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Lecture 17
Motion

CMSC 472 / 672 Computer Vision

UMBC Some slides from Lazebnik, Tian, Huang
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Structure from Motion



Structure From Motion (SFM)




Structure From Motion (SFM)

Given many images, how can we

* Figure out where they were all taken from (X, Y, Z world co-ordinates)



Structure From Motion (SFM)
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Reconstruction (side)

 Input: images with points in correspondence

e Qutput:
o Structure:

o Motion: Camera Parameters R; 4, K;
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3D location x; for each point p;



Recall: Feature Detection and Matching

* In the SfM problem, images are taken from
different viewpoints

* There will be some overlap between features Feature detection

o i.e. there will be some matches! e

e But there will also be:
Feature matching

o Geometric transformations

o Photometric transformations




Recall: Camera Calibration and Triangulation

* Suppose we know 3D points
o And have matches between these points and an image

o How can we compute the camera parameters?

* Suppose we have know camera parameters, each of which observes a point

o How can we compute the 3D location of that point?

SFM solves both problems at once
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https://youtu.be/i7ierVkXYa8?feature=shared
https://youtu.be/i7ierVkXYa8?feature=shared

Structure From Motion (SFM)



First step: how to get correspondence?




1. Feature detection

Detect features using SIFT [Lowe, 1JCV 2004]




2. Feature matching

Match features between each pair of images




2. Feature matching

Refine matching using RANSAC
to estimate fundamental matrix between each pair




3. Correspondence estimation

Link up pairwise matches to form connected components
of matches across several images




Image 1

Image 2




Structure from motion

P3 minimize

T (R, T,P)

Cameral

Camera 2

Ryt



O P minimize

Structure from motion f(R.T.P)

Structure from motion solves the following problem:

* Given a set of images of a static scene

Camera 3

Rs.t5

Camera 1

o with 2D points in correspondence Ryt

o shown here as color-coded points



O P minimize

Structure from motion f(R.T.P)

Structure from motion solves the following problem:

* Given a set of images of a static scene

Camera 3

R3’ t3

Camera 1

o with 2D points in correspondence Ryt Camera 2

o shown here as color-coded points

* Find a set of 3D points P and a rotation R and position t of the cameras that explain
the observed correspondences.

o In other words, when we project a point into any of the cameras, the reprojection error
between the projected and observed 2D points is low.

o This problem can be formulated as an optimization problem where we want to find

— the rotations R, positions t, and 3D point locations P that minimize sum of squared reprojection errors f.



O P minimize

Structure from motion f(R.T.P)

Structure from motion solves the following problem:

* Given a set of images of a static scene
o with 2D points in correspondence S—

o shown here as color-coded points Rt Camera 2 Ryt
Ryt

Camera 3

* Find a set of 3D points P and a rotation R and position t of the cameras that explain the
observed correspondences.

o In other words, when we project a point into any of the cameras, the reprojection error between the
projected and observed 2D points is low.

o This problem can be formulated as an optimization problem where we want to find
— the rotations R, positions t, and 3D point locations P that minimize sum of squared reprojection errors f.

* This is a non-linear least squares problem and can be solved with algorithms such as
Levenberg-Marquart.

o However, because the problem is non-linear, it can be susceptible to local minima. Therefore, it's
important to initialize the parameters of the system carefully.

o In addition, we need to be able to deal with erroneous correspondences.



Structure from motion

minimize

og(R, T, X)

non-linear least squares

Camera 2

Ryt



SfM Problem Size

What are the variables?

How many variables per camera?

How many variables per point?

Example: Trevi Fountain collection
466 input photos
+ > 100,000 3D points

= very large optimization problem




Structure from motion

* Minimize sum of squared reprojection errors:

JgX,RT) = ZZWU \P(xu t,)—[:}tij]uz

(=1 j=1"—-
pred/cted
l image location
indicator variable:
is point j visible in image j ?

* Minimizing this function is called bundle adjustment
o Optimized using non-linear least squares

o e.g. Levenberg-Marquardt

observed
image location



Is StM always uniquely solvable?



Is StM always uniquely solvable?

* No...




Is StM always uniquely solvable?

Two interpretations:

Image source: Wikipedia

--------




Incremental structure from motion

* To help get good initializations for all of
the parameters of the system:

* we reconstruct the scene incrementally

o starting from two photographs and the
points they observe.




