tejasgokhale.com

Lecture 18:
Image Synthesis

CMSC 472 / 672

Computer Vision

Input Text

[Struggling for meme ideas

Output Meme

tejasgokhale.com

SEARCHIEORATHEIRIGH]

[MEMPIATESMANUATLY,
Lecture 18: AT
e MHEHRIGHTIRI'ACE
Image Synthesis
CMSC 472 / 672 [URNTENT
INHOIMEMES
Computer Vision

UMBC

Machine Learning Problems

SUPERVISED LEARNING

- Training time - lest time Example
» data: » data: Input: x® s an image
{X(t), y(t)} {X(t), y(t)} Output: y® is an image
category

» setting : » setting :

X0, 40 e pix, X9, 40 < p(x,

ONE-SHOT LEARNING

- Training time - lest time

» data: » data:

{x{9, y9) {x(9, y)

» setting : » setting :

x(0, Yl e p(x, y) x(0, Yl « p(x, y)

subject to y'¥ 2 {1,..., C} subjectto y{® 2 {C+ 1,..., C+ M}
» side information :

- a single labeled example from
each of the M new classes

- Example

» recognizing a person
based on a single
picture of them

ZERO-SHOT LEARNING

- Training time - lest time

» data: » data:

{x{9, y9) {x(9, y)

» setting : » setting :

x(0, Yl e p(x, y) x(0, Yl « p(x, y)

subjectto y'¥ 2 {1,..., C} subjectto y{® 2 {C+ 1,..., C+ M}
» side information : » side information :

- description vector Zc of each of - description vector Z¢ of each of
the C classes the new M classes

- Example

» recognizing an object
based on a sentence
description of it

UNSUPERVISED LEARNING

- Training time - lest time

» data: » data:

(x(0) (x(0)

» setting : » setting :

x{ e p(x) x{9 e p(x)

How can we train models “unsupervised'?

This is the focus of representation learning
and generative models

This is the focus of representation learning

) . = Top publications Q
There's an entire c

Categories ~ English ~

Publication hS-ndex h5-median
I c L R 1. Nature 488 745
2. IEEE/CVF Conference on Computer Vision and Pattern Recognition 440 689
3. The New England Journal of Medicine 434 897
4 Science 409 633
ICLR has become one of the top 5 Neture Communications 375 192
CS and Engineering (not just Al) 6. The Lancet 368 678
publication although it just started 7. Neural Information Processing Systems 337 514
in 2013. 8. Advanced Materials 327 420
9. cell 320 482
In fact top-10 in ALL OF 10. International Conference on Leaming Representations 304 534

SCIENCE

This is tkh

There's an entire

ICLR

ICLR has become one of the top
CS and Engineering (not just Al)
publication although it just started
in 2013.

In fact top-10 in ALL OF
SCIENCE

International Conference on Learning Representations

h5-index:304 h5-median:584

#2 Artificial Intelligence
#4 Engineering & Computer Science

Title / Author

An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale.

A Dosovitskiy, L Beyer, A Kolesnikov, D Weissenborn, X Zhai, ...
ICLR

Decoupled Weight Decay Regularization.

I Loshchilov, F Hutter
ICLR. (Poster)

Measuring and Improving the Use of Graph Information in Graph Neural Networks.

Y Hou, J Zhang, J Cheng, K Ma, RTBE Ma, H Chen, MC Yang
ICLR

ALBERT: A Lite BERT for Self-supervised Learning of Language Representations.

Z Lan, M Chen, 5 Goodman, K Gimpel, P Sharma, R Soricut
ICLR

Large Scale GAN Training for High Fidelity Natural Image Synthesis.

A Brock, J Donahue, K Simonyan
ICLR

DARTS: Differentiable Architecture Search.

H Liu, K Simonyan, Y Yang
ICLR {Poster)

LoRA: Low-Rank Adaptation of Large Language Models.
EJ Hu, Y Shen, P Wallis, Z Allen-Zhu, ¥ Li, S Wang, L Wang, W Chen
ICLR

Deformable DETR: Deformable Transformers for End-to-End Object Detection.

X Zhu, W Su, L Lu, B Li, X Wang, J Dai
ICLR

BERTScore: Evaluating Text Generation with BERT.

T Zhang, V Kishore, F Wu, KQ Weinberger, Y Arizi
ICLR

ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators.

K Clark, MT Luong, QV Le, CD Manning
ICLR

Cited by

7649

ndex

= & 1= =

[em

= T= =

=

Q,

English ~

h5-median

745

689

897

633

492

678

614

420

4382

584

Warning

| might use the terms “latent”, “embedding’,
“representation’’, “feature” interchangeably.

Motivation (kind of): Compression

* The idea is similar to compression (signal processing) or hashing (data structures):

o encode an image into a smaller vector s.t. you can decode it back to its original form

— Example: images, audio, video are stored in a compressed form on your computer using compression
algorithms like JPEG, MP3, MPEG etc. The computer has software to decode it back so that you can
view it (everytime you “open” a JPEG file to view an image, the decoder runs and converts code to RGB)

Encoding/ m Decoding/

Compression Decompression

Audio / Video
File

Motivation (kind of): Compression

* The idea is similar to compression (signal processing) or hashing (information theory):
o encode an image into a smaller vector s.t. you can decode it back to its original form

— Example: images, audio, video are stored in a compressed form on your computer using compression
algorithms like JPEG, MP3, MPEG etc. The computer has software to decode it back so that you can view it
(everytime you “open” a JPEG file to view an image, the decoder runs and converts code to RGB)

* Representation Learning

~ convert inputs automatically into “codes” (called representations/embeddings / features)
s.t. the representations are:

o Useful for downstream tasks (e.g. classification, regression, ...)

o “explain the data” and are “meaningful”

Main difference: “meaningful” representation spaces to do “tasks”

(The goal for compression is only efficient storage — not data classification/clustering etc.)

Representation Learning Paradigm

Raw Data Representation Do tasks / actions

(e.g. text, image, audio, Learning with these
video, ...) (Encoding) representations

Typical Goals for Representations

Similar representations for similar concepts

Source: Pankaj Gupta (LMU Munich)

Typical Goals for Representations

A Semblance of “Context” should be encoded ...

meaning ?

If you know the answer,
don’t share it with the class yet.

HALWA

People from lands between Greece and India
might know the answer ...

Source: Pankaj Gupta (LMU Munich)

Typical Goals for Representations

A Semblance of “Context” should be encoded ...

| am very hungry, | will eat HALWA

Source: Pankaj Gupta (LMU Munich)

Typical Goals for Representations

A Semblance of “Context” should be encoded ...

food ‘)

| am very hungry, | will eat HALWA

If you speak Marathi, this word has two meanings depending on context

Halwa (1): a food item derived from: Farsi
Halwa (2): (an instruction to) move (something) derived from: Sanskrit

Typical Goals for Representations

A Semblance of “Context” should be encoded ...

6)

Is it a good idea to eat HALWA after a meal ?

Source: Pankaj Gupta (LMU Munich)

Typical Goals for Representations

A Semblance of “Context” should be encoded ...

6)

dessert

Is it a good idea to eat HALWA after a meal ?

Source: Pankaj Gupta (LMU Munich)

Typical Goals for Representations

A Semblance of “Context” should be encoded ...

sugary €D

dessert @

Oh no! | forgot to put sugar in the HALWA

Source: Pankaj Gupta (LMU Munich)

Typical Goals for Representations

Parts, properties, attributes, ontology ?

* “bird" has “wing”, "beak”, “feathers”
* “bird"” can “fly”
* “bird"” is under category “animal”

e “bird"” has subcategories “eagle’, “peacock”, “sparrow’, “seagull”’, “pigeon”

Representation Learning is a Philosophy for Learning

Key assumptions in this philosophy:

* You can convert a high-dimensional input space
into a low-dimensional representation space

o Example: RGB images = 100 dim vectors

* A good representation space will have a
“structure”

o Example: Similarity, Symmetry, Relations will be
easy to understand

o Why? So that we can do arithmetic in
representation space to do tasks

* Representations can be learned from data

* Representations can be leveraged for doing
tasks

Parallel Work in Cog.Sci.

Trends in Cognitive Sciences o

CellPress

Volume 28, Issue 9, September 2024, Pages 844-856

Review

Why concepts are (probably) vectors

Steven T. Piantadosi 12 & &, Dyana C.Y. Muller 2, Joshua S. Rule
Karthikeya Kaushik !, Mark Gorenstein 2, Elena R. Leib !, Emily Sanford !

