Vincent, Larochelle, Bengio, Manzagol. ICML 2008



Example:  Face Auto-Encoder

Once trained, what can you do 
with this model?



Example:  Face Auto-Encoder

Once trained, what can you do 
with this model?



Example:  Face Auto-Encoder

Once trained, what can you do 
with this model?

(1)  Encode images into 
vectors 

(throw away the decoder …)



Example:  Face Auto-Encoder

Once trained, what can you do 
with this model?

(1) Encode images into vectors 

(2) Generate new faces …

(throw away the encoder )



With Generative Models, there are 2 objectives:

𝑃𝑚𝑜𝑑𝑒𝑙(𝑥)

figure adapted from Ranjay Krishna



An Auto-Encoder is a Generative Model

Probabilistic Interpretation:

• Encoder 𝐸() estimates  𝑃𝜃𝐸
(𝑧|𝑥)

• Decoder 𝐷() estimates  𝑃𝜃𝐷
(𝑥|𝑧)

• The marginal   𝑃 𝑥 = 𝑧׬
𝑃 𝑥, 𝑧  𝑑𝑧 = 𝑧׬ 

𝑃 𝑧 𝑃(𝑥|𝑧) 
 Bayes/Chain Rule …

• Once the AE is “trained”

o you get a generative model that generates “x” given a latent code “z”

o A conditional generative model takes an additional input “y”  𝑃 𝑥 𝑧, 𝑦

‒ E.g. generating images from text  y=text, x = image

‒ More on this later …



Types of Autoencoders



So far, we have not enforced any “structure” on the latents z

But a structure is desirable

(Remember our motivations / goals for representation learning)



So far, we have not enforced any “structure” on the latents z

We can’t generate new images from D() if we don’t understand the z-
space



So far, we have not enforced any “structure” on the latents z

We can’t generate new images from D() if we don’t understand the z-
space

For example, if I ask you to generate a “face with beard, glasses, brown 
hair”

which z would you choose?



VAE:  Variational Autoencoder

• Force a “prior” distribution on the latent space

o Example:  Gaussian 𝑁 0, 𝐼

• Gaussians are nice because they are 
perfectly symmetrical in every dimension

o Isotropic (covariance matrix is identity 𝐼)

o Dimensions are independent, 

i.e. P z1 𝑧2) = 𝑃 𝑧1 = 𝑁 0, 𝐼  ∀𝑧1, 𝑧2

o Property holds for any linear combination 
of 𝑧 elements

‒ i.e. 𝑃 𝑧1 𝑎𝑧2 + 𝑏𝑧3 = 𝑁(0, 𝐼) 

Kingma and Welling. Auto-Encoding Variational Bayes. ICLR 2014



Decoder network

Sample z from

Encoder network

Input Data

Variational Autoencoders

Key idea:

Force a Gaussian distribution on the 

latent space 𝑧

Details:  take my NN class!

Ranjay Krishna, Sarah Pratt



Variational Autoencoders: Generating Data!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Sample from 

true prior

Decoder 

network

Our assumption about data generation 

process

Sample from 

true conditional

Ranjay Krishna, Sarah Pratt



Variational Autoencoders: Generating Data!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Sample from 

true prior

Sample from 

true conditional

Decoder 

network

Our assumption about data generation 

process

Decoder network

Sample z from

Sample x|z from

Now given a trained VAE:

Ranjay Krishna, Sarah Pratt

use decoder network & sample z from prior!



Decoder network

Sample x|z from

Variational Autoencoders: Generating Data!

Sample z from

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Use decoder network. Now sample z from prior!

Ranjay Krishna, Sarah Pratt



Decoder network

Sample x|z from

Variational Autoencoders: Generating Data!

Sample z from

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Use decoder network. Now sample z from prior! Data manifold for 2-d z

Vary z
1

Vary z
2

Ranjay Krishna, Sarah Pratt



Variational Autoencoders: Generating Data!

Vary z
1

Vary z
2

Degree of smile

Head pose

Diagonal prior on z

=> independent 

latent variables

Ranjay Krishna, Sarah Pratt

Different 

dimensions of z 

encode 

interpretable factors 

of variation

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014



Variational Autoencoders: Generating Data!

Vary z
1

Vary z
2

Degree of smile

Head pose

Diagonal prior on z

=> independent 

latent variables

Different 

dimensions of z 

encode 

interpretable factors 

of variation

Also good feature representation that 

can be computed using q
ɸ
(z|x)!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Ranjay Krishna, Sarah Pratt



Variational Autoencoders: Generating Data!