Incremental structure from motion




Incremental structure from motion

To help get good initializations for all of
the parameters of the system:

* we reconstruct the scene incrementally

o starting from two photographs and the
points they observe.

We then add several photos at a time to
the reconstruction,

e refine the model

o repeat until no more photos match any
points in the scene.



Incremental structure from motion

To help get good initializations for all of
the parameters of the system:

* we reconstruct the scene incrementally

o starting from two photographs and the
points they observe.

We then add several photos at a time to
the reconstruction,

e refine the model

o repeat until no more photos match any
points in the scene.



Photo Tourism
Exploring photo collections in 3D

Noah Snavely Steven M. Seitz  Richard Szeliski
University of Washington Microsoft Research

SIGGRAPH 2006







Part Il

Motion Estimation



Motion is a powerful perceptual cue

Sometimes, it is the only cue




Motion is a powerful perceptual cue

Even “impoverished’ motion data can evoke a strong percept

G. Johansson, “Visual Perception of Biological Motion and a Model For Its Analysis",
Perception and Psychophysics 14, 201-211, 1973.



Motion is a powerful perceptual cue

Even “impoverished’ motion data can evoke a strong percept

G. Johansson, “Visual Perception of Biological Motion and a Model For Its Analysis",
Perception and Psychophysics 14, 201-211, 1973.
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https://arijitkar98.github.io/2018/05/28/weeks-1-and-2.html
https://help.commonvisionblox.com/OpticalFlow/introduction.htm

Optical Flow

The pattern of apparent motion of objects, surfaces and edges in a
visual scene caused by the relative motion between an observer and a

scene
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Demo

.
Source: S
http://clim.inria.fr/Datasets/SyntheticVideolL F/ e =



http://clim.inria.fr/Datasets/SyntheticVideoLF/

Uses of optical flow in computer vision

* Video analysis and enhancement (stabilization, shot boundary detection, motion
magnification, etc.)

* Object tracking and segmentation in videos
e Structure from motion, stereo matching
 Event and activity recognition

* Self-supervised and predictive learning

Prediction 1 ‘

Source: Tomasi & Kanade

Prediction 2

Source: Walker et al.



http://arxiv.org/pdf/1606.07873.pdf
http://users.eecs.northwestern.edu/%7Eyingwu/teaching/EECS432/Reading/Tomasi_TR92.pdf
http://users.eecs.northwestern.edu/%7Eyingwu/teaching/EECS432/Reading/Tomasi_TR92.pdf

Estimating optical flow

[(x,y,t — 1) I(x+uy+vt)
./ .\ ° .
t—1 o z t ° o

* Given frames at times t — 1 and t, estimate the apparent motion field u(x,y) and v(x,y)
between them

* Brightness constancy constraint:
projection of the same point looks the same in every frame

I(x,y,t —1)=I1(x+u(x,y),y+v(xy),t)

» Additional assumptions:
o Small motion: points do not move very far

o Spatial coherence: points move like their neighbors



Estimating optical flow

* Brightness constancy constraint:
I(x;Y;t T 1) — I(x + u(x;Y);y + v(x;}’)» t)
e Linearize the right-hand side using Taylor expansion:

I(x,y,t —1) = I(x,y,t) + Lau(x,y) + [,v(x,y)

Ixu(x'Y) + va(x;Y) + I(x;y; t) o I(x;y;t o 1) =0
— __
—~—
What could this be?

* Hence, Lou(x,y) + Lv(x,y) +1, =0



The brightness constancy constraint
Lu(x,y) + L,v(x,y)+ 1, =0

e Given the gradients I, I, and I;, can we uniquely recover the motion (u,v)?
o Suppose (u, v) satisfies the constraint: VI - (u,v) + 1, = 0
oThenVI-(u+u',v+v)+1I,=0forany (u,v')s. t.VI-(u',v')=0

o Interpretation: the component of the flow perpendicular to the gradient
(i.e., parallel to the edge) cannot be recovered!