For decades, cognitive scientists have debated what kind of representation might
characterize human concepts. Whatever the format of the representation, it must
allow for the computation of varied properties, including similarities, features, cate-
gories, definitions, and relations. It must also support the development of theories,
ad hoc categories, and knowledge of procedures. Here, we discuss why vector-
based representations provide a compelling account that can meet all these
needs while being plausibly encoded into neural architectures. This view has be-
come especially promising with recent advances in both large language models
and vector symbolic architectures. These innovations show how vectors can handle
many properties traditionally thought to be out of reach for neural models, including
compositionality, definitions, structures, and symbolic computational processes.

Highlights

Modern language models and vector-
symbolic architectures show that
vector-based models are capable of
handling the compositional, structured,
and symbolic properties required for
hurnan concepts.

Vectors are also able to handle key phe-
narmena from the psychology. including
computation of features and similarities,
reasoning about relations and analogies,
and representation of theonies.

Language models show how wvector
representation of word semantics and
sentences can interface between con-
cepts and language, as seen in defini-
tional theories of concepts or ad hoc
concepts.

The idea of Church encoding, from logic,
allows us to understand how meaning
can arise in vector-based or symbolic
gystems.

By combining these recent computa-
ticnal results with classic findings in psy-
chology, vector-based modeds provide a
compeling account of human concep-
tual representation.

Representation Learning is a Philosophy for Learning

Key assumptions in this philosophy:

* You can convert a high-dimensional input space
into a low-dimensional representation space

o Example: RGB images = 100 dim vectors

* A good representation space will have a
“structure”

o Example: Similarity, Symmetry, Relations will be
easy to understand

o Why? So that we can do arithmetic in
representation space to do tasks

* Representations can be learned from data

* Representations can be leveraged for doing
tasks

Latent concept
representations

/ Dog

Similarities | Features | |Categories| |Definitions| [Language Task N
generation

Domain-specific
transformations

Domain-specific
representations

Hfghf[_:_\ —;’1 " \nin
v PG
. \ /|;1, __.Mamma}_‘
Alligator| ﬁ' ' . /.-" "...teach an old

dog new tricks”
Trends in Cognitive Sciences

Figure 1. This figure illustrates the proposal that concepts are vectors that are projected into spaces for each
task. These tasks include the basic tasks of cognitive psychology, including use of features, judgment of similarities, creation
of definitions, language definition, and others. Information is shared between tasks when the task-specific transformations
preserve some of the geometry in highest-level concept representation. Concept representations are then adjusted to
perform well on all tasks simultaneously.

Ok whatever. Tell us how it works ...

Types of Modeling (Probabilistic Interpretation)

Data: x; Label: y

llcatll

Density Function: p(x)
J, p(x)dx =1

(probabilities of all inputs sum to 1)

Discriminative Model

Learn Prob. Dist. P(y]|x)

(A+ HAarcaTicar
P(y\%: .

(~+ HArcaTicar
Vx;ZcP(y — C|X) =1

Types of Modeling (Probabilistic Interpretation)

Data: x; Label: y

llcatll

Density Function: p(x)
J, p(x)dx =1

(probabilities of all inputs sum to 1)

Generative Model

Learn Marginal Prob. Dist. P(x)

0.5

0

Conditional Generative Model

Learn conditional probability P(x|y)

Discriminative Model (Unconditional)

P(y | x) Generative Model
P(x|y)|= P0) P (x)

Generative Model Prior over labels

Types of Modeling (Probabilistic Interpretation)

* Discriminative Model

Data: x; Label: y
S Learn Prob. Dist. P(y|x)

cat Generative Model
Learn Marginal Prob. Dist. P(x)
Density Function: p(x)
Jy P dx =1 « Conditional Generative Model

(probabilities of all inputs sum to 1) N .
Learn conditional probability P(x|y)

Types of Modeling (Probabilistic Interpretation)
APPLICATIONS

* Discriminative Model

Classification, Regression,
Representaton Learning QN Learn Prob. Dist. P(y|x)
(with labels)

* Generative Model

Learn Marginal Prob. Dist. P(x)

 Conditional Generative Model

Learn conditional probability P(x|y)

Types of Modeling (Probabilistic Interpretation)

APPLICATIONS

Data Generation
Outlier Detection
Representation Learning
(without labels)

* Discriminative Model

Learn Prob. Dist. P(y|x)

* Generative Model

l Learn Marginal Prob. Dist. P(x)

 Conditional Generative Model

Learn conditional probability P(x|y)

Types of Modeling (Probabilistic Interpretation)
APPLICATIONS

* Discriminative Model

Learn Prob. Dist. P(y|x)

* Generative Model

Learn Marginal Prob. Dist. P(x)

Machine Translation
Text-to-image generation Conditional Generative Model
product you see is a Learn conditional probability P(x|y)
conditional generative model)

Generative Modeling

e Density estimation

e Sample generation

Training examples Model samples

(Goodfellow 2016)

Why Generative Models?

* We’ve only seen discriminative models so far

* Given an image X, predicta label Y
* Estimates P(Y|X)

* Discriminative models have several key limitations

* Can’t model P(X), i.e. the probability of seeing a certain image
* Thus, can’t sample from P(X), i.e. can’t generate new images

* Generative models (in general) cope with all of above
* Can model P(X)
* Can generate new images

Generative Models

* What's a Generative Model?
o A model for the probability distribution of data x P(x)

o A model that can be used to “generate” data marketing term “genAl"” |

“Generative et 4

Seed Model” %

* Generative Models can be learned
o You are given some observed data X (e.g. face images)
o You choose a function (e.g. neural network) to model P(x; 0) using parameters 6

o You estimate 8 s.t. P(x; 0) best fits the observations X

Let's start simple ...

The i1dea of an “Auto-encoder’”

NN trained to reproduce the input x =F(x)

* F()is a composition of two functions: encoder E() and decoder D()

o Embedding / Feature / Latent

o Output

Input

VIdddlid

How would you train an autoencoder?

L oss Function?

byl

Input —>
x —>

b

N

N }.,‘
~
X R\
AN WX
Y
\\ P
\

IRRRRRRR

Autoencoder: Loss Function

* The objective is to minimize the "distance” between x and X

olfd(x,x) =0 then we get perfect reconstruction

e Mean squared error! l(f(X)) il % zk('/r\k s mk)Q

* Cross Entropy (for binary inputs)

I(f(x)) = = >k (zx log(Zk) + (1 —) log(1 — Tx))

* For both cases, gradient is very simple: V, L(f(x),x) =X —X

Autoencoder: Simple Example

fully connected layer fully connected layer

+ leaky relu + sigmoid
Reshape 784 — 30 35 > 784 Reshape

28728 => 784 784 => 28728

. 32 dim l

7|t 11311212
124303

original

reconstructed x|

e B 5 o
- i
[)

%%

7 MIIVAIR)
7 SIVAR L

Source: Sebastian Raschka

Convolutional Autoencoder

1 or more 1 or more
convolutional layers ~ d€ convolutional layers

a

original ‘F 0|04 l192 71 /3/MN8 e 2
reconstructed;(,{ é 0 q | 7 3 I D/ 3 f i '3 (n j

Source: Sebastian Raschka

Convolutional Autoencoder

28x28x1

14x14x32 T1dx14x32
1152 1152
4| '_'_
T Txb4 ' 0 . TxTubd
k 1
IxIx128 . Ix3Ix128 /!
— | |j —r[—h ‘| ﬂ-b
Conv3 - Reshape
Conv2 stride=2 h : DeConv3
ciride=2 " | il stride=2
- Flatten FC L
Convl DeConv2

stride =2 stride=2

Convolutional Autoencoder:
Expand Dimensions? Transposed Convolution!

* The decoder needs to “expand dimensions”

o Convert a small feature z into a large input X

« Use transposed convolution! A.K.A. fractionally stride convolution
o Often (incorrectly) called “de”"convolution

o This is an incorrect term because mathematically “deconvolution” is “inverse of convolution”

Convolutional Autoencoder:
Expand Dimensions? Transposed Convolution!