32x32 CIFAR-10

Ranjay Krishna, Sarah Pratt

Labeled Faces in the Wild



Editing images with VAEs

1. Run input data through 

encoder to get a distribution 

over latent codes

Encoder network

Input Data

Ranjay Krishna, Sarah Pratt



Editing images with VAEs

1. Run input data through 

encoder to get a distribution 

over latent codes

2. Sample code z from encoder 

output

Sample z from

Encoder network

Input Data

Ranjay Krishna, Sarah Pratt



Editing images with VAEs

1. Run input data through 

encoder to get a distribution 

over latent codes

2. Sample code z from encoder 

output

3. Modify some dimensions of 

sampled code
Sample z from

Encoder network

Input Data

Ranjay Krishna, Sarah Pratt

modified



Editing images with VAEs

1. Run input data through 

encoder to get a distribution 

over latent codes

2. Sample code z from encoder 

output

3. Modify some dimensions of 

sampled code

4. Run modified z through 

decoder to get a distribution 

over data sample
Encoder network

Decoder network

Sample z from

Input Data

Ranjay Krishna, Sarah Pratt

modified



Editing images with VAEs

1. Run input data through 

encoder to get a distribution 

over latent codes

2. Sample code z from encoder 

output

3. Modify some dimensions of 

sampled code

4. Run modified z through 

decoder to get a distribution 

over data sample

5. Sample new data from (4)

Encoder network

Decoder network

Sample z from

Input Data

Ranjay Krishna, Sarah Pratt

modified



Editing images with VAEs

Ranjay Krishna, Sarah Pratt



To Summarize:  AE, VAE



Generative Adversarial Networks

• Problem:  We want to sample from a high-dimensional 
training distribution 𝑝(𝑥)

o But there is no direct way to do this …

o We don’t know which z maps to which image 
(so we can’t use autoencoders)

• We know how to sample from a random distribution  (e.g. 
Gaussian)

o Can we map a random distribution directly to 𝑝 𝑥  ?

NIPS 2014



Generative Adversarial Networks

Goal:  Map all 𝒛 to some realistic-looking 𝒙



Image synthesis from “noise”

Generator



Image synthesis from “noise”

Generator



© aleju/cat-generator

G(z)

G

fake image

[Goodfellow et al. 2014]

z

Random code
Generator



A two-player game:

• 𝐺 tries to generate fake images that can fool 𝐷.
• 𝐷 tries to detect fake images.

[Goodfellow et al. 2014]

G(z)

G

z

Random code
Generator

D

Discriminator
fake image

Real (1) or

fake (0)?



fake (0.1)

G(z)

G

z

Random code
Generator

D

Discriminator
fake image

[Goodfellow et al. 2014]

Learning objective (GANs)



x

D real (0.9)

[Goodfellow et al. 2014]

fake (0.1)

G(z)

G

z

Random code
Generator

D

Discriminator
fake image

real image

Learning objective (GANs)



x

D real (0.9)

fake

(0.3)

[Goodfellow et al. 2014]

G(z)

G

z

Generator

D

Discriminator
fake image

Random code

real image

Learning objective (GANs)



• From the discriminator D’s perspective: 

o binary classification: real vs. fake. 

o Nothing special: similar to 1 vs. 7 or cat vs. dog 

GAN Training Breakdown



• From the discriminator D’s perspective: 

o binary classification: real vs. fake. 

o Nothing special: similar to 1 vs. 7 or cat vs. dog 

o From the generator G’s perspective: 

‒ Optimizing a loss that depends on a classifier D

GAN loss for G Perceptual Loss for G

GAN Training Breakdown



• Training: iterate between training D and G with backprop.

• Global optimum when G reproduces data distribution.

G tries to synthesize fake images that fool D

D tries to identify the fakes

real or fake?

[Goodfellow et al., 2014]

G(z)

G

z

Generator

D

Discriminator

GAN Training Breakdown



Training GANs: Two-player game

May 18, 2023

Lecture 15 -134

Ranjay Krishna, Aditya Kusupati

Discriminator network: try to distinguish between real and fake images

Generator network: try to fool the discriminator by generating real-looking images



Training GANs: Two-player game

May 18, 2023

Lecture 15 -

135

Ranjay Krishna, Aditya Kusupati

Discriminator network: try to distinguish between real and fake images

Generator network:  try to fool the discriminator by generating real-looking images

Connection to Game Theory:  Zero-Sum “Minimax” Game
• Each player trying to minimize the opponent’s profits
• Each player trying to maximize their own profits



Training GANs: Two-player game

May 18, 2023

Lecture 15 -

136

zRandom noise

Generator Network

Discriminator Network

Fake Images 

(from generator)

Real Images 

(from training set)

Real or Fake

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.

Ranjay Krishna, Aditya Kusupati

Discriminator network: try to distinguish between real and fake images

Generator network:  try to fool the discriminator by generating real-looking images



Training GANs: Two-player game

May 18, 2023

Lecture 15 -

137

zRandom noise

Generator Network

Discriminator Network

Fake Images 

(from generator)

Real Images 

(from training set)

Generator learning signal

Discriminator learning signal

Real or Fake

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.

Ranjay Krishna, Aditya Kusupati

Discriminator network: try to distinguish between real and fake images

Generator network:  try to fool the discriminator by generating real-looking images



Training GANs: Two-player game

Train jointly in minimax game

Minimax objective function:

May 18, 2023

Lecture 15 -

138

Generator 

objective
Discriminator 

objective

Ranjay Krishna, Aditya Kusupati

Discriminator network: try to distinguish between real and fake images

Generator network:  try to fool the discriminator by generating real-looking images



Training GANs: Two-player game

Train jointly in minimax game

Minimax objective function:Lecture 15 -

139

Ranjay Krishna, Aditya Kusupati

Discriminator outputs likelihood in (0,1) of real image

- Discriminator (θ
d
) wants to maximize objective s.t. 

 D(x) is close to 1 (real) and D(G(z)) is close to 0 (fake)

- Generator (θ
g
) wants to minimize objective s.t. 

 D(G(z)) is close to 1 (discriminator is fooled into thinking generated G(z) is real)

Discriminator network: try to distinguish between real and fake images

Generator network:  try to fool the discriminator by generating real-looking images



Training GANs: Two-player game

May 18, 2023

Lecture 15 -

140

Minimax objective function:

Alternate between:

1. Gradient ascent on discriminator

2. Gradient descent on generator

In practice, optimizing this generator objective 

does not work well!

When sample is likely 

fake, want to learn from 

it to improve generator 

(move to the right on X 

axis).

Ranjay Krishna, Aditya Kusupati



Training GANs: Two-player game

May 18, 2023

Lecture 15 -

141

Minimax objective function:

Alternate between:

1. Gradient ascent on discriminator

2. Gradient descent on generator

In practice, optimizing this generator objective 

does not work well!

When sample is likely 

fake, want to learn from 

it to improve generator 

(move to the right on X 

axis).

But gradient in this 

region is relatively flat!

Gradient signal 

dominated by region 

where sample is 

already good

Ranjay Krishna, Aditya Kusupati



Training GANs: Two-player game

May 18, 2023

Lecture 15 -

142

Minimax objective function:

Alternate between:

1. Gradient ascent on discriminator

2. Instead: Gradient ascent on generator, different objective

Instead of minimizing likelihood of discriminator being correct, now 

maximize likelihood of discriminator being wrong.

Same objective of fooling discriminator, but now higher gradient 

signal for bad samples => works much better! Standard in practice.

High gradient signal

Low gradient signal

Ranjay Krishna, Aditya Kusupati



Training GANs: Two-player game
Putting it together: GAN training algorithm

Ranjay Krishna, Aditya Kusupati



Training GANs: Two-player game

May 18, 2023

Lecture 15 -

144

Putting it together: GAN training algorithm

Some find k=1 

more stable, 

others use k > 1, 

no best rule.

Followup work 

(e.g. Wasserstein 

GAN, BEGAN)

alleviates this 

problem, better 

stability!

Ranjay Krishna, Aditya Kusupati
Arjovsky et al. "Wasserstein gan." arXiv preprint arXiv:1701.07875 (2017)

Berthelot, et al. "Began: Boundary equilibrium generative adversarial networks." arXiv preprint arXiv:1703.10717 (2017)
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z

Generator Network

Discriminator Network

Fake Images 

(from generator)

Random noise

Real Images 

(from training set)

After training, use generator network to 

generate new images

Ranjay Krishna, Aditya Kusupati

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.

Real or Fake

Discriminator network: try to distinguish between real and fake images

Generator network:  try to fool the discriminator by generating real-looking images



Generative Adversarial Nets: ConvolutionalArchitectures

Radford et al, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR 2016

Generator is an upsampling network with fractionally-strided convolutions 

Discriminator is a convolutional network

Ranjay Krishna, Aditya Kusupati



Samples 

from the 

model look 

much 

better!

Radford et al, 

ICLR 2016

Generative Adversarial Nets: Convolutional Architectures

May 18, 2023

147

Ranjay Krishna, Aditya Kusupati



nt

Interpolating 

between 

random 

points in late 

space

Generative Adversarial Nets: Convolutional Architectures

Radford et al, 

ICLR 2016

Ranjay Krishna, Aditya Kusupati
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Smiling woman Neutral woman Neutral man

Ranjay Krishna, Aditya Kusupati

Samples

from the

model

Radford et al, ICLR 2016



Smiling woman Neutral woman Neutral man

Generative Adversarial Nets: Interpretable Vector
Math
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Ranjay Krishna, Aditya Kusupati

Samples

from the

model

Average Z

vectors, do

arithmetic

Radford et al, ICLR 2016



Smiling woman Neutral woman Neutral man

Smiling Man
Samples

from the

model

Generative Adversarial Nets: Interpretable Vector
Math
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Ranjay Krishna, Aditya Kusupati

Average Z

vectors, do

arithmetic

Radford et al, ICLR 2016



Glasses man No glasses man No glasses woman

Generative Adversarial Nets: Interpretable Vector
Math

May 18, 2023
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Ranjay Krishna, Aditya Kusupati

Woman with glasses

Radford et al, 

ICLR 2016



GAN in PyTorch

https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.ht
ml 

https://github.com/soumith/ganhacks for tips and tricks for training GANs

https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html
https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html
https://github.com/soumith/ganhacks


https://github.com/hindupuravinash/the-gan-zoo

Since then: Explosion of GANs

Lecture 15 -
May 18, 2023
154

Ranjay Krishna, Aditya Kusupati

“The GAN Zoo”



Better training and generation

LSGAN, Zhu 2017.

2017: Explosion of GANs

Lecture 15 -
May 18, 2023
155

Ranjay Krishna, Aditya Kusupati

Wasserstein GAN, 

Arjovsky 2017.

Improved Wasserstein 

GAN, Gulrajani 2017.

Progressive GAN, Karras 2018.



Some challenges with GANs …



Challenges with GANs

• Vanishing gradients: 

o the discriminator becomes too good and the generator gradient vanishes. 

• Non-Convergence: 

o the generator and discriminator oscillate without reaching an equilibrium. 

• Mode Collapse: 

o the generator distribution collapses to a small set of examples. 

• Mode Dropping: 

o the generator distribution doesnt fully cover the data distribution.



Challenges with GANs:  Vanishing Gradients



Challenges with GANs:  Vanishing Gradients

Potential Solutions:

1. Explore other training 

objectives?

2. Discriminator Capacity:  

-   make it small ?

-   train it less ?

-   slow learning rate?

3. Learning Schedule:

-   try to balance training 

    G and D



Problems: Nonconvergence



Challenges with GANs:  Non-Convergence

• Simultaneous gradient descent is 

not guaranteed to converge for 

minimax objectives. 

• Goodfellow et al. only showed 

convergence when updates are 

made in the function space.

• The parameterization of D and G 

results in highly non-convex 

objective. 

• In practice, training tends to 

oscillate – updates undo each 

other!



Challenges with GANs:  Non-Convergence

• Simultaneous gradient descent is 

not guaranteed to converge for 

minimax objectives. 

• Goodfellow et al. only showed 

convergence when updates are 

made in the function space.

• The parameterization of D and G 

results in highly non-convex 

objective. 

• In practice, training tends to 

oscillate – updates undo each 

other!

Potential Solutions (HACKS) https://github.com/soumith/ganhacks 

https://github.com/soumith/ganhacks


Challenges with GANs:  Mode Collapse

The generator maps all z values to the x that is mostly likely to fool the discriminator.





Challenges with GANs:  Mode Collapse

Possible Solutions: Wasserstein GAN



Wasserstein GANs



Wasserstein GANs





















Additional Sources:

There are lots of excellent references on GANs:

• Sebastian Nowozins presentation at MLSS 2018: 
https://github.com/nowozin/mlss2018-madrid-gan 

• NIPS 2016 tutorial on GANs by Ian Goodfellow:
https://arxiv.org/abs/1701.00160 
 

• A nice explanation of Wasserstein GANs by Alex Irpan:
https://www.alexirpan.com/2017/02/22/wasserstein-gan.html 

https://github.com/nowozin/mlss2018-madrid-gan
https://github.com/nowozin/mlss2018-madrid-gan
https://github.com/nowozin/mlss2018-madrid-gan
https://github.com/nowozin/mlss2018-madrid-gan
https://github.com/nowozin/mlss2018-madrid-gan
https://arxiv.org/abs/1701.00160
https://www.alexirpan.com/2017/02/22/wasserstein-gan.html
https://www.alexirpan.com/2017/02/22/wasserstein-gan.html
https://www.alexirpan.com/2017/02/22/wasserstein-gan.html
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