VI
(u, v)

(u', v")

(u+u,v+v)

edge



The aperture problem

4/@ motion



The aperture problem

\ Actual motion



The barber pole illusion

/

http://en.wikipedia.org/wiki/Barberpole _illusion



http://en.wikipedia.org/wiki/Barberpole_illusion

The barber pole illusion

http://en.wikipedia.org/wiki/Barberpole _illusion


http://en.wikipedia.org/wiki/Barberpole_illusion

Solving the aperture problem

Lu(x,y) + Lv(x,y) + 1, =0

* How to get more equations for a pixel?
o Spatial coherence constraint: assume the pixel's neighbors have the same (u, v)

o If we have n pixels in the neighborhood, we can set up a linear least squares system:

_Ix(xl; Y1) Iy(le yl)_ _It(xll yl)_

L (X, yn) Ly (X, ym) | 1 (X, V) |



Estimating optical flow

Solution:

L (X1, Y1) L, (x1,¥1)

L (X, Yn) 1y, ) |
A

lelx lely uy
[lely Zlyly] () =

AT A

_It(x1:3’1)_

_It (xn' yn)_
b

211
- Zlylt]

ATb

What does A’ A remind you of?



Recall: second moment matrix

« Estimation of optical flow is well-conditioned precisely for regions with high
“cornerness’:




Conditions for solvability

e '‘Bad’ case: single straight edge




Conditions for solvability

e 'Good' case




Lucas-Kanade flow

_IX(xll yl) Iy(xll 3’1)— (u) _It(xl, yl)-
_Ix (xn' yn) Iy (xn' yn)_ v _It (XTU Yn)_
A d b

e Solution is given by d = (ATA)71A"b
* Lucas-Kanade flow:

* Find (u, v) minimizing Zi(l(xi +u,y; +v,t)—I(x;,y;,t — 1))2,
use Taylor approximation of I(x; + u, y; + v, t) for small shifts (u, v)
to obtain closed-form solution

B. Lucas and T. Kanade. An iterative image registration technigue with an application to stereo vision.
In Proceedings of the International Joint Conference on Artificial Intelligence, pp. 674-679, 1981



http://www.ri.cmu.edu/pub_files/pub3/lucas_bruce_d_1981_1/lucas_bruce_d_1981_1.pdf

Example
(from Jia-Bin Huang)






Framet + 1




ZWI(I)I(I) 1(1)1(1)“ l [ ]

1(1) 1 (1)




@ Initialize (x ”y f) < (%, y ), (u, v) < (0,0) O Iterative refinement

@ Update (x',y") « (x' +u,y" + v) i

@ @ Recompute /, = I(x",y',t+ 1) — I(x,y,t)
@ Estimate motion (u, v)

ZWI(I)I(I) Yw I(I)I(l) ZWIJ(CI')It(i)

[zwlfc”lf,” 1(‘)14 [ ZWIJ(,DI,ED]

*I It G*Iylf




Lucas-Kanade flow example

Input frames Output

Source: MATLAB Central File Exchange



https://www.mathworks.com/matlabcentral/fileexchange/48744-lucas-kanade-tutorial-example-1

Revisiting the Small Motion Assumption

* |s this motion small enough?
o Probably not ... it's much larger than 1 pixel!

o How would you deal with this this problem ?

I(x,y,t=1) - I(x+u,y+v,t<:!)%>J
oI oI oI

I(z + Az,y + Ay, t + At) = I(z,y,t) + — Ax + — Ay + — At-+higher-order terms
Oz dy ot

High-order terms will have large values for large motion



Coarse-to-Fine Optical Flow Estimation

* Multiscale again! (pyramids ...) Bownssrtpling fastor=2

* Downsample the frames
- u=1.25pixels

* Estimate Optical Flow at each level
u=2.5pixels

|

Iiq




Coarse-to-Fine Optical Flow Estimation




Applications

Motion Magnification
Video Stabilization
Video Frame Interpolation
Object Tracking

many others...



VidEO Stabilization Yu and Ramamoorthy, CVPR 2020

i

Large Motion Stabilization
Removed Video Network




Video Frame Interpolation

(X +u,y+V)attimet * use flow to estimate where pixel will
/ be between two frames
* Synthesize intermediate frames to

(x, y) at time t-1 generate slow-motion videos




Video Frame Interpolation Jiang et al. CVPR 2018

4x SLOWER




Video Restoration

Optical Flow can be used to address many video restoration tasks such as

o Denoising, De-blurring (especially removing motion blur), super-resolution ...