Regular Convolution:

- 5

Dumoulin, Vincent, and Fra o Visin. "A guide to arithmetic for dee arXiv preprint arXiv:1603.07285 (2016).

output

input

Transposed Convolution (stride = 2)

— & &
< < <

input

4
g
4
A0
o
&

o

import torch

torch.manual_seed(123)
a = torch.rand(4).view(1, 1, 2, 2)

conv_t = torch.nn.ConvTranspose2d(in_channels=1,
out_channels=1,
kernel_size=(3, 3),
padding=@,
stride=1)

output = s(n-1)+k-2p = 1%{2-1)+3-2%0 = 4
conv_t(a)

tensor([[[[-@.2863, -0.2766, -0.1478, -0.3274],
[-8.3522, -@.5356, -0.1591, -@.2911],
[-9.3054, -0.4644, -0.3286, -0.2444],
[-8.2332, -0.2557, -9.1876, -0.3970111],
grad_fn=<ThnnConvTranspose2DBackward>)

torch.manual_seed(123)
a = torch.rand(16).view(1l, 1, 4, 4)

conv_t = torch.nn.ConvTranspose2d(in_channels=1,
out_channels=1,
kernel_size=(3, 3),
padding=@,
stride=1)

output = s(n-1)+k=-2p = 1*(4-1)+3-2%0 = 6
conv_t(a).sizel)

torch.5ize([1, 1, 6, 6]}

Transposed Conv in PyTorch

output =s(n—1)+k—2p

torch.manual_seed(123)
a = torch.rand(64).view(1, 1, 8, 8)

conv_t = torch.nn.ConvTranspose2d(in_channels=1,
out_channels=1,
kernel_size=(3, 3),
padding=9,
stride=1)

output = s{n=-1)+k=-2p = 1%(8-1)+3-2+0 = 18
conv_t(a).size()

torch.Size([1, 1, 1@, 10])

Denoising Autoencoder

* The input is “noisy” ¥ . The expected output is a clean image (denoised image)

* Noise Examples: 4 = Inputs
: ~ Outputs
o Gaussian: ¥=x+2z z~N(0,0c%] f)
o Masking: Zero-out some of the components of x Hidden 3

(for images, make some pixels 0) m
— Can be random masks

[Hidden 1]

1
[+]4—[Gaussian Noise]
I

o Expect D(E((%)) = x for all z [it]

— Can be square masks

* Adding noise makes representations more robust

Vincent, Larochelle, Bengio, Manzagol. ICML 2008

Example: Face Auto-Encoder

g‘f"
®© @ @ () @

_——Encoder

Once trained, what can you do
output

with this model?

Example: Face Auto-Encoder

g‘f"
®© @ @ () @

_——Encoder

Once trained, what can you do
output

with this model?

Example: Face Auto-Encoder

Once trained, what can you do
with this model?

__——Encoder
output

(1) Encode images into
vectors

(throw away the decoder ...)

Example: Face Auto-Encoder

Once trained, what can you do SEECECRCR
with this model?

(2) Generate new faces ...

(throw away the encoder)

With Generative Models, there are 2 objectives:

learning sampling

:> Pmodel(x) :>)

Training data ~ p,_._(x)

Objectives:
1. Learnp_ . (x) that approximates p___(x)
2. Sampling new x fromp_ . (X)

figure adapted from Ranjay Krishna

An Auto-Encoder i1s a Generative Model

Probabilistic Interpretation:

Encoder E() estimates Pg.(z]x)
Decoder D() estimates Pg, (x|z)
The marginal P(x)=[P(x,z)dz = [P(2)P(x|z)

Bayes/Chain Rule ...

Once the AE is "trained”
o you get a generative model that generates “x" given a latent code “Z"

o A conditional generative model takes an additional input “y" P(x|z,y)
— E.g. generating images from text y=text, x = image

— More on this later ...

Types of Autoencoders

0

_— —Encoder
output

So far, we have not enforced any “structure” on the latents z

But a structure is desirable

(Remember our motivations / goals for representation learning)

0

_— —Encoder
output

So far, we have not enforced any “structure” on the latents z

We can’t generate new images from D() if we don't understand the z-
space

Encoder
output

So far, we have not enforced any “structure” on the latents z

We can't generate new images from D() if we don't understand the z-
space

For example, if | ask you to generate a “face with beard, glasses, brown
hair”
which z would you choose?

VAE: Variational Autoencoder 2 ‘

* Force a “prior’ distribution on the latent space

Prior distribution: pe(z)

o Example: Gaussian N(0,1)

Z-space

» Gaussians are nice because they are
perfectly symmetrical in every dimension

L

—— Decoder: polx2) o Isotropic (covariance matrix is identity I)
o Dimensions are independent,
PR |e P(21|ZZ) == P(Zl) == N(O, I) VZl, Zz

- o Property holds for any linear combination
Dataset: D of z elements

- l.e. P(leaZZ + ng) = N(O,I)

Kingma and Welling. Auto-Encoding Variational Bayes. ICLR 2014

Variational Autoencoders

Key idea:

Force a Gaussian distribution on the
latent space z

Details: take my NN class!

x|z Em|z

Decoder network \/
po(z|2)
Z
Sample z from z|:z: ~ N(uz|m, Zz|:r)

T

“Zl:ﬂ Ezlm
Encoder network
wiele)

Input Data L

Variational Autoencoders: Generating Data!

Our assumption about data generation

process

Sample from

true conditional £z

pe*(iﬁ \ Z(i)) $
Decoder
network

Sample from

true prior

P Z

29 ~ py (2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Generating Data!

Our assumption about data generation

process

Sample from
true conditional

pe-(z | 21¥))

Sample from
true prior

29 ~ py (2)

X

A

Decoder
network

A

Now given a trained VAE:
use decoder network & sample z from prior!

Fat

i

Sample x|z from $|z ~ N(pjﬂz, 2;1:|z)

N

Hz|z

E:1z:|,1?:

Decoder network

Po(z|2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

~._

A

Sample z from z ~ N(0, I)

Datal

Ing

Generati

Variational Autoencoders

Use decoder network. Now sample z from prior!

DA NANNANANNNNSNNSNSNNNNS
QAP G ALLLLLWNYNNN~
QAVYININ IR LLLLVYY Y N~
QAUAVVDNININintogtote GO VVY W -~~~
QAODHLHINNNWBVIVIYY W W - —
QAQOODOHINININMEBPBDIIVID W@ - - —
QAQAQOUIMHINMMMEE VDI ID D @ - - —
QOO MMNMMM NN ®OD DD D " e —
OODMMM MMM WD DD e e —
OODMMM MMM WP DD e e —
QOOMMOMMOMMMM M0 e on o o —
QAN I8 0% 0% 0700 0000 B0 n o~ O~ B~ P~ =
R L L LG R R
it rrorororrrs oo~
Sl odogorororororrraaaonn~
SAdadaddadorocrrrrrTrTIIIINN
SddaddgororrsrrrdFTrTITRIRINN
SAddTTrTTrrrsrr>rrPrr™22A2NN
TR R™IXNNN

E:.rzl.z

N

Sample x|z from $|z ~ N(pjmz, Em|z)

N
B
3
=<
O
MMWJ
O N
n|
w,.w
I
S
(b}
()

<
Sample z from z ~ N (0, I)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Datal

Ing

Generati

Variational Autoencoders

Data manifold for 2-d z

Use decoder network. Now sample z from prior!

DA NANNANAANNNNSNNNNSN
QAP G ALLLLLWNYNNN~
QAVYININ IR LLLLVYY Y N~
QAUAVVDNININintogtote GO VVY W -~~~
QAODHLHINNNWBVIVIYY W W - —
QAQCVNHININNMHEBPIIVIIV® 9w —— 4
QAQOIMHINMMMEWMDIOID D @ - - —
QOODOMMNMMMN @O DD D" = —
OODMMM MMM WD DD e e —
QODOMMMM MM NGW® DD e e —
QOOMMOMMOMMMM M0 e on o o —
QAN I8 0% 0% 0700 0000 B0 n o~ O~ B~ P~ =
R N N Ko N N Nl Ul Sl Rl
&221112““1??949777771
Sl odogorororororrraaaonn~
Sdadadddocorrrrr T IIINN
SAddaddgoorrrrrdFFITITRIRINN
SAdTTTrTrTrrrrr>rrPRPR2R2RXNN
dFFrTsTooororr NI NNN

« >

Vary z,

E:.rzl.z

N

<
Sample z from z ~ N (0, I)

Sample x|z from $|z ~ N(um|z, Em|z)
Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

N
8
=
=<
O
MMWJ
O N
n|
wmw
I
S
(b}
e

Vary z,

Variational Autoencoders: Generating Data!

Diagonal prior on z .3:3.33:’“ rery

e Dot S SAEERERERE
Different maisteieh
dilmeernesnions of z Vary z, aﬁﬁﬁqv’i'iﬁ >

'enCOde le factors aﬂaq:qs :
of variation ' a%’%ﬂ‘i‘i’i’i

s
FASREET
SEEEEESDLS

Vary z, g

Head pose
Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Generating Data!

. . p ' b b 0 i d
Diagonal prior on z J‘J:" TS

=> ind dent : , "V'vvw"-‘;
e Deareecronie BEEEEEERR
Different \ 333‘1‘3‘333. ”
dimensions of z Vary z, : aﬁﬁ"-iqq:i:q’

encode aaﬁaﬂaﬂa B e
interpretable fact &
of variation | BeeEakikh

. Sofeceese

Also good feature representation that A A
can be computed using g,(z[x)! & :‘.‘lx_‘x - ax‘\aaa,
g

< Vary z I

Head pose
Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Generating Data!

Labeled Faces in the Wild

32x32 CIFAR-10

Editing images with VAEs

1.

Run input data through
encoder to get a distribution
over latent codes

Hz|x

Encoder network

qp(2|7)
Input Data

Editing images with VAEs

1. Run input data through
encoder to get a distribution
over latent codes
2. Sample code z from encoder
output I

Sample z from Z|III ~ N(uz|m, Zzl:r)

T

IJ’,Zl.’JE Eglm
Encoder network
e ~_

Input Data L

Editing images with VAEs

1. Run input data through
encoder to get a distribution

over latent codes £ modified
2. Sample code z from encoder
output Z
3. Modify some dimensions of sample zfrom 2|z ~ N (1412, Z2)z)
sampled code /v \
Hz|x Z:;::*|::::

Encoder network
e ~_

Input Data L

Editing images with VAEs

Hz|z E:J[:|.:?:
1. Run input data through Decoder network
encoder to get a distribution po(z|2) \/
over latent codes T
2. Sample code z from encoder
output Z

3. Modify some dimensions of sample zfrom 2|z ~ N (fi4), Xs|z)

sampled code /' S~

4. Run modified z through Uz iz

decoder to get a distribution Encoder network
over data sample 16 (2|7) \/

Input Data i

Editing images with VAEs

1. Run input data through
encoder to get a distribution
over latent codes

2. Sample code z from encoder
output

3. Modify some dimensions of
sampled code

4. Run modified z through
decoder to get a distribution
over data sample

5. Sample new data from (4)

/$\

M|z Em E
Decoder network \/
Po(z|2)
< modified
pA

Sample z from Z|III ~ N(uz|m, Zzl:r)

T

IJ’,Zl.’JE Eglm

Encoder network
e ~_

Input Data i

l REEECTEEETEEEEY EEEFEEEE

"\

21999239

€€ ¢ ¢¢C¢¢
2008090

ction Pose (Azimuth) varied Original Reconstuction Light direction varied

constu

29220veY VICVODP
c R ee 9292800299

Editing images with VAEs
rigina\l

00999€¢

222290 ¢

2992999

219099€¢ 2PV
teO08Ce CEeCCCEEE

To Summarize: AE, VAE

Autoencoder Variational Autoencoder

f g fQQ
—> —> — —>

e Encodes and decodes the data
¢ Encodes and decodes the data e Low-dimensional bottleneck

* Low-dimensional bottleneck e Gaussian bottleneck (can sample; disentangled)

Generative Adversarial Networks

Ian J. Goodfellow, Jean Pouget-Abadie; Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair] Aaron Courville, Yoshua Bengio®
Département d’informatique et de recherche opérationnelle NIPS 2014

Université de Montréal
Montréal, QC H3C 3J7

* Problem: We want to sample from a high-dimensional Output: Sample from
training distribution p(x) training distribution
o But there is no direct way to do this ...

o We don’t know which z maps to which image Gengrator
(so we can’t use autoencoders) Neatwork
* We know how to sample from a random distribution (e.g. Input: Random noise l

Gaussian)

o Can we map a random distribution directly to p(x) ?

Generative Adversarial Networks

Goal: Map all z to some realistic-looking x

Image synthesis from “noise”

Generator

Sampler

G:Z—-> X
z ~ p(z)
x = G(z)

Image synthesis from “noise”

Generator

Sampler

G:Z—-> X
z ~ p(z)
x = G(z)

G

u uill
O

Random code

© aleju/cat-generator

Generator

fake image

[Goodfellow et al. 2014]

Z

— [] Hi=rs
u —| G [~ —|D | Real(1)or
=4 U= fake (0)?

Random code

Generator Discriminator

fake image

A two-player game:
* (tries to generate fake images that can fool D.
« D tries to detect fake images.

[Goodfellow et al. 2014]

Z

sinil 10
dd 5)-

=inlg JIJ'—
Random code Gonerator Discriminator

fake image

—|D |}~ fake (0.1)

min mpax
G |_D_| L e

U [log(1-D(G(2))

[Goodfellow et al. 2014]

Z G(z)

uill
ad]
O

Random code

11—

—{|D |~ fake (0.1)

U™
Discriminator

Il B O O e

Generator fake image
Il B B BB BB B =

1=

—|D |~ real (0.9)
-

real image

Learning objective (GANS)

G 1Dyl I

[Goodfellow et al. 2014]

Z

uill
" T Rle
O

G(z)

11—

1D |~

q

Random code

Generator

U=

Discriminator

fake image
Il B N

1=

U=

real image

Learning objective (GANS)

min max

Eolog(1—=D(G(2))]+

Gy D

(0.3)

—|D [~ real (0.9)

Erllog D(x)]

[Goodfellow et al. 2014]

GAN Training Breakdown

* From the discriminator D's perspective:

o binary classification: real vs. fake.

o Nothing special: similar to 1 vs. 7 or cat vs. dog

max
D

[log (1D (@)]+

Lllog D(f#))]

GAN Training Breakdown

* From the discriminator D's perspective:
o binary classification: real vs. fake.

o Nothing special: similar to 1 vs. 7 or cat vs. dog

max I,
D

o From the generator G's perspective:

— Optimizing a loss that depends on a classifier D

mén 4:Z[£D(G(Z))] ménE(x,y)HF(G<x)) — F'(y)]
GAN loss for G Perceptual Loss for G

GAN Training Breakdown

Z G(z)
all | Ai=r
G —|D [l— real or fake?
==y JO=
Generator Discriminator

G tries to synthesize fake images that fool D

D tries to identify the fakes

e Training: iterate between training D and G with backprop.

e Global optimum when G reproduces data distribution.

[Goodfellow et al., 2014]

Training GANs: Two-player game

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images

AND WHEN W |
IERD-SUM GAM

OO OO

Generative Network Network 2

Training GANs: Two-player game

Discriminator network:

Generator network:

©®

Generative Network

try to distinguish between real and fake images
try to fool the discriminator by generating real-looking images

©®©

Network 2

AND WHEN WE FIGHT, ITS A
LERO-SUM GAME.

Connection to Game Theory: Zero-Sum “Minimax” Game
» Each player trying to minimize the opponent’s profits
» Each player trying to maximize their own profits

Training GANs: Two-player game

Discriminator network: try to distinguish between real and fake images

Generator network:

Fake Images
(from generator)

try to fool the discriminator by generating real-looking images

Real or Fake

Dlscrlmlnator Network

=PE PhEG

Real Images
(from training set)

Generator Network

Random noise

*

Z

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.

Training GANs: Two-player game

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images

Real or Fake
f \ Discriminator learning signal

Generator learning Slgnal Discriminator Network

:s/ BEa

Generator Network

?

Random noise Z

Fake Images
(from generator)

Real Images
(from training set)

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.