T
Flow net - b N * Flow net to estimate motion field between

u neighboring frames
improcnct I * Stack warped frames as input for the

tao image processing network to predict the
_-_.'_ high-quality frame
[ m

Input Motion Warped
frames fields inpui

Frame 1

Reference

‘o
— —

Flow net

Frame T

i._ Flow Estimation —-J +— Transformation —-—§~— Image Processing — i



Video Restoration Xue et al. 1JCV 2019

Notsy Input
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Activity recognition

e Optical Flow is commonly used as an input feature for video classification with

CNNs E Spatial stream ConvNet

conv1 || conv2 || conv3 || conv4 || conv5 fullé full7 ||softmax
7X7x96 ||5x5x256 ||3x3x512 || 3x3x512 || 3x3x512 || 4096 2048
stride 2 || stride 2 || stride 1 || stride 1 || stride 1 || dropout || dropout
norm. norm. pool 2x2
pool 2x2 || pool 2x2

single frame

f . Temporal stream ConvNet

‘ conv1 (| conv2 || conv3 (| conv4 || conv5 || full6 full7 |[softmax
7X7x96 ||5x5x256 ||3x3x512 || 3x3x512 || 3x3x512 || 4096 2048

stride 2 || stride 2 || stride 1 || stride 1 || stride 1 || dropout || dropout
. norm. ||pool 2x2 pool 2x2
multi-frame pool 2x2

. optical flow

input
video

K. Simonyan and A. Zisserman. Two-Stream Convolutional Networks for Action Recognition in Videos. NeurlPS 2014

Source: D. Fouhey and J. Johnson



https://proceedings.neurips.cc/paper/2014/file/00ec53c4682d36f5c4359f4ae7bd7ba1-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/00ec53c4682d36f5c4359f4ae7bd7ba1-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/00ec53c4682d36f5c4359f4ae7bd7ba1-Paper.pdf
https://web.eecs.umich.edu/%7Ejustincj/slides/eecs442/WI2021/442_WI2021_lecture19.pptx
https://web.eecs.umich.edu/%7Ejustincj/slides/eecs442/WI2021/442_WI2021_lecture19.pptx
https://web.eecs.umich.edu/%7Ejustincj/slides/eecs442/WI2021/442_WI2021_lecture19.pptx

Motion magnification
ldea: take flow, magnify it

C. Liu et al., Motion Magnification, SIGGRAPH 2005

Source: D. Fouhey and J. Johnson



http://people.csail.mit.edu/celiu/motionmag/motionmag.html
https://web.eecs.umich.edu/%7Ejustincj/slides/eecs442/WI2021/442_WI2021_lecture19.pptx
https://web.eecs.umich.edu/%7Ejustincj/slides/eecs442/WI2021/442_WI2021_lecture19.pptx
https://web.eecs.umich.edu/%7Ejustincj/slides/eecs442/WI2021/442_WI2021_lecture19.pptx

C. Liu et al., Motion Magnification, SIGGRAPH 2005

Source: D. Fouhey and J. Johnson



http://people.csail.mit.edu/celiu/motionmag/motionmag.html
https://web.eecs.umich.edu/%7Ejustincj/slides/eecs442/WI2021/442_WI2021_lecture19.pptx
https://web.eecs.umich.edu/%7Ejustincj/slides/eecs442/WI2021/442_WI2021_lecture19.pptx
https://web.eecs.umich.edu/%7Ejustincj/slides/eecs442/WI2021/442_WI2021_lecture19.pptx

Motion magnification

C. Liu et al., Motion Magnification, SIGGRAPH 2005

Source: D. Fouhey and J. Johnson



http://people.csail.mit.edu/celiu/motionmag/motionmag.html
https://web.eecs.umich.edu/%7Ejustincj/slides/eecs442/WI2021/442_WI2021_lecture19.pptx
https://web.eecs.umich.edu/%7Ejustincj/slides/eecs442/WI2021/442_WI2021_lecture19.pptx
https://web.eecs.umich.edu/%7Ejustincj/slides/eecs442/WI2021/442_WI2021_lecture19.pptx

Visual Tracking

{b) Constant Speed Model

Source: Chuan-en Lin, A Comprehensive Guide
to Motion Estimation with Optical Flow
https://nanonets.com/blog/optical-flow



https://nanonets.com/blog/optical-flow/
https://nanonets.com/blog/optical-flow/
https://nanonets.com/blog/optical-flow/

Final note:

Perception is Controlled Hallucination



We might think seeing is believing ...

Video by Antonio Torralba (starring Rob Fergus)



But is it ?

=

Video by Antonio Torralba (starring Rob Fergus)



Fin ©
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