Training GANs: Two-player game

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images
Train jointly in minimax game

Minimax objective function:

min max [Emmpdm log Do, (2) + Eznp(z) log(1 — Do, (G, (2)))
g d

Gene/r;tor Di \ nat
objective iscriminator

objective

Training GANs: Two-player game

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images
Train jointly in minimax game

Minimax objective function:

Discriminator outputs likelihood in (0,1) of real image

min e [Exvg 108 D0 () + Exvpis) 08(1 = Dau(Co, ()
g d |] L J

Discriminator output Discriminator output for
for real data x generated fake data G(z)

- Discriminator (8,) wants to maximize objective s.t.
D(x) is close to 1 (real) and D(G(z)) is close to O (fake)

- Generator (6,) wants to minimize objective s.t.
D(G(z)) is close to 1 (discriminator is fooled into thinking generated G(z) is real)

Training GANs: Two-player game
Minimax objective function:

min max [Emwpdm log Do, (z) + E;np(z) l0g(1 — D, (G, (z)))]
g d

Alternate between:
1. Gradient ascent on discriminator

max [Epp,, 108 Doy (2) + Eenpiey 108(1 = Do, (G, (2)))]

2. Gradient descent on generator

When sample is likely

minE, ;) log(l — De,(Gy,(2))) fake, want to learn from |
04 it to improve generator ,

— log(1 - DI(G(2))) ||

In practice, optimizing this generator objective (m.ove o the right on X :
axis).
does not work well! _

Training GANs: Two-player game
Minimax objective function:

min max [Emwpdm log Do, (z) + E;np(z) l0g(1 — D, (G, (z)))]
g d

Alternate between:

1. Gradient ascent on discriminator
Gradient signal

max [Ewmpdam log Dy, () + E,p(2) log(1 — Dy, (G, (3)))] dominated by region
q where sample is

2. Gradient descent on generator already 90\0d

‘ When sample is likely
min Ezmp(z) 10%(1 — Dy, (Geg (Z))) fake, want to learn from
9 it to improve generator

In practice, optimizing this generator objective g:ig\)/e to the right on X/_,_X :
does not work well! ' _
But gradient in this -

region is relatively flat!

\I— 1og‘E\LD[G(a}}) |

DIG(3))

Training GANs: Two-player game
Minimax objective function:

min max [E:c«-updm log Do, (z) + E;np(z) l0g(1 — D, (G, (z)))]
g d

Alternate between:
1. Gradient ascent on discriminator

max [Epp,, 108 Doy (2) + Eenpiey 108(1 = Do, (G, (2)))]

2. Instead: Gradient ascent on generator, different objective

r%a,x Ezwp(z) log(Dg, (Gﬂg (2)))

Instead of minimizing likelihood of discriminator being correct, now High gradi&nt signal

maximize likelihood of discriminator being wrong.
Same objective of fooling discriminator, but now higher gradient
signal for bad samples => works much better! Standard in practice.

|
0.0 0.2

Cow gradient signal

Training GANs: Two-player game
Putting it together: GAN training algorithm

for number of training iterations do
for k steps do

e Sample minibatch of m noise samples {z(1), ..., 2("™)} from noise prior p,(z).

e Sample minibatch of m examples {z(!),..., 2(™} from data generating distribution

pdata(w)-

e Update the discriminator by ascending its stochastic gradient:

1 & . .
Vou— > | 1og Da,(z9) + log(1 — Do, (G, (1))
i=1

end for
e Sample minibatch of m noise samples {z(1), ..., 2("™)} from noise prior p,(2).

e Update the generator by ascending its stochastic gradient (improved objective):
1 « ;
Vo, p 3 108(Do, (Go, ()

end for

Training GANs: Two-player game
Putting it together: GAN training algorithm

for number of training iterations do
for|k steps do

e Sample minibatch of m noise samples {z(1), ..., 2("™)} from noise prior p,(z).
Some find k=1 e Sample minibatch of m examples {z(!),..., 2(™} from data generating distribution

pdata(m)-
more stable, e Update the discriminator by ascending its stochastic gradient:
others use k > 1, |
no best rule. Vo — > [1og Dy, (™) + log(1 — Dy, (G, (z@)))]

i=1
Followup work | sl fos
(e.g. Wasserstein o Sample minibatch of m noise samples {z(), ..., (™} from noise prior pgy(2).
GAN, BEGAN) e Update the generator by ascending its stochastic gradient (improved objective):
alleviates this m
1 (3)

problem, better Vo, — > log(Dg,(Ga, (7))
stability! =1

end for

Training GANs: Two-player game
Discriminator network: try to distinguish between real and fake images

Generator network: try to fool the discriminator by generating real-looking images

Real or Fake

f

Discriminator Network

/
Fake Images Real Images
(from generator) | . - 4 (from training set)
&

Generator Network
: After training, use generator network to

generate new images

Random noise V4

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.

Generative Adversarial Nets: Convolutional Architectures

Generator is an upsampling network with fractionally-strided convolutions
Discriminator is a convolutional network

Architecture guidelines for stable Deep Convolutional GANs

e Replace any pooling layers with strided convolutions (discriminator) and fractional-strided
convolutions (generator).

e Use batchnorm in both the generator and the discriminator.
e Remove fully connected hidden layers for deeper architectures.
e Use ReLU activation in generator for all layers except for the output, which uses Tanh.

e Use LeakyReLU activation in the discriminator for all layers.

Radford et al, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR 2016

Generative Adversarial Nets: Convolutional Architectures

ol

.~;-;«‘

i

Samples
from the
model look
much
better!

Radford et al,
ICLR 2016

Generative Adversarial Nets: Convolutional Architectures

fr= £ el e
b z > 3 Nl ', SN
'..uu... ‘ \.,.ah.é. 3 r,.-&--u-l. ﬁy,

f*Y b AW -?"i"_'z‘u
.” & oy .& 3wl -‘:.-,? N ‘-. 'y _':'",°:"l§.ﬁ‘
R RROAN - .._'.:..g\'v o ’.".@&;-u,\“_

i 1

A |1

Interpolating o Bl B gy § < ing
1 s N‘" U* W‘g wgl |
between T e G T “ “

,,'“. : ‘ ‘ - -

random L R
:’" TS l'li
points in laten = & WA el

space

Radford et al,
ICLR 2016

Generative Adversarial Nets: Interpretable Vector
Math

Smiling woman Neutral woman Neutral man

=

Radford et al, ICLR 2016

Samples
from the
model

Generative Adversarial Nets: Interpretable Vector
Math

Smiling woman Neutral woman Neutral man

=

Radford et al, ICLR 2016

Samples
from the
model

Average Z
vectors, do
arithmetic

Generative Adversarial Nets: Interpretable Vector
Math

Smiling woman Neutral woman Neutral man

.

Radford et al, ICLR 2016

Samples
from the
model

Average Z
vectors, do
arithmetic

Generative Adversarial Nets: Interpretable Vector
Math

Glasses man No glasses man No glasses woman EaLdéoggfé al,

Woman with glasses

GAN in PyTorch

https://pytorch.org/tutorials/beginner/dcgan faces

100:{ |::)4

Project and reshape

tutorial.ht

ml
class Discriminator(nn.Module):
def __init__(self, ngpu):

super(Discriminator, self).__init__()

self.ndpu = ngpu

self.main = nn.Sequential(
input is '“(nc) x 64 x 64"
nn.Conv2d(nc, ndf, 4, 2, 1, bias=False),
nn.LeakyRelU(2.2, inplace=Trxue),
state size. '‘(ndf) x 32 x 32"
nn.Conv2d({ndf, ndf = 2, 4, 2, 1, bias=False),
nn.BatchNoxrm2d{(ndf = 2),
nn.lLeakyRelU(?.2, inplace=True),
state size. ''(ndf*2) x 16 x 16"
nn.Conv2d({ndf * 2, ndf = 4, 4, 2, 1, bias=False)
nn.BatchNorm2d(ndf *= 1),
nn.LeakyRelU(®.2, inplace=Tzxue),
state size. '‘(ndf#4d) x 8 x 8"
nn.Conv2d(ndf % 4, ndf * 5, 4, 2, 1, bias=False)
nn.BatchNoxm2d{(ndf = 3),
nn.LeakyRelU(2.2, inplace=Trxue),
state size. '‘(ndf#8) x 4 x 4"
nn.Conv2d({ndf = 5, 1, 4, 1, ©, bias=False),
nn.Sigmoid()

def forward(self, input):
return self.main(input)

class Generator(nn.Module):
def __init__(self, ngpu):
super(Generator, self).__init__()
self.ngpu = ngpu

self.main nn.Sequential (
Iinput is Z,
nn.ConvTranspose2d(nz, ngf = &, 4, 1, @, bias=False),
nn.BatchNoxm2d (ngf *),

nn.RelLU{Txue),

state size.

going into a convolution

{ngf*8) x 4 x 4"

nn.ConvTranspose2d(ngf » 2, ngf = 4, 4, 2, 1, bias=False),

nn.BatchNoxm2d (ngf * 4),
nn.RelU(Txue),

state size. '‘(ngf#4) x 8 x 8"

nn.ConvTranspose2d(ngf = 4, ngf = 2, 4, 2, 1, bias=False),

nn.BatchNoxrm2d (ngf = 2),
nn.RelLU(True),
state size. '‘(ngf*2) x 16 x 16"
nn.ConvTranspose2d(ngf = 2, ngf, 4, 2, 1, bias=False),
nn.BatchNoxm2d (ngf) ,

nn.RelLU{Txue),

state size.

32"
4, 2, 1, bias=False),

"“(ngf) x 32 x
nn.ConvTranspose2d(ngf, nc,
nn.Tanh()

state size.

““(nc) x 64 x 64"

def forward(self, input):
return self.main(input)

https://qgithub.com/soumith/ganhacks

https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html
https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html
https://github.com/soumith/ganhacks

Since then: Explosion of GANSs

“The GAN Zoo”

: a ¢ Context-RNN-GAN - Contextual RNN-GANSs for Abstract Reasoning Diagram Generation
¢ GAN - Generative Adversarial Networks
* C-RNN-GAN - C-RNN-GAN: Continuous recurrent neural networks with adversarial training

* 3D-GAN - Learning a Probabilistic: Latent Space of Object Shapes via 3D Generative-Adversarial Modeling ¢ CS-GAN - Improving Neural Machine Translation with Conditional Sequence Generative Adversarial Nets

* acGAN - Face Aging With Conditional Generative Adversarial Networks » CVAE-GAN - CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training

* AC-GAN - Conditional Image Synthesis With Auxiliary Classifier GANs » CycleGAN - Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

« AdaGAN - AdaGAN: Boosting Generative Models * DTN - Unsupervised Cross-Domain Image Generation

» AEGAN - Learning Inverse Mapping by Autoencoder based Generative Adversarial Nets * DCGAN - Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks

. . » DiscoGAN - Learning to Discover Cross-Domain Relations with Generative Adversarial Networks
* AffGAN - Amortised MAP Inference for Image Super-resolution 4
* DR-GAN - Disentangled Representation Learning GAN for Pose-Invariant Face Recognition

¢ AL-CGAN - Learning to Generate Images of Outdoor Scenes from Attributes and Semantic Layouts - DisIGAN - DislGAN: Unistipefvised Dual Laating Tor imega-to-image Tranalation

* ALl - Adversarially Learned Inference » EBGAN - Energy-based Generative Adversarial Network

* AM-GAN - Generative Adversarial Nets with Labeled Data by Activation Maximization » f-GAN - f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization
¢ AnoGAN - Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery * FF-GAN - Towards Large-Pose Face Frontalization in the Wild

« ArtGAN - ArtGAN: Artwork Synthesis with Conditional Categorial GANs * GAWWN - Learhing What and Where to Draw

* GeneGAN - GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data
* Geometric GAN - Geometric GAN
¢ GoGAN - Gang of GANs: Generative Adversarial Networks with Maximum Margin Ranking

* b-GAN - b-GAN: Unified Framework of Generative Adversarial Networks
« Bayesian GAN - Deep and Hierarchical Implicit Models

¢ BEGAN - BEGAN: Boundary Equilibrium Generative Adversarial Networks « GP-GAN - GP-GAN: Towards Realistic High-Resolution Image Blending
* BiGAN - Adversarial Feature Learning * AN - Neural Photo Editing with Introspective Adversarial Networks
« BS-GAN - Boundary-Seeking Generative Adversarial Networks * iGAN - Generative Visual Manipulation on the Natural Image Manifold

« CGAN - Conditional Generative Adversarial Nets ¢ |cGAN - Invertible Conditional GANs for image editing

. . . . y g . ’ ¢ ID-CGAN - | De-raining Using a Conditional G tive Ad ial Network
* CaloGAN - CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters L R ST

: 4 . * Improved GAN - Improved Techniques for Training GANs
with Generative Adversarial Networks . . ¥ g

* InfoGAN - InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets

* CCGAN - Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks e LAGAN - Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics

* CatGAN - Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks Synthesis
* CoGAN - Coupled Generative Adversarial Networks * LAPGAN - Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks

https://github.com/hindupuravinash/the-gan-zoo

2017: Explosion of GANSs

Better training and generation

LSGAN, Zhu 2017. Wasserstein GAN,

Arjovsky 2017.
Improved Wasserstein
GAN, Gulrajani 2017.

Progressive GAN, Karras 2018.

Some challenges with GANSs ...

Challenges with GANs

* Vanishing gradients:

o the discriminator becomes too good and the generator gradient vanishes.

* Non-Convergence:

o the generator and discriminator oscillate without reaching an equilibrium.

Mode Collapse:

o the generator distribution collapses to a small set of examples.

Mode Dropping:

o the generator distribution doesnt fully cover the data distribution.

Challenges with GANs: Vanishing Gradients

e [he minimax objective saturates when Dy is close to perfect:

V(04.0g) = Ep,,,, [log Do, (x)]+Ep,z) [log (1 — Dy, (Ge,(2)))] -

e A non-saturating heuristic objective for the generator is

H(Ga,) = ~Ep,gz) 108 (Do, (G, (2)))]

5} & T T T
0
-5k
)
S 10
—10H — Minimax
154 — Non-saturating heuristic h
— Maximum likelihood cost
—920 | | | |
0.0 0.2 0.4 0.6 0.8 1.0

D(G(=))

https: //arxiv.org/abs/1701.00160

Challenges with GANs: Vanishing Gradients

e The minimax objective saturates when Dy, is close to perfect:

V(0a. 05) = Ep,,,, log Dy, ()| +Ep,(z) [log (1 — Dy, (Gy, (2)))] -

¢ A non-saturating heuristic objective for the generator is

J(Go,) = —Ep,(z) [log (Da, (G, (2)))] -

5] \ T T T
0
5L
)
E 10
“10H — Minimax
_15 4 — Non-saturating heuristic |
— Maximum likelihood cost
—20 | | | |

0.0 0.2 0.4 0.6 0.8 1.0
D(G(2))

https://arxiv.org/abs/1701.00160

Potential Solutions:

1. Explore other training
objectives?

2. Discriminator Capacity:

- make it small ?
- trainitless ?
- slow learning rate?

3. Learning Schedule:

- try to balance training
GandD

Problems: Nonconvergence

* Deep Learning models (in general) involve a single player
* The playertries to maximizeits reward (minimizeits loss).
* Use SGD (with Backpropagation) to find the optimal parameters.
* SGD hasconvergence guarantees (under certain conditions).
* Problem: With non-convexity, we might converge to local optima.

min L(G)

* GANs instead involve two (or more) players
* Discriminatoristrying to maximizeits reward.
* Generatoris trying to minimize Discriminator’s reward.

min maxV (D, G)
G D

* SGD was not designed to find the Nash equilibrium of a game.
* Problem: We might not converge to the Nash equilibrium at all.

Challenges with GANs: Non-Convergence

« Simultaneous gradient descent is
not guaranteed to converge for
minimax objectives.

« Goodfellow et al. only showed
convergence when updates are
made in the function space.

« The parameterization of D and G
results in highly non-convex
objective.

* In practice, training tends to
oscillate — updates undo each
other!

Challenges with GANs: Non-Convergence

Simultaneous gradient descent is Potential Solutions (HACKS) htt ithub.com/soumith/ganhacks

not guaranteed to conve rge for How to Train a GAN? Tips and tricks to make GANs work 2 Use sttty trcks from R

* Experience Replay
Keep a replay buffer of past ions and occassionally show them

While research in Generative Adversarial Networks (GANs) continues to improve the fundamental stability of these
Keep checkpoints from th t of G and D and occassionaly swap them out for a few itarations

H H b H t' models, we use a bunch of tricks to train them and make them stable day to day Al stability tricks that work for deep deterministic policy gra
minimax objecClives. " Sn & i 6

Here are a summary of some of the tricks.
9: Use the ADAM Optimizer

* optimAdam rules!
If you find a trick that is particularly useful in practice, please open a Pull Request to add it to the document. If we find See Radford et. al. 2015

it to be reasonable and verified, we will merge it in. + Use SGD for discriminator and ADAM for generator

Goodfellow et al. only showed 1. Normalize the inputs

* D loss goes to 0 failure mode

* normalize the images between -1 and 1 check norms of gradients: if they are over 100 things are screwing up
when things are working, D loss has low variance and goes down over time vs having huge variance and spiking

conve rg ence Wh enu pd ateS are * Tanh as the last layer of the generator output G oo Sy S ——

2: A modified loss function : Dont balance loss via statistics (unless you have a good reason to)

1 1 * Dont try to find a (number of G / number of D) schedule to uncollapse training
I I I e I n t e u n Ct I O n S pace In GAN papers, the loss function to optimize G is min (log 1-D) , but in practice folks practically use max log D e M
. s hard ¢ all tried i

* If you do try it, have a principled approach to it, rather than intuition
* because the first formulation has vanishing gradients early on

* Goodfellow et. al (2014) For example

while loss > A
train D

In practice, works well:
while 1ossG > B

* Flip labels when training generator: real = fake, fake = real train 6

The parameterization of D and G ey

+ if you have labels available, training the discriminator to also classify the samples: auxillary GANs
* Dont sample from a Uniform distribution

results in highly non-convex & BatchNomm

+ Add some artificial noise to inputs to D (Arjovsky et. al, Huszar, 2016)

H H * Construct different mini-batches for real and fake, i.e. each mini-batch needs to contain only all real images or all
O JeC |Ve . generated images. « adding gaussian noise to every layer of generator (Zhao et. al. EBGAN)

Improved GANs: OpenAl code also has it (commented out
* when batchnorm is not an option use instance normalization (for each sample, subtract mean and divide by v v ¢ !

standard deviation) 14: [notsure] Train discriminator more (sometimes)

5: Avoid Sparse Gradients: ReLU, MaxPool + especially when you have noise
« hard to find a schedule of number of D iterations vs G iterations
® the stability of the GAN game suffers if you have sparse gradients
I . . . * LeakyRelU = good (in both G and D) 15: [notsure] Batch Discrimination
n raC ICe ral n I n e n S O * For Downsampling, use: Average Pooling, Convad + stride
b * For Upsampling, use: PixelShuffle, ConvTranspose2d + stride N Al [T A
PixelShuffle:

[1 README

6: Use Soft and Noisy Labels

oscillate — updates undo each

« Label Smoothing, Le. If you have two target labels; Real=1 and Fake=0, then for each incoming sample, if it is
real, then replace the label with a random number between 0.7 and 1.2, and If it is a fake sample, replace it with additional channels to images
0.0 and 0.3 (for e) eep embedding dimensionality low and upsample to match image channel size

Salimat

7: DCGAN / Hybrid Models + Pravide noise in the form of dropout (50%)

+ Apply on several layers of our generator at both training and test time

* Use DCGAN when you can. It works! .

https://github.com/soumith/ganhacks

Challenges with GANs: Mode Collapse

The generator maps all z values to the x that is mostly likely to fool the discriminator.

Step 0 Step 5k Step 10k Step 15k Step 20k Step 25k

Some real examples

Challenges with GANs: Mode Collapse

Possible Solutions:

There are a large variety of divergence measures for distributions: Lo
e f-Divergences: (e.g. Jensen-Shannon, Kullback-Leibler) 0.8
p(x)
D/ (P11Q) = [atf (5)dx
X q(x)

e GANs [2], f~-GANs [7], and more.
e Integral Probability Metrics: (e.g. Earth Movers Distance,

/fdP /fdQ ‘

e Wasserstein GANs [1], Fisher GANs [6], Sobolev GANs [5] and
more.

0.2 L

Maximum Mean Discrepancy)
-0.4

F (P [|Q) = sup
feF

Wasserstein GAN

— Density of real

—— Density of fake
— GAN Discriminator
| WGAN Critic

Vanishing gradients
in regular GAN

-6

-4

-2

0 2 4 6

Wasserstein GANs

WGAN

* If our data are on a low-dimensional manifold of a high dimensional
space the model’s manifold and the true data manifold can have a
negligible intersection in practice

* KL divergence is undefined or infinite

* The loss function and gradients may not be continuous and well
behaved

* The Earth Mover’s Distance is well defined: Zg,
* Minimum transportation cost for making one pile
of dirt (pdf/pmf) look like the other

p
|

Wasserstein GANs

WGAN

Density of fake
GAN Discriminator

— Density of real
WGAN Critic

](D) (Q(D)’ Q(G)) — _[Ex”pdatrzD(x) _ EZD(G(Z))] 08 |
J©) (Q(D)JQ(G)) — —EZD(G(Z)) 06 |

* Importantly, the discriminator is trained for many steps before the
generator is updated

 Gradient-clipping is used in the discriminator to ensure D(x) has the
Lipschitz continuity required by the theory

* The authors argue that this solves many training issues, including
mode collapse

Conditional GANs

MNIST digits generated conditioned on their class label.

1,0,0,0,0,0,0,0,0,0] — Kelsle &DOLODLHHOU
0,1,0,0,0,0,0,0,0,0] — FaNEws T I RV A AR Y 2 I
0,0,1,0,0,0,0,0,0,0] — 2 2 A 222 aa22 A3
0,0,0,1,0,0,0,0,0,0] — BNk 3 %2 333838332231
0,0,0,0,1,0,0,0,0,0] — KKK G449 ¢ QYN Y Yy
0,0,0,0,0,1,0,0,0,0] — KN 5524554555845
0,0,0,0,0,0,1,0,0,0] — EEEE 6 b6 b6 bttié b
0,0,0,0,0,0,0,1,0,0] — A “TT777TTAYTII T
0,0,0,0,0,0,0,0,1,0] — KNSR ENFEEEEFNEEEEEN;
0,0,0,0,0,0,0,0,0,1] — Kl 29979% 74949971
- - Figure 2 in the original paper.

Conditional GANs

* Simple modification to the original GAN
framework that conditions the model on
additional information for better multi-modal

learning.

X real (data)

* Lends to many practical applications of GANs
when we have explicit supervision available. (Ces) (2 (noise)

Conditional GAN
(Mirza & Osindero, 2014)

Image Credit: Figure 2 in Odena, A., Olah, C. and Shlens, J., 2016. Conditional image synthesis with auxiliary classifier GANs. arXiv preprint arXiv:1610.09585.

Mirza, Mehdi, and Simon Osindero. “Conditional generative adversarial nets”. arXiv preprint arXiv:1411.1784 (2014).

Image-to-Image Translation

Labels to Street Scene Labels to Facade BW to Color

input output input output
Edges to Photo

output input output
Figure 1 in the original paper.

Link to an interactive demo of this paper

Isola, P, Zhu, J.Y., Zhou, T., & Efros, A. A. “Image-to-image translation with conditional adversarial networks”. arXiv preprint arXiv:1611.07004. (2016).

Image-to-Image Translation

° ArCh |teCtU re: DCGA N' based Positive examples I\J«:gjaltivef ixa:m-iles
. Real or fake pair? eal or Take pair:
architecture i

* Training is conditioned on the images
from the source domain.

G tries to synthesize fake

* Conditional GANs provide an effective imagesthatfooi D
way to handle many complex domains Dtiestoidentify the fakes
without worrying about designing Figure 2 inthe original paper.
structured loss functions explicitly.

Isola, P, Zhu, J. Y., Zhou, T., & Efros, A. A. “Image-to-image translation with conditional adversarial networks”. arXiv preprint arXiv:1611.07004. (2016).

Text-to-Image Synthesis

this small bird has a pink this magnificent fellow is
: - breast and crown, and black almost all black with a red
M Ot|Vat|O n primaries and secondaries. crest, and white cheek patch.

Given a text description, generate
images closely associated.

the flower has petals that this white and yellow flower

11 1 are bright pinkish 1 have thin whi Is and
Uses d COnd|t|0na| GAN Wlth the wfic;h x%itlep;tlilgrlrla pure r;lug(; y:ll‘gw ga‘iﬁg o
generator and discriminator being | 1
condition on “dense” text
embedding.

Figure 1 in the original paper.

Reed,S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., & Lee, H. “Generative adversarial text to image synthesis". ICML (2016)

Text-to-Image Synthesis

This flower has small, round violet i This flower has small, round violet
petals with a dark purple center petals with a dark purple center

1l

Generator Network Discriminator Network
Figure 2 in the original paper.
Positive Example: Negative Examples:

Real Image, Right Text Real Image, Wrong Text
Fake Image, Right Text

Reed,S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., & Lee, H. “Generative adversarial text to image synthesis”. ICML (2016).

Face Aging with Conditional GANs

* Differentiating Feature: Uses an Identity Preservation Optimization using an
auxiliary network to get a better approximation of the latent code (z*) for an
inputimage.

* Latent code is then conditioned on a discrete (one-hot) embedding of age
categories.

Latent Vector Approximation Face Aging
nput tace x
of age Zy z
2
Encoder : . Resulting face X;qrger
\ ~— of age “60+”
\ Initial reconstriction | Optiumized reconstruction .

X of age v,

I Generator
"60+" g ©
! Generator i \ e
Yoo / -) ? I
// T’
I . /

AN

Xp of age v,

-

Figure 1 in the original paper.

Antipov, G., Baccouche, M., & Dugelay, J. L. (2017). “Face Aging With Conditional Generative Adversarial Networks”. arXiv preprint arXiv:1702.01983.

Face Aging with Conditional GANs

Reconstruction A
Initial Optimization Face Aging
. nitia
Origial
= Reconstruction A A
Pixelwise 30-39 40-49

‘ % »
-

Figure 3 in the original paper.

Antipoy, G., Baccouche, M., & Dugelay, J. L. (2017). “Face Aging With Conditional Generative Adversarial Networks”. arXiv preprint arXiv:1702.01983.

Conditional GANs

Conditional Model Collapse

A man ina oran e jacket wnh sungl_asses and a hat ski down a hill.

* Scenario observed when the
Conditional GAN starts ignoring
either the code (c) or the noise
variables (z).

* This limitsthe diversity of
images generated.

Credit?

Mirza, Mehdi, and Simon Osindero. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014).

Additional Sources:

There are lots of excellent references on GANs:

* Sebastian Nowozins presentation at MLSS 2018:
https://github.com/nowozin/mlss2018-madrid-gan

* NIPS 2016 tutorial on GANs by lan Goodfellow:
https://arxiv.org/abs/1701.00160

* A nice explanation of Wasserstein GANs by Alex Irpan:
https://www.alexirpan.com /2017 /02 /22 /wasserstein-gan.html

https://github.com/nowozin/mlss2018-madrid-gan
https://github.com/nowozin/mlss2018-madrid-gan
https://github.com/nowozin/mlss2018-madrid-gan
https://github.com/nowozin/mlss2018-madrid-gan
https://github.com/nowozin/mlss2018-madrid-gan
https://arxiv.org/abs/1701.00160
https://www.alexirpan.com/2017/02/22/wasserstein-gan.html
https://www.alexirpan.com/2017/02/22/wasserstein-gan.html
https://www.alexirpan.com/2017/02/22/wasserstein-gan.html

	Slide 1: Lecture 18: Image Synthesis
	Slide 2: Lecture 18: Image Synthesis
	Slide 3: Machine Learning Problems
	Slide 4: SUPERVISED LEARNING
	Slide 11: ONE-SHOT LEARNING
	Slide 13: ZERO-SHOT LEARNING
	Slide 16: UNSUPERVISED LEARNING
	Slide 17: How can we train models “unsupervised”?
	Slide 18: How can we train models “unsupervised”? This is the focus of representation learning and generative models
	Slide 19: How can we train models “unsupervised”? This is the focus of representation learning There’s an entire conference on Representation Learning
	Slide 20: How can we train models “unsupervised”? This is the focus of representation learning There’s an entire conference on Representation Learning
	Slide 21: Warning I might use the terms “latent”, “embedding”, “representation”, “feature” interchangeably.
	Slide 22: Motivation (kind of): Compression
	Slide 23: Motivation (kind of): Compression
	Slide 24: Representation Learning Paradigm
	Slide 25: Typical Goals for Representations
	Slide 26: Typical Goals for Representations
	Slide 27: Typical Goals for Representations
	Slide 28: Typical Goals for Representations
	Slide 29: Typical Goals for Representations
	Slide 30: Typical Goals for Representations
	Slide 31: Typical Goals for Representations
	Slide 32: Typical Goals for Representations
	Slide 33: Representation Learning is a Philosophy for Learning
	Slide 34: Representation Learning is a Philosophy for Learning
	Slide 35: Ok whatever. Tell us how it works …
	Slide 36: Types of Modeling (Probabilistic Interpretation)
	Slide 37: Types of Modeling (Probabilistic Interpretation)
	Slide 38: Types of Modeling (Probabilistic Interpretation)
	Slide 39: Types of Modeling (Probabilistic Interpretation)
	Slide 40: Types of Modeling (Probabilistic Interpretation)
	Slide 41: Types of Modeling (Probabilistic Interpretation)
	Slide 42
	Slide 43
	Slide 44: Generative Models
	Slide 46: Ok whatever. Tell us how it works … Let’s start simple …
	Slide 47: The idea of an “Auto-encoder”
	Slide 48: How would you train an autoencoder? Loss Function?
	Slide 49: Autoencoder: Loss Function
	Slide 50: Autoencoder: Simple Example
	Slide 51: Convolutional Autoencoder
	Slide 52: Convolutional Autoencoder
	Slide 53: Convolutional Autoencoder: Expand Dimensions? Transposed Convolution!
	Slide 54: Convolutional Autoencoder: Expand Dimensions? Transposed Convolution!
	Slide 55: Transposed Conv in PyTorch
	Slide 56: Denoising Autoencoder
	Slide 57: Example: Face Auto-Encoder
	Slide 58: Example: Face Auto-Encoder
	Slide 59: Example: Face Auto-Encoder
	Slide 60: Example: Face Auto-Encoder
	Slide 61: With Generative Models, there are 2 objectives:
	Slide 62: An Auto-Encoder is a Generative Model
	Slide 63: Types of Autoencoders
	Slide 64: So far, we have not enforced any “structure” on the latents z But a structure is desirable (Remember our motivations / goals for representation learning)
	Slide 65: So far, we have not enforced any “structure” on the latents z We can’t generate new images from D() if we don’t understand the z-space
	Slide 66: So far, we have not enforced any “structure” on the latents z We can’t generate new images from D() if we don’t understand the z-space For example, if I ask you to generate a “face with beard, glasses, brown hair” which z would you choose?
	Slide 67: VAE: Variational Autoencoder
	Slide 106: Variational Autoencoders
	Slide 107: Variational Autoencoders: Generating Data!
	Slide 108: Variational Autoencoders: Generating Data!
	Slide 109: Variational Autoencoders: Generating Data!
	Slide 110: Variational Autoencoders: Generating Data!
	Slide 111: Variational Autoencoders: Generating Data!
	Slide 112: Variational Autoencoders: Generating Data!
	Slide 113: Variational Autoencoders: Generating Data!
	Slide 114: Editing images with VAEs
	Slide 115: Editing images with VAEs
	Slide 116: Editing images with VAEs
	Slide 117: Editing images with VAEs
	Slide 118: Editing images with VAEs
	Slide 119: Editing images with VAEs
	Slide 120: To Summarize: AE, VAE
	Slide 122: Generative Adversarial Networks
	Slide 123: Generative Adversarial Networks Goal: Map all bold italic z to some realistic-looking bold italic x
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134: Training GANs: Two-player game
	Slide 135: Training GANs: Two-player game
	Slide 136: Training GANs: Two-player game
	Slide 137: Training GANs: Two-player game
	Slide 138: Training GANs: Two-player game
	Slide 139: Training GANs: Two-player game
	Slide 140: Training GANs: Two-player game
	Slide 141: Training GANs: Two-player game
	Slide 142: Training GANs: Two-player game
	Slide 143: Training GANs: Two-player game
	Slide 144: Training GANs: Two-player game
	Slide 145: Training GANs: Two-player game
	Slide 146
	Slide 147: Generative Adversarial Nets: Convolutional Architectures
	Slide 148: Generative Adversarial Nets: Convolutional Architectures
	Slide 149: Generative Adversarial Nets: Interpretable Vector Math
	Slide 150: Generative Adversarial Nets: Interpretable Vector Math
	Slide 151: Generative Adversarial Nets: Interpretable Vector Math
	Slide 152: Generative Adversarial Nets: Interpretable Vector Math
	Slide 153: GAN in PyTorch
	Slide 154: Since then: Explosion of GANs
	Slide 155: 2017: Explosion of GANs
	Slide 156: Some challenges with GANs …
	Slide 157: Challenges with GANs
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177: Additional Sources:

