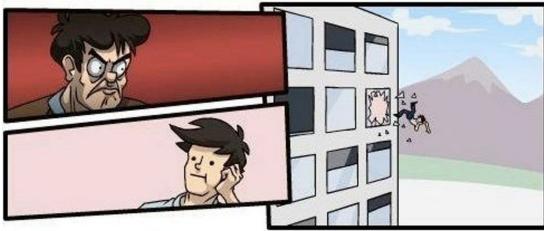
CMSC 472 / 672

Lecture 15



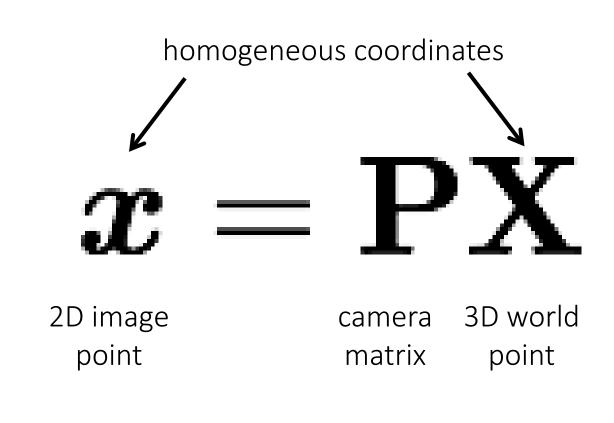
Recap: The Camera as a Co-ordinate Transform

A camera is a mapping from:

the 3D world

to:

a 2D image



Recap: Camera Matrix: Intrinsic and Extrinsic Parameters

$$\mathbf{P} = \mathbf{K}[\mathbf{R}|\mathbf{t}]$$

$$\mathbf{P} = \left[egin{array}{cccc} f & 0 & p_x \ 0 & f & p_y \ 0 & 0 & 1 \end{array}
ight] \left[egin{array}{cccc} r_1 & r_2 & r_3 & t_1 \ r_4 & r_5 & r_6 & t_2 \ r_7 & r_8 & r_9 & t_3 \end{array}
ight]$$
 intrinsic extrinsic parameters parameters

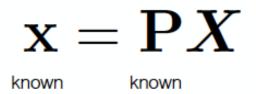
$$\mathbf{R} = \left[egin{array}{cccc} r_1 & r_2 & r_3 \ r_4 & r_5 & r_6 \ r_7 & r_8 & r_9 \end{array}
ight] \qquad \mathbf{t} = \left[egin{array}{c} t_1 \ t_2 \ t_3 \end{array}
ight]$$
 3D rotation 3D translation

 $\mathbf{x} = \mathbf{P} X$

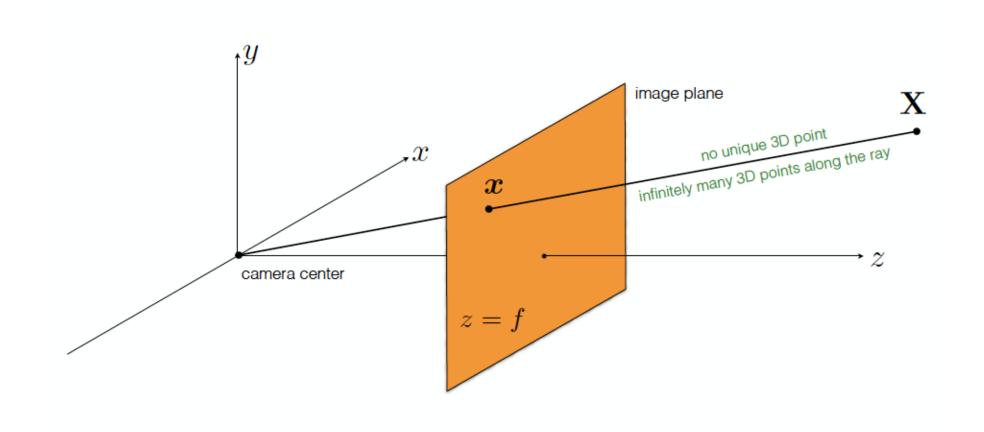
known

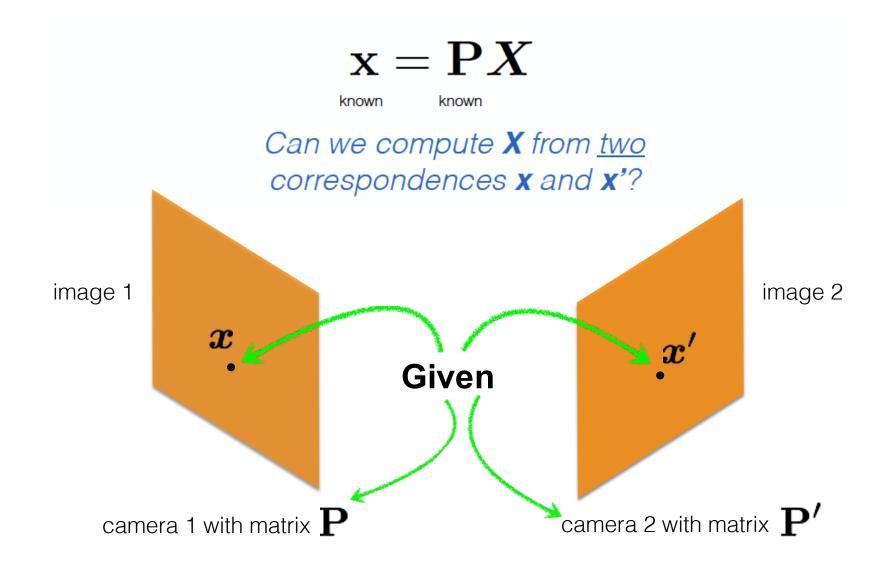
known

Can we compute **X** from a single correspondence **x**?

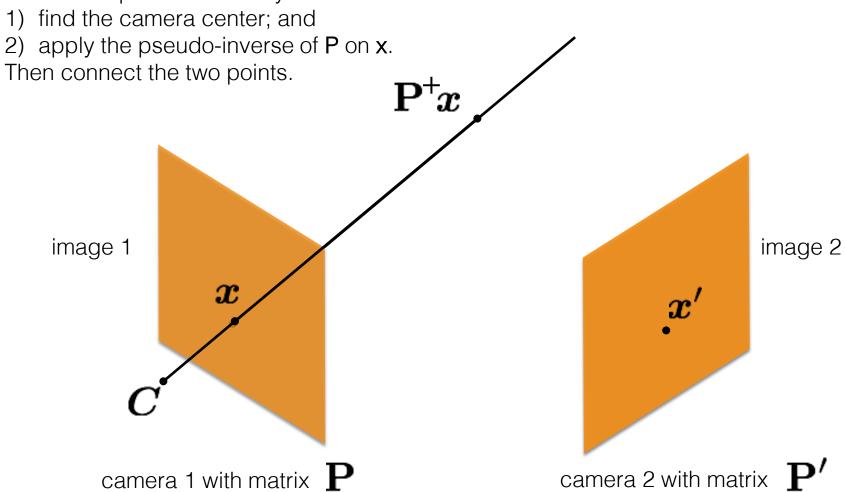


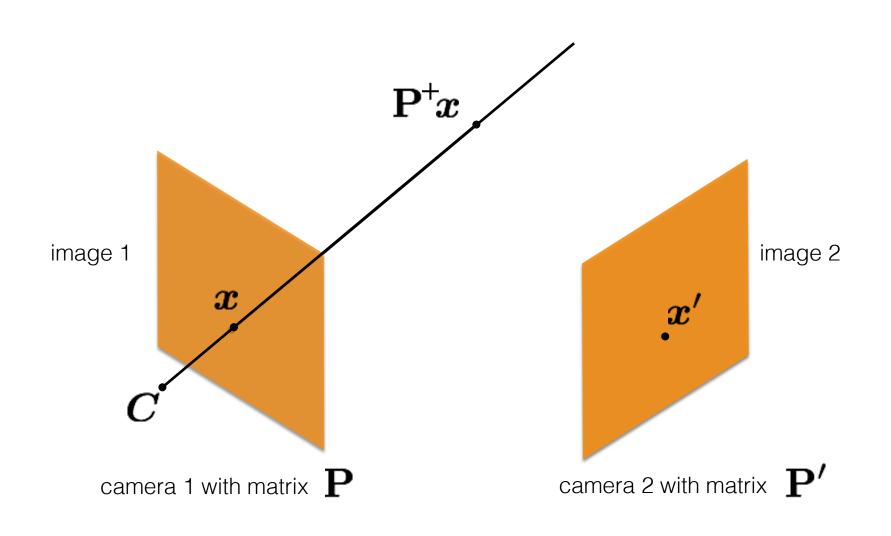
Can we compute **X** from a single correspondence **x**?

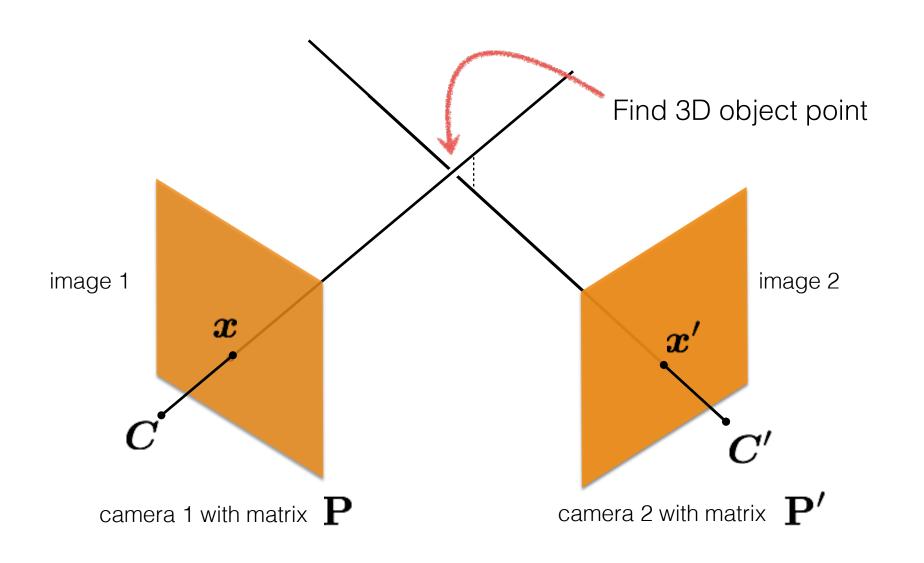


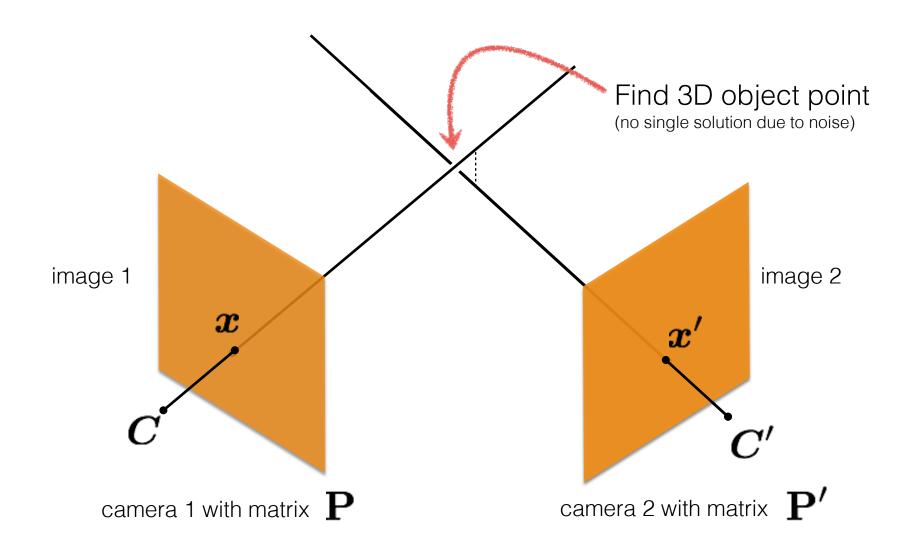


Create two points on the ray:









$$\mathbf{x} = \mathbf{P} X$$

Can we compute **X** from two correspondences **x** and **x**'?

yes if perfect measurements

$$\mathbf{x} = \mathbf{P} X$$

Can we compute **X** from two correspondences **x** and **x**'?

yes if perfect measurements

There will not be a point that satisfies both constraints because the measurements are usually noisy

$$\mathbf{x}' = \mathbf{P}' \mathbf{X} \quad \mathbf{x} = \mathbf{P} \mathbf{X}$$

Need to find the best fit

Given a set of (noisy) matched points

$$\{oldsymbol{x}_i,oldsymbol{x}_i'\}$$

and camera matrices

$$\mathbf{P}, \mathbf{P}'$$

Estimate the 3D point

$$\mathbf{x} = \mathbf{P}X$$

(homogeneous coordinate)

Also, this is a similarity relation because it involves homogeneous coordinates

$$\mathbf{x} = lpha \mathbf{P} X$$
(homogeneous coordinate)

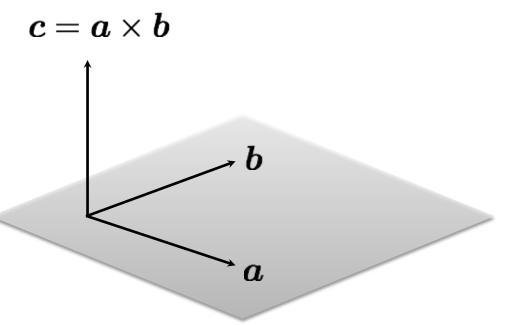
Same ray direction but differs by a scale factor

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \alpha \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

Recall: Cross Product

Vector (cross) product

takes two vectors and returns a vector perpendicular to both



$$oldsymbol{a} imesoldsymbol{b}=\left[egin{array}{c} a_2b_3-a_3b_2\ a_3b_1-a_1b_3\ a_1b_2-a_2b_1 \end{array}
ight]$$

cross product of two vectors in the same direction is zero

$$\boldsymbol{a} \times \boldsymbol{a} = 0$$

remember this!!!

$$\boldsymbol{c} \cdot \boldsymbol{a} = 0$$

$$\boldsymbol{c} \cdot \boldsymbol{b} = 0$$

$\mathbf{x} = \alpha \mathbf{P} \mathbf{X}$

Same direction but differs by a scale factor

$$\mathbf{x} \times \mathbf{P} X = \mathbf{0}$$

Cross product of two vectors of same direction is zero (this equality removes the scale factor)

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \alpha \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

$$\left[egin{array}{c} x \ y \ 1 \end{array}
ight] = lpha \left[egin{array}{ccc} - & oldsymbol{p}_1^ op & --- \ --- & oldsymbol{p}_2^ op & --- \ --- & oldsymbol{p}_3^ op & --- \end{array}
ight] \left[egin{array}{c} x \ X \ \end{array}
ight]$$

$$\left[egin{array}{c} x \ y \ 1 \end{array}
ight] = lpha \left[egin{array}{c} oldsymbol{p}_1^ op oldsymbol{X} \ oldsymbol{p}_3^ op oldsymbol{X} \end{array}
ight]$$

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \times \begin{bmatrix} \boldsymbol{p}_1^{\top} \boldsymbol{X} \\ \boldsymbol{p}_2^{\top} \boldsymbol{X} \\ \boldsymbol{p}_3^{\top} \boldsymbol{X} \end{bmatrix} = \begin{bmatrix} y \boldsymbol{p}_3^{\top} \boldsymbol{X} - \boldsymbol{p}_2^{\top} \boldsymbol{X} \\ \boldsymbol{p}_1^{\top} \boldsymbol{X} - x \boldsymbol{p}_3^{\top} \boldsymbol{X} \\ x \boldsymbol{p}_2^{\top} \boldsymbol{X} - y \boldsymbol{p}_1^{\top} \boldsymbol{X} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Using the fact that the cross product should be zero

$$\mathbf{x} \times \mathbf{P} X = \mathbf{0}$$

$$\left[egin{array}{c} x \ y \ 1 \end{array}
ight] imes \left[egin{array}{c} oldsymbol{p}_1^ op oldsymbol{X} \ oldsymbol{p}_2^ op oldsymbol{X} \ oldsymbol{p}_3^ op oldsymbol{X} \end{array}
ight] = \left[egin{array}{c} y oldsymbol{p}_3^ op oldsymbol{X} - oldsymbol{p}_2^ op oldsymbol{X} \ oldsymbol{p}_1^ op oldsymbol{X} - oldsymbol{x} oldsymbol{p}_3^ op oldsymbol{X} \end{array}
ight] = \left[egin{array}{c} 0 \ 0 \ 0 \end{array}
ight]$$

Third line is a linear combination of the first and second lines. (x times the first line plus y times the second line)

$$\left[egin{array}{c} y oldsymbol{p}_3^ op oldsymbol{X} - oldsymbol{p}_2^ op oldsymbol{X} \ oldsymbol{p}_1^ op oldsymbol{X} - x oldsymbol{p}_3^ op oldsymbol{X} \end{array}
ight] = \left[egin{array}{c} 0 \ 0 \end{array}
ight]$$

$$\left[egin{array}{c} y oldsymbol{p}_3^ op - oldsymbol{p}_2^ op \ oldsymbol{p}_1^ op - x oldsymbol{p}_3^ op \end{array}
ight] oldsymbol{X} = \left[egin{array}{c} 0 \ 0 \end{array}
ight]$$

$$\mathbf{A}_i \mathbf{X} = \mathbf{0}$$

Now we can make a system of linear equations (two lines for each 2D point correspondence)

Concatenate the 2D points from both images

$$\left[egin{array}{c} yoldsymbol{p}_3^ op - oldsymbol{p}_2^ op \ oldsymbol{p}_1^ op - xoldsymbol{p}_3^ op \ y'oldsymbol{p}_3'^ op - oldsymbol{p}_2'^ op \ oldsymbol{p}_1'^ op - x'oldsymbol{p}_3'^ op \ oldsymbol{p}_1'^ op \end{array}
ight] oldsymbol{X} = \left[egin{array}{c} 0 \ 0 \ 0 \ \end{array}
ight]$$

sanity check! dimensions?

$$\mathbf{A}X = 0$$

How do we solve homogeneous linear system?

Concatenate the 2D points from both images

$$\left[egin{array}{c} yoldsymbol{p}_3^ op - oldsymbol{p}_2^ op \ oldsymbol{p}_1^ op - xoldsymbol{p}_3^ op \ y'oldsymbol{p}_3'^ op - oldsymbol{p}_2'^ op \ oldsymbol{p}_1'^ op - x'oldsymbol{p}_3'^ op \ oldsymbol{p}_1'^ op - x'oldsymbol{p}_3'^ op \ oldsymbol{0} \end{array}
ight] oldsymbol{X} = \left[egin{array}{c} 0 \ 0 \ 0 \ 0 \end{array}
ight]$$

$$\mathbf{A}X = \mathbf{0}$$

How do we solve homogeneous linear system?

SVD

Recall: Total least squares

(Warning: change of notation. x is a vector of parameters!)

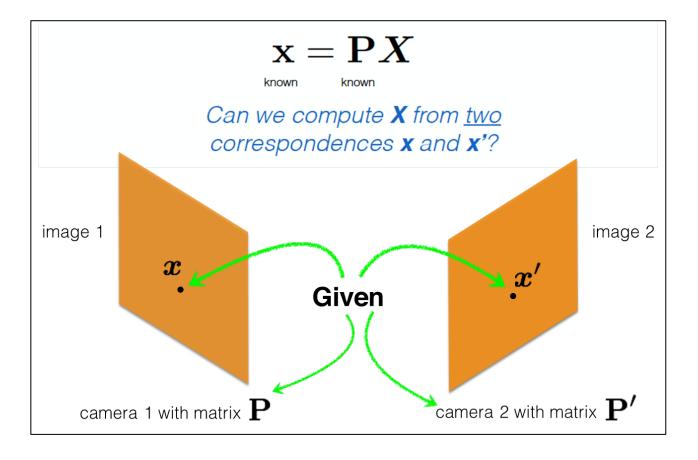
$$E_{ ext{TLS}} = \sum_{i} (oldsymbol{a}_i oldsymbol{x})^2$$
 $= \| \mathbf{A} oldsymbol{x} \|^2$ (matrix form) $\| oldsymbol{x} \|^2 = 1$ constraint

minimize
$$\| {\bf A} {m x} \|^2$$
 subject to $\| {m x} \|^2 = 1$ minimize $\frac{\| {\bf A} {m x} \|^2}{\| {m x} \|^2}$ (Rayleigh quotient)

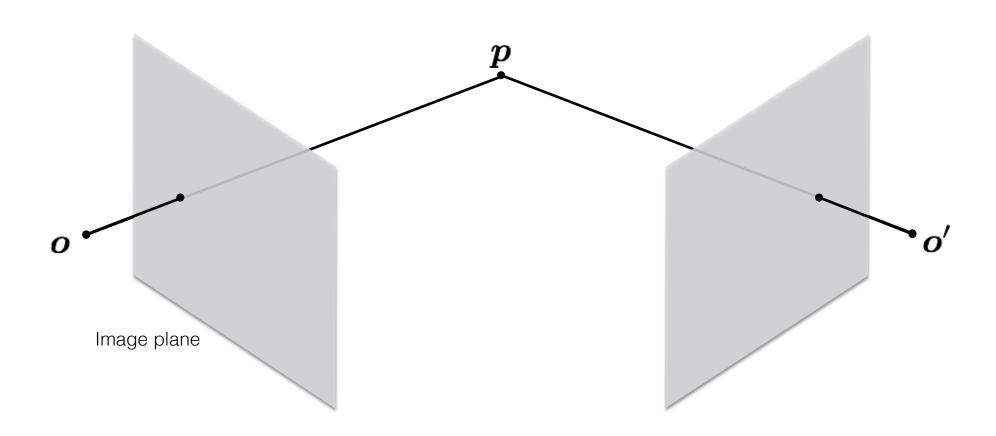
Solution is the eigenvector corresponding to smallest eigenvalue of

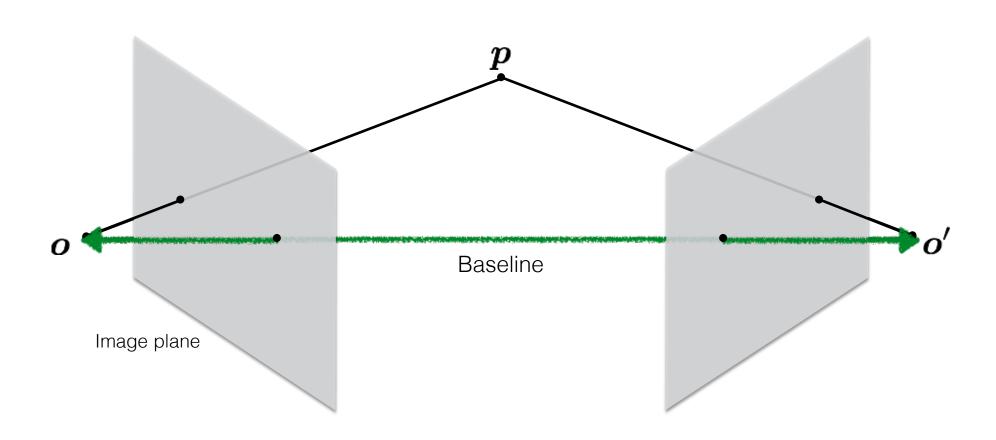
$$\mathbf{A}^{\mathsf{T}}\mathbf{A}$$

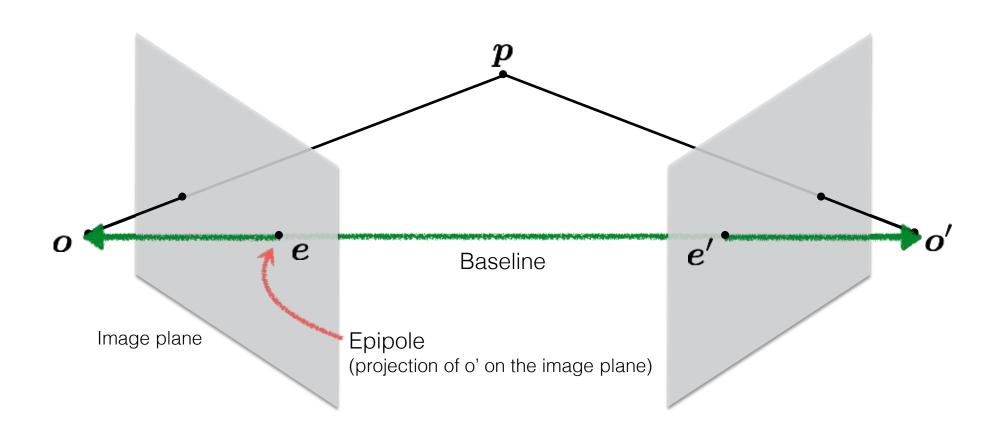
Summary

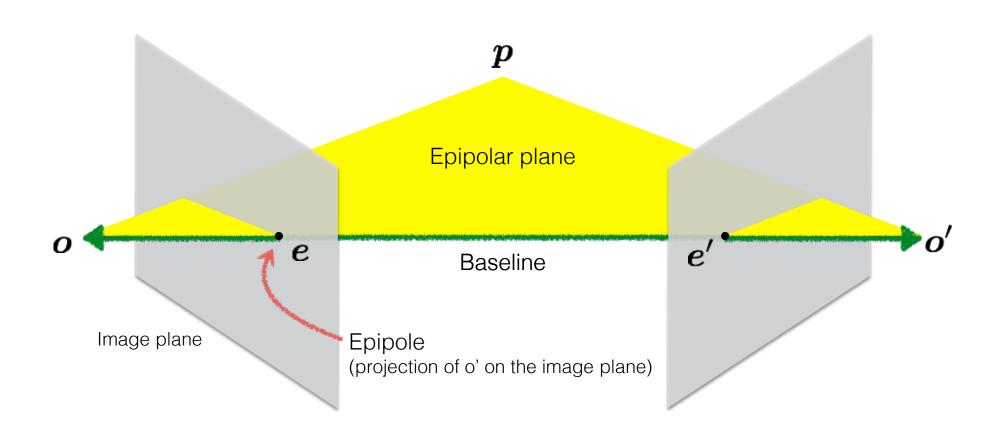


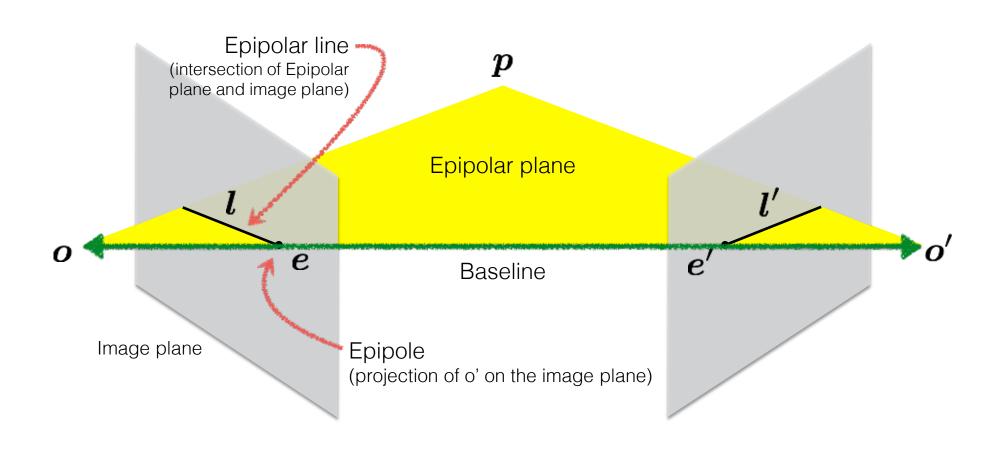
- What have we achieved?
- If we have two cameras, with *known* camera parameters, we can estimate the 3D coordinates (world coordinates) of a point.



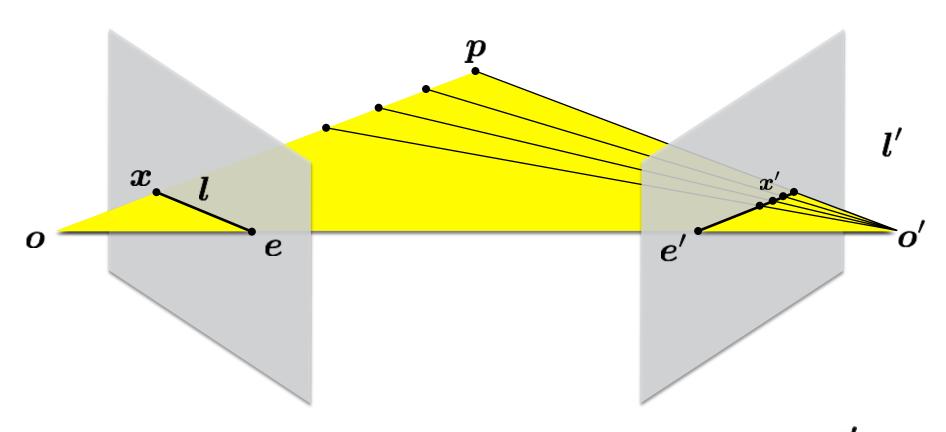






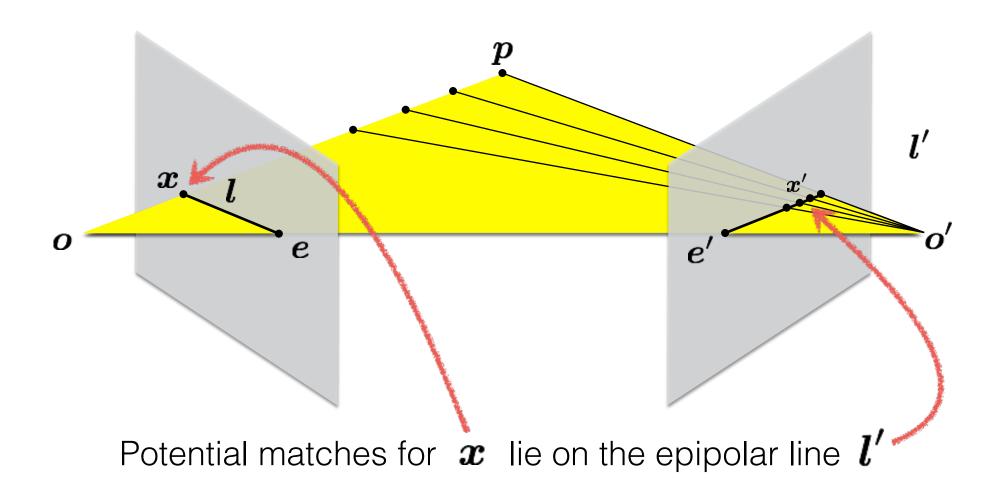


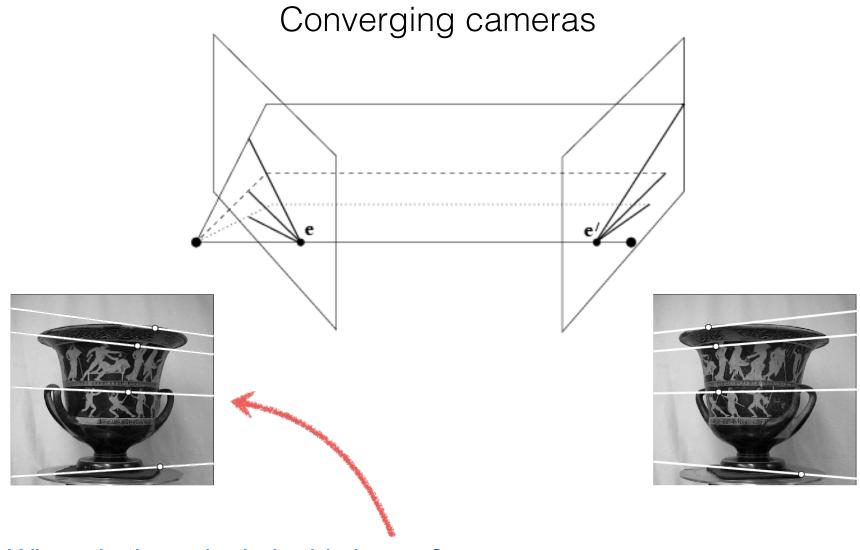
Epipolar constraint



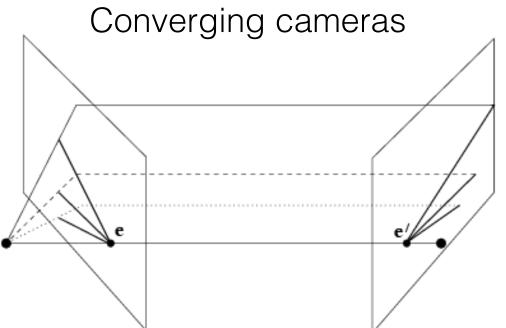
Potential matches for $m{x}$ lie on the epipolar line $m{l}'$

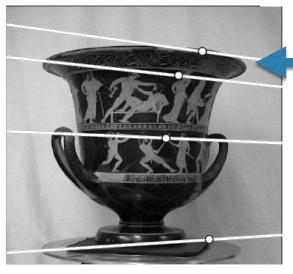
Epipolar constraint



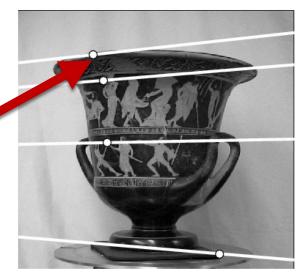


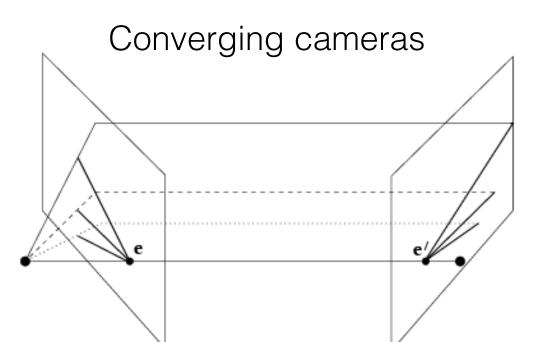
Where is the epipole in this image?



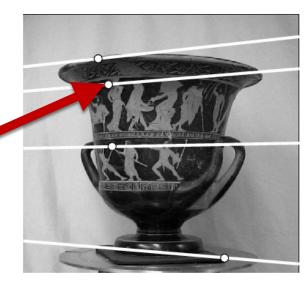


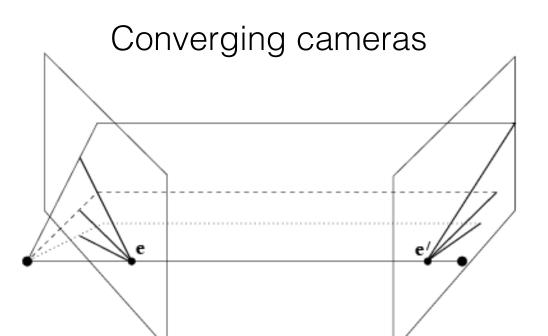
This line
(in Image 1)
is the epipolar line
this point
(in Image 2)



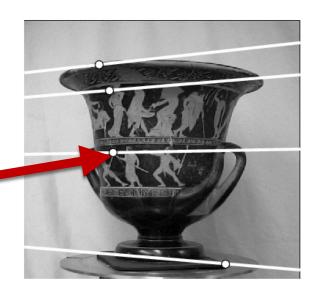


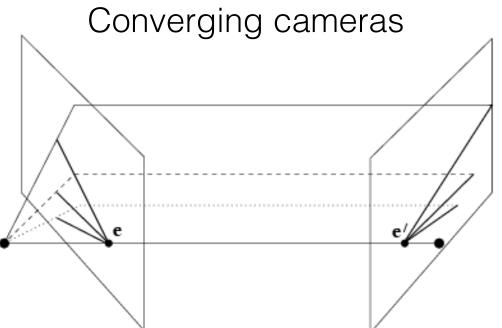
This line
(in Image 1)
is the epipolar line of
this point
(in Image 2)

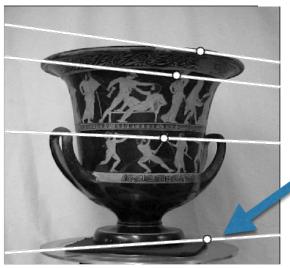




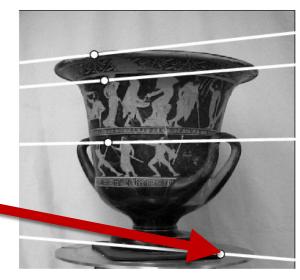
This line
(in Image 1)
is the epipolar line of
this point
(in Image 2)

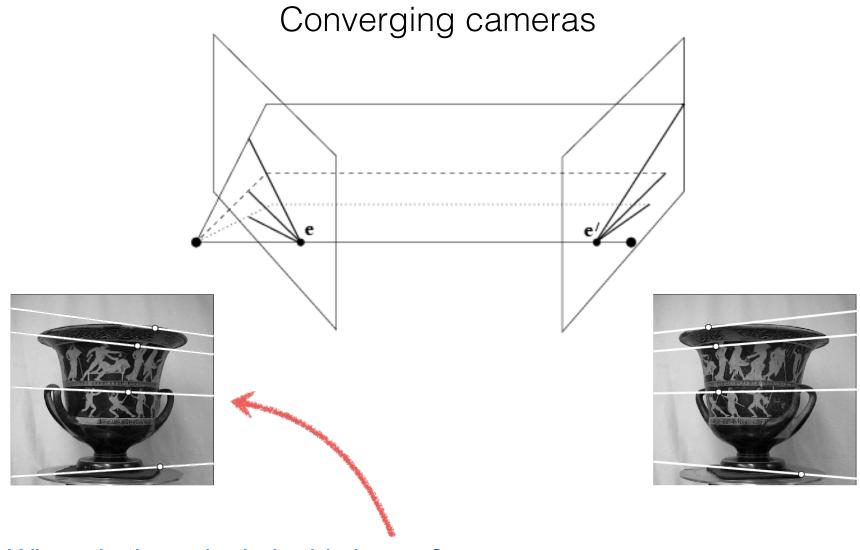




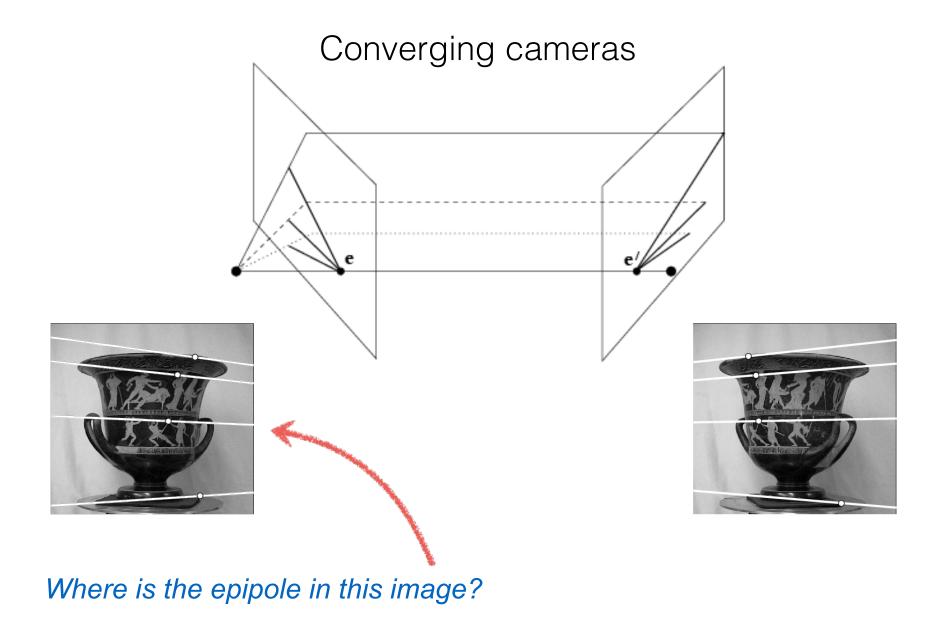


This line
(in Image 1)
Is the epipolar line of this point
(in Image 2)

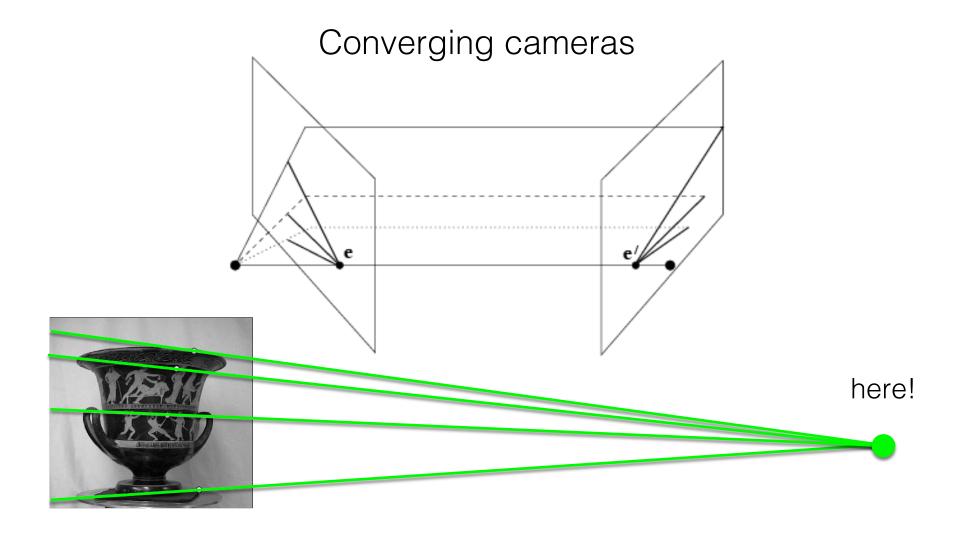




Where is the epipole in this image?



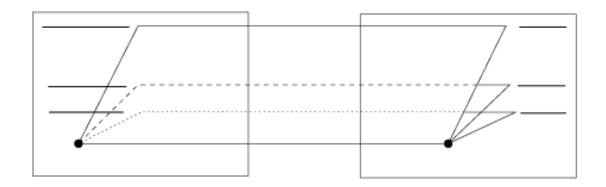
(BIG) HINT: All epipolar lines intersect at the epipole!

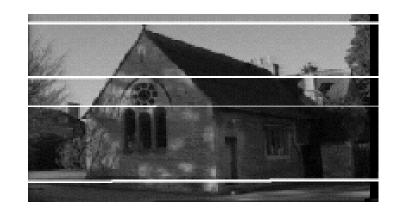


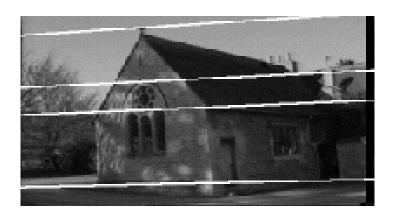
Where is the epipole in this image?

It's not always in the image

Parallel cameras

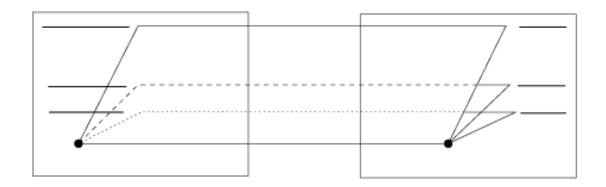


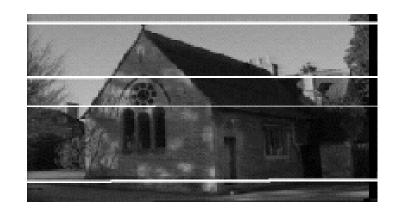


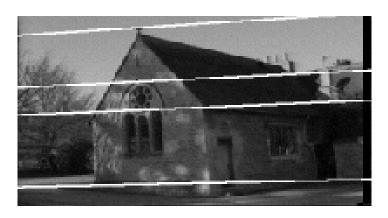


Where is the epipole?

Parallel cameras







epipole at infinity

The epipolar constraint is an important concept for stereo vision

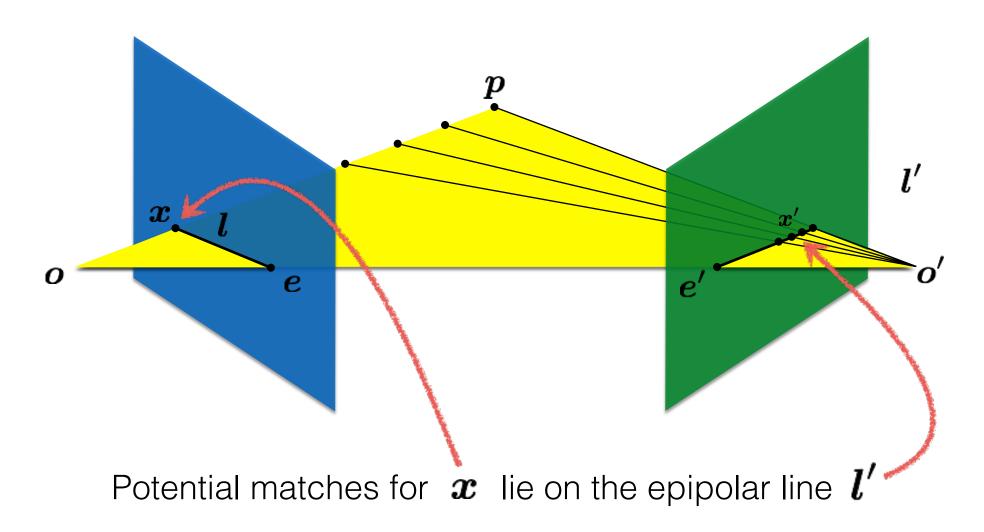
Task: Match point in left image to point in right image

Left image

Right image

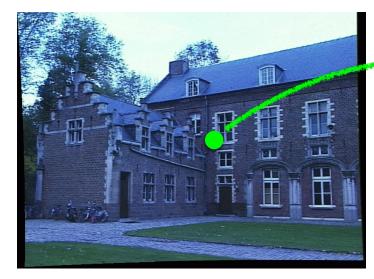
How would you do it?

Recall:Epipolar constraint



The epipolar constraint is an important concept for stereo vision

Task: Match point in left image to point in right image





Right image

Want to avoid search over entire image
Epipolar constraint reduces search to a single line

The epipolar constraint is an important concept for stereo vision

Task: Match point in left image to point in right image

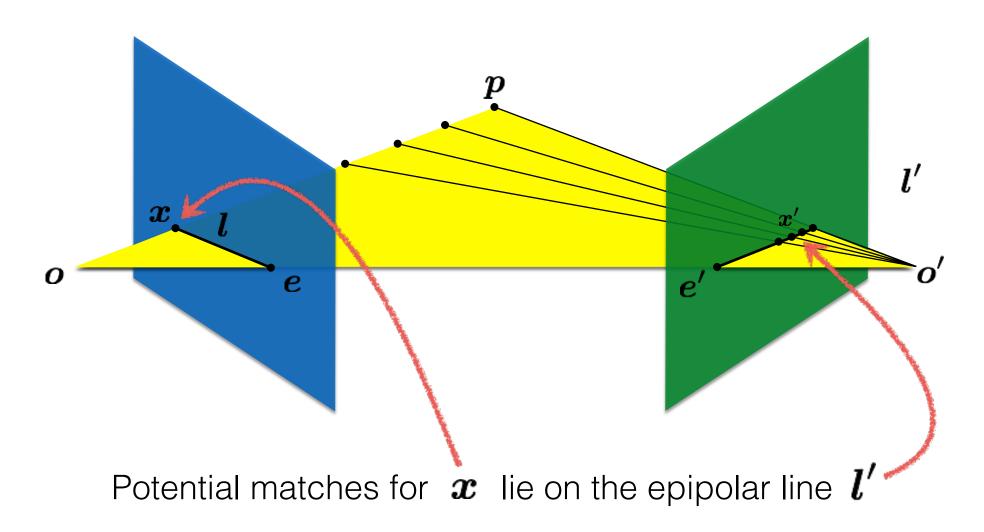
Right image

Want to avoid search over entire image Epipolar constraint reduces search to a single line

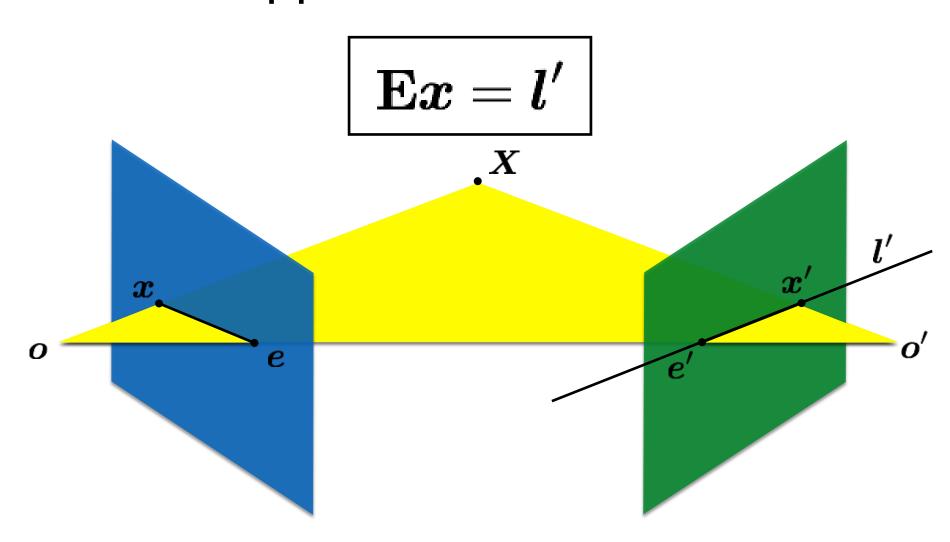
How do you compute the epipolar line?

The essential matrix

Recall:Epipolar constraint



Given a point in one image, multiplying by the **essential matrix** will tell us the **epipolar line** in the second view.



Motivation

The Essential Matrix is a 3 x 3 matrix that encodes **epipolar geometry**

Given a point in one image, multiplying by the **essential matrix** will tell us the **epipolar line** in the second view.

Essential Matrix vs Homography

What's the difference between the essential matrix and a homography?

Essential Matrix vs Homography

What's the difference between the essential matrix and a homography?

They are both 3 x 3 matrices but ...

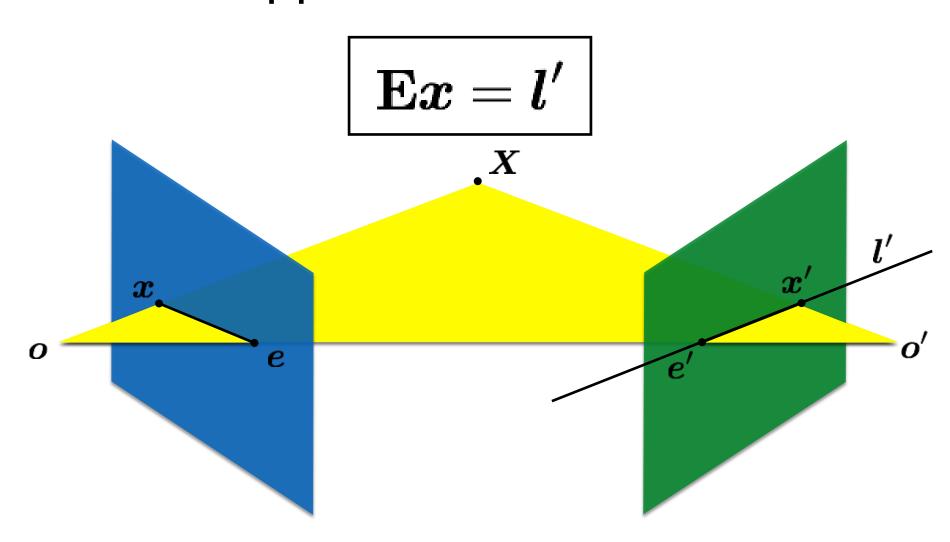
$$oldsymbol{l}' = \mathbf{E} oldsymbol{x}$$

Essential matrix maps a **point** to a **line**

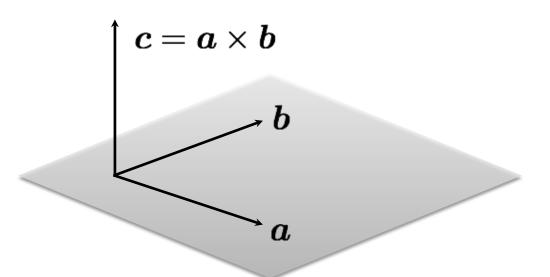
$$x' = \mathbf{H}x$$

Homography maps a **point** to a **point**

Given a point in one image, multiplying by the **essential matrix** will tell us the **epipolar line** in the second view.



Recall: Dot Product



$$\boldsymbol{c} \cdot \boldsymbol{a} = 0$$

$$\boldsymbol{c} \cdot \boldsymbol{b} = 0$$

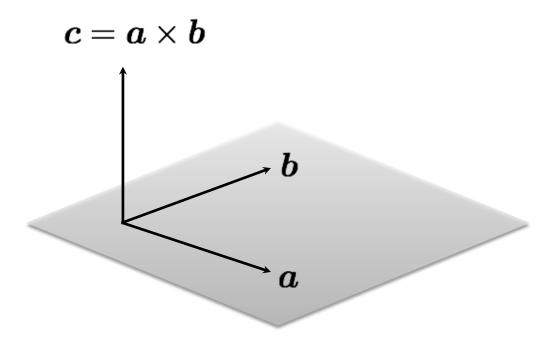
dot product of two orthogonal vectors is zero

Where does the Essential matrix come from?

Recall: Cross Product

Vector (cross) product

takes two vectors and returns a vector perpendicular to both



$$\boldsymbol{c} \cdot \boldsymbol{a} = 0$$

$$\boldsymbol{c} \cdot \boldsymbol{b} = 0$$

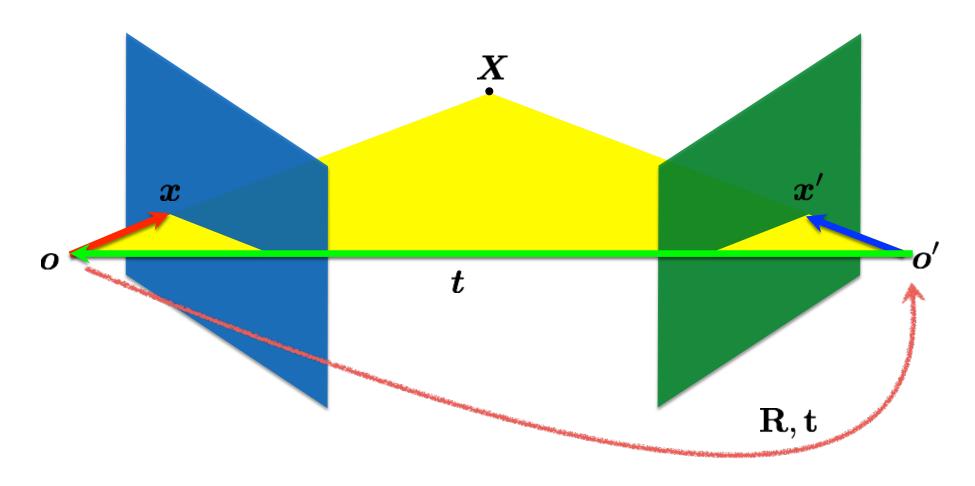
Cross product

$$oldsymbol{a} imesoldsymbol{b}=\left[egin{array}{c} a_2b_3-a_3b_2\ a_3b_1-a_1b_3\ a_1b_2-a_2b_1 \end{array}
ight]$$

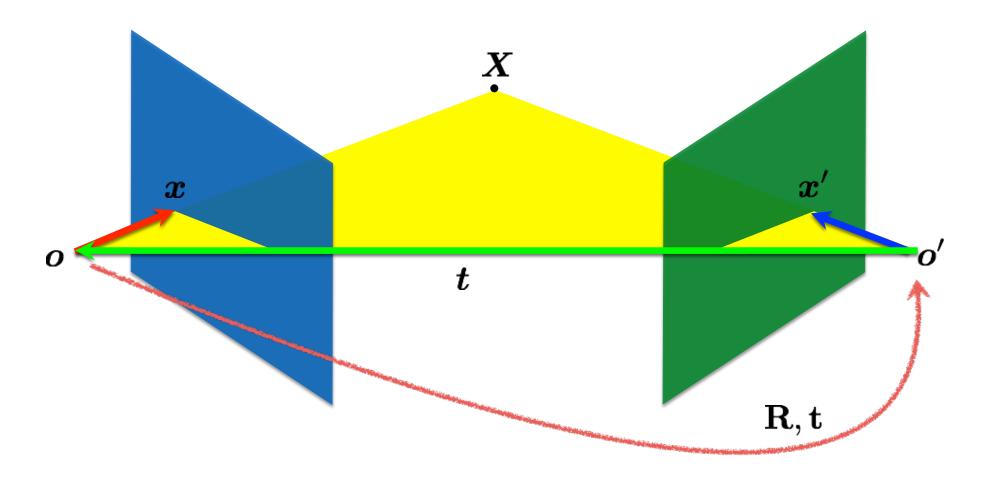
Can also be written as a matrix multiplication

$$m{a} imes m{b} = [m{a}]_{ imes} m{b} = \left[egin{array}{ccc} 0 & -a_3 & a_2 \ a_3 & 0 & -a_1 \ -a_2 & a_1 & 0 \end{array}
ight] \left[egin{array}{ccc} b_1 \ b_2 \ b_3 \end{array}
ight]$$

Skew symmetric

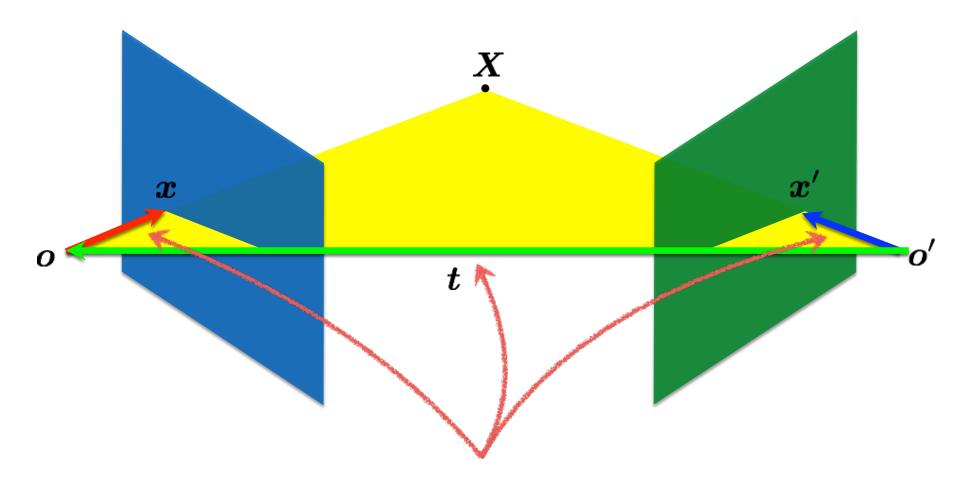


$$\boldsymbol{x}' = \mathbf{R}(\boldsymbol{x} - \boldsymbol{t})$$



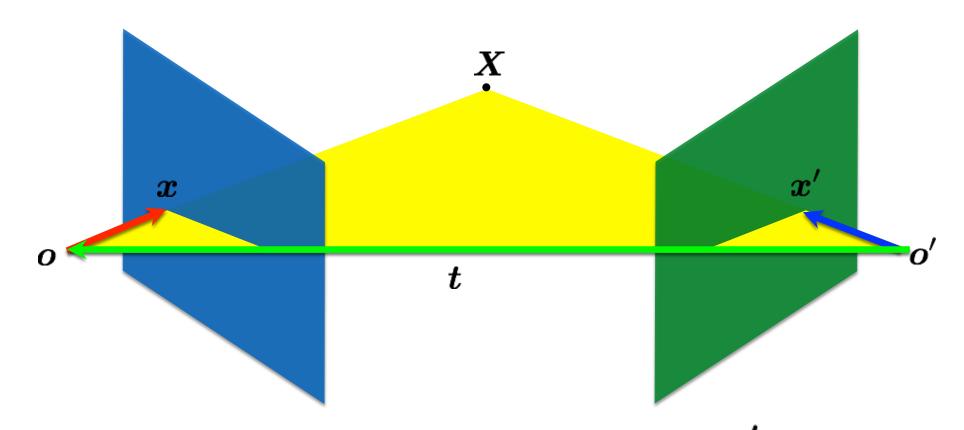
$$oldsymbol{x}' = \mathbf{R}(oldsymbol{x} - oldsymbol{t})$$

Camera-camera transform just like world-camera transform



These three vectors are coplanar

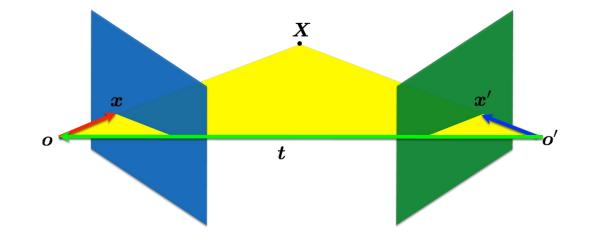
 $oldsymbol{x},oldsymbol{t},oldsymbol{x}'$



If these three vectors are coplanar $oldsymbol{x}, oldsymbol{t}, oldsymbol{x}'$ then

WHY? a
(Basic Geometry)

$$\boldsymbol{x}^{\top}(\boldsymbol{t} \times \boldsymbol{x}) = 0$$



- Cross product $t \times x$ is perpendicular to the plane containing t, x

(by definition)

- $\therefore t \times x$ is perpendicular to x
- : their dot product is zero

(by definition)

If these three vectors are coplanar $oldsymbol{x}, oldsymbol{t}, oldsymbol{x}'$ then

$$\boldsymbol{x}^{\top}(\boldsymbol{t} \times \boldsymbol{x}) = 0$$

rigid motion

coplanarity

$$egin{aligned} oldsymbol{x}' &= \mathbf{R}(oldsymbol{x} - oldsymbol{t}) & (oldsymbol{x} - oldsymbol{t})^{ op} (oldsymbol{t} imes oldsymbol{x}) = 0 \ & (oldsymbol{x}'^{ op} \mathbf{R}) (oldsymbol{t} imes oldsymbol{x}) = 0 \end{aligned}$$

rigid motion

coplanarity

$$egin{aligned} oldsymbol{x}' &= \mathbf{R}(oldsymbol{x} - oldsymbol{t}) & (oldsymbol{x} - oldsymbol{t})^ op (oldsymbol{t} imes oldsymbol{x}) = 0 \ & (oldsymbol{x}'^ op \mathbf{R}) (oldsymbol{t} imes oldsymbol{x}) = 0 \end{aligned}$$

"inverse of a rotation matrix is it's transpose"

rigid motion

coplanarity

$$egin{aligned} oldsymbol{x}' &= \mathbf{R}(oldsymbol{x} - oldsymbol{t}) & (oldsymbol{x} - oldsymbol{t})^{ op} (oldsymbol{t} imes oldsymbol{x}) = 0 \ & (oldsymbol{x}'^{ op} \mathbf{R}) (oldsymbol{t} imes oldsymbol{x}) = 0 \ & (oldsymbol{x}'^{ op} \mathbf{R}) (oldsymbol{t}_{ imes} oldsymbol{x}) = 0 \end{aligned}$$

rigid motion coplanarity $m{x}' = \mathbf{R}(m{x} - m{t}) \qquad (m{x} - m{t})^{ op} (m{t} imes m{x}) = 0$ $(m{x}'^{ op} \mathbf{R}) (m{t} imes m{x}) = 0$ $(m{x}'^{ op} \mathbf{R}) ([m{t}_{ imes}] m{x}) = 0$ $m{x}'^{ op} (m{R}[m{t}_{ imes}]) m{x} = 0$

rigid motion coplanarity $oldsymbol{x}' = \mathbf{R}(oldsymbol{x} - oldsymbol{t}) \qquad (oldsymbol{x} - oldsymbol{t})^{ op} (oldsymbol{t} imes oldsymbol{x}) = 0$

$$(\boldsymbol{x}'^{\top}\mathbf{R})(\boldsymbol{t} \times \boldsymbol{x}) = 0$$

 $(\boldsymbol{x}'^{\top}\mathbf{R})([\mathbf{t}_{\times}]\boldsymbol{x}) = 0$
 $\boldsymbol{x}'^{\top}(\mathbf{R}[\mathbf{t}_{\times}])\boldsymbol{x} = 0$

$$\boldsymbol{x}'^{\top} \mathbf{E} \boldsymbol{x} = 0$$

rigid motion

coplanarity

$$egin{aligned} oldsymbol{x}' &= \mathbf{R}(oldsymbol{x} - oldsymbol{t}) & (oldsymbol{x} - oldsymbol{t})^{ op} (oldsymbol{t} imes oldsymbol{x})^{ op} (oldsymbol{t} imes oldsymbol{x}) &= 0 \ & (oldsymbol{x}'^{ op} \mathbf{R}) ([oldsymbol{t}_{ imes}] oldsymbol{x}) = 0 \ & oldsymbol{x}'^{ op} (oldsymbol{R}[oldsymbol{t}_{ imes}]) oldsymbol{x} = 0 \end{aligned}$$

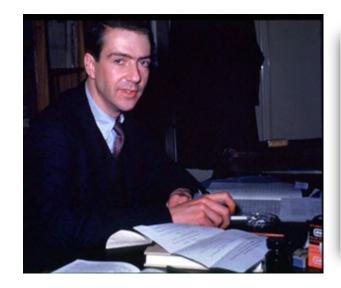
$$\boldsymbol{x}'^{\top} \mathbf{E} \boldsymbol{x} = 0$$

Essential Matrix

[Longuet-Higgins 1981]

Christopher Longuet-Higgins

Hugh Christopher Longuet-Higgins FRS FRSA FRSE^[5] (11 April 1923 – 27 March 2004) was a British scholar and teacher. He was the Professor of Theoretical Chemistry at the University of Cambridge for 13 years until 1967 when he moved to the University of Edinburgh to work in the developing field of cognitive science. He made many significant contributions to our understanding of molecular science. He was also a gifted amateur musician, both as performer and composer, and was keen to advance the scientific understanding of this art.^[6] He was the founding editor of the journal *Molecular Physics*.^[7]



In his later years at Cambridge he became interested in the brain and the new field of artificial intelligence. As a consequence, in 1967, he made a major change in his career by moving to the University of Edinburgh to co-found the Department of Machine intelligence and perception, with Richard Gregory and Donald Michie.

In 1974 he moved to the Centre for Research on Perception and Cognition (in the Department of Experimental Psychology) at Sussex University, Brighton, England. In 1981 he introduced the essential matrix to the computer vision community in a paper which also included the eight-point algorithm for the estimation of this matrix.

Technical Community on Pattern Analysis and Machine Intelligence

Longuet-Higgins Prize

The annual Longuet-Higgins prize is presented by the IEEE Pattern Analysis and Machine Intelligence (PAMI) Technical Committee at each year's CVPR for fundamental contributions in computer vision. The award recognizes CVPR papers from ten years ago with significant impact on computer vision research. The prize is named after theoretical chemist and cognitive scientist H. Christopher Longuet-Higgins. Winners are decided by a committee appointed by the TCPAMI Awards Committee.

https://tc.computer.org/tcpami/awards/longuet-higgins-prize/

properties of the E matrix

Longuet-Higgins equation

$$\mathbf{x}'^{\top} \mathbf{E} \mathbf{x} = 0$$

properties of the E matrix

Longuet-Higgins equation

$$\mathbf{x}'^{\top} \mathbf{E} \mathbf{x} = 0$$

Epipolar lines

$$\boldsymbol{x}^{\mathsf{T}}\boldsymbol{l} = 0$$

$$\boldsymbol{x}'^{\top} \boldsymbol{l}' = 0$$

$$oldsymbol{l}' = \mathbf{E} oldsymbol{x}$$

$$\boldsymbol{l} = \mathbf{E}^T \boldsymbol{x}'$$

(points in normalized coordinates)

properties of the E matrix

Longuet-Higgins equation

$$\mathbf{x}'^{\top} \mathbf{E} \mathbf{x} = 0$$

Epipolar lines

$$\boldsymbol{x}^{\mathsf{T}}\boldsymbol{l} = 0$$

$$oldsymbol{l}' = \mathbf{E} oldsymbol{x}$$

$$\boldsymbol{x}'^{\top} \boldsymbol{l}' = 0$$

$$\boldsymbol{l} = \mathbf{E}^T \boldsymbol{x}'$$

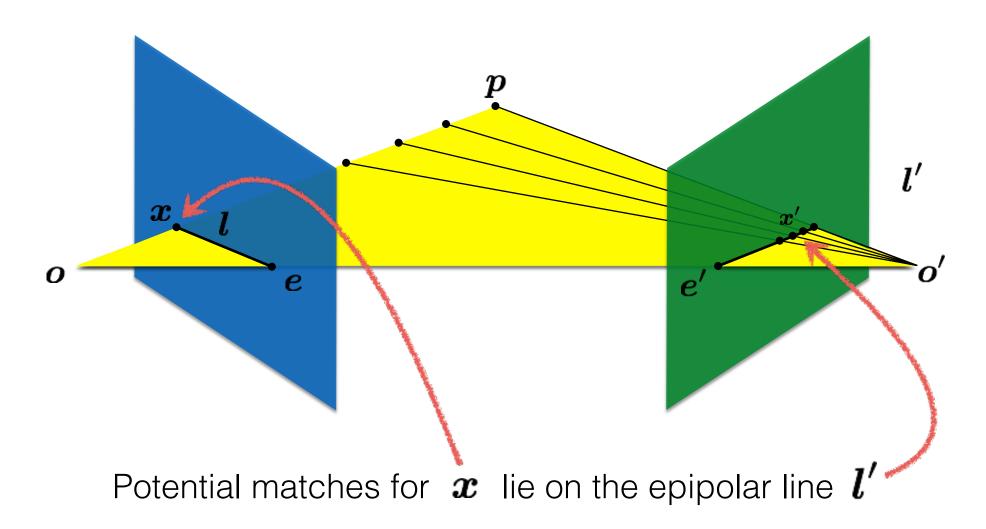
Epipoles

$$e'^{\mathsf{T}}\mathbf{E} = \mathbf{0}$$

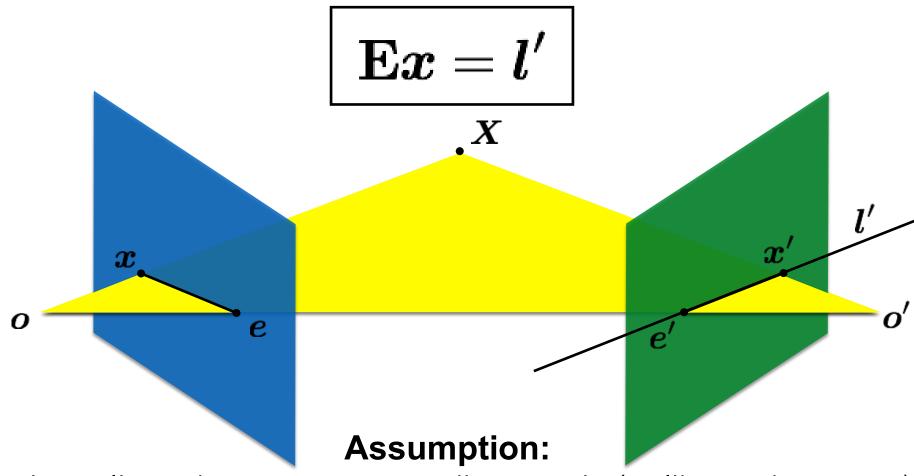
$$\mathbf{E}e = \mathbf{0}$$

(points in normalized <u>camera</u> coordinates)

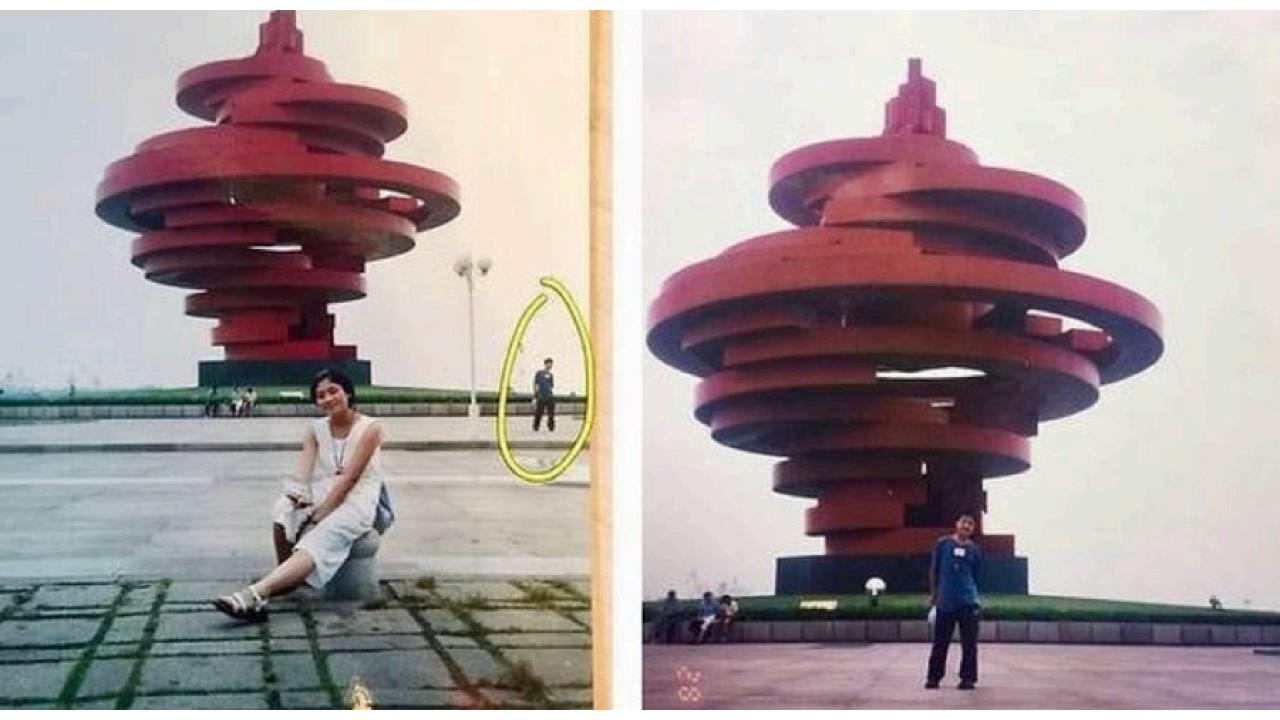
Recall:Epipolar constraint

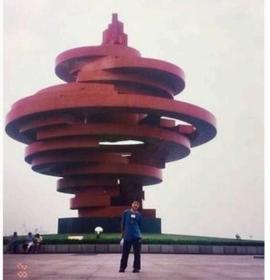


Given a point in one image, multiplying by the **essential matrix** will tell us the **epipolar line** in the second view.



points aligned to camera coordinate axis (calibrated camera)





Go back in time.

Design a matching algorithm to merge these two images (and Xue and Ye's stories)

May the fourth be with you

- A married couple discovered a photo of themselves from 11 years before they met. Xue and her nowhusband Ye were photographed together in 2000 as teenagers, but they only found out about it after getting married!
- In the summer of 2000, they both visited May Fourth Square in Qingdao, China. Several years later, while going through photos of a younger Xue to compare her resemblance to their daughters, Ye stumbled upon the picture.
- As soon as Ye saw the photo, he instantly recognized himself. He recalled, "I remember her mentioning that she had been to Qingdao, and coincidentally, I had also visited Qingdao and taken pictures at the *May Fourth* Square. When I saw the photo, I was completely surprised, and I got goosebumps all over my body... it was the exact pose I used for taking photos. I even took a picture from a different angle but in the same posture."

Recap: Camera Matrix: Intrinsic and Extrinsic Parameters

$$\mathbf{P} = \mathbf{K}[\mathbf{R}|\mathbf{t}]$$

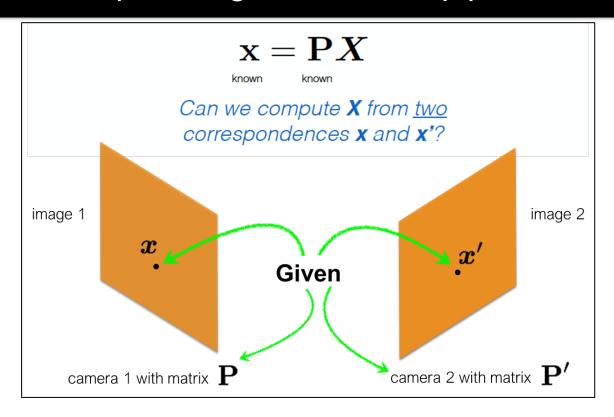
$$\mathbf{P} = \left[egin{array}{cccc} f & 0 & p_x \ 0 & f & p_y \ 0 & 0 & 1 \end{array}
ight] \left[egin{array}{cccc} r_1 & r_2 & r_3 & t_1 \ r_4 & r_5 & r_6 & t_2 \ r_7 & r_8 & r_9 & t_3 \end{array}
ight]$$
 intrinsic extrinsic parameters parameters

$$\mathbf{R} = \left[egin{array}{ccc} r_1 & r_2 & r_3 \ r_4 & r_5 & r_6 \ r_7 & r_8 & r_9 \end{array}
ight] \qquad \mathbf{t} = \left[egin{array}{ccc} t_1 \ t_2 \ t_3 \end{array}
ight]$$

3D rotation

3D translation

Recap: Triangulation and Epipolar Geometry

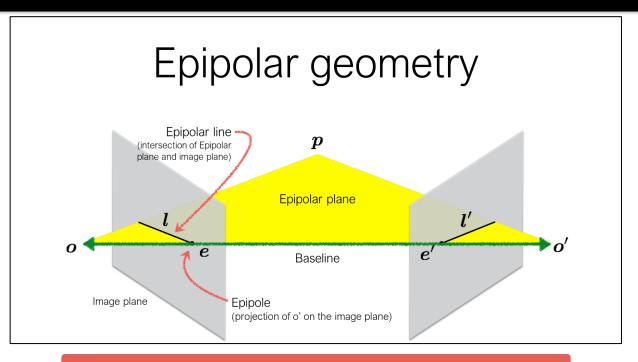


Essential Matrix vs Homography

What's the difference between the essential matrix and a homography?

They are both 3 x 3 matrices but ...

$$m{l'} = \mathbf{E}m{x}$$
 $m{x'} = \mathbf{H}m{x}$ Essential matrix maps a point to a line Homography maps a point to a point



Longuet-Higgins equation $oldsymbol{x'}^{ op}\mathbf{E}oldsymbol{x}=0$

Epipolar lines $egin{aligned} m{x}^ op m{l} = 0 & m{x}'^ op m{l}' = 0 \ m{l}' = m{E}m{x} & m{l} = m{E}^Tm{x}' \end{aligned}$

Epipoles $oldsymbol{e'}^{ op}\mathbf{E}=\mathbf{0}$ $\mathbf{E}oldsymbol{e}=\mathbf{0}$

(points in normalized <u>camera</u> coordinates)

Recap: Essential Matrix can be computed from the Camera Matrix P

$$\mathbf{P} = \mathbf{K}[\mathbf{R}|\mathbf{t}]$$

rigid motion

coplanarity

$$egin{align*} oldsymbol{x}' = \mathbf{R}(oldsymbol{x} - oldsymbol{t}) & (oldsymbol{x} - oldsymbol{t})^ op (oldsymbol{t} imes oldsymbol{x})^ op (oldsymbol{t} imes oldsymbol{x})^ op (oldsymbol{t} imes oldsymbol{x}) & = 0 \ & (oldsymbol{x}'^ op \mathbf{R})([\mathbf{t}_ imes] oldsymbol{x}) = 0 \ & oldsymbol{x}'^ op (\mathbf{R}[\mathbf{t}_ imes]) oldsymbol{x} = 0 \end{aligned}$$

$$\boldsymbol{x}'^{\top} \mathbf{E} \boldsymbol{x} = 0$$

Essential Matrix

[Longuet-Higgins 1981]

The fundamental matrix

The Fundamental matrix
is a generalization
of the Essential matrix,
where the assumption of calibrated cameras
is removed

$\mathbf{P} = \mathbf{K}[\mathbf{R}|\mathbf{t}]$

$$\mathbf{P} = \left[egin{array}{cccc} f & 0 & p_x \ 0 & f & p_y \ 0 & 0 & 1 \end{array}
ight] \left[egin{array}{cccc} r_1 & r_2 & r_3 & t_1 \ r_4 & r_5 & r_6 & t_2 \ r_7 & r_8 & r_9 & t_3 \end{array}
ight]$$

intrinsic parameters

extrinsic parameters

$$egin{bmatrix} \mathbf{R} = \left[egin{array}{ccc} r_1 & r_2 & r_3 \ r_4 & r_5 & r_6 \ r_7 & r_8 & r_9 \end{array}
ight] & \mathbf{t} = \left[egin{array}{ccc} t_1 \ t_2 \ t_3 \end{array}
ight] \end{split}$$

3D rotation

3D translation

$$\hat{\boldsymbol{x}}'^{\top}\mathbf{E}\hat{\boldsymbol{x}} = 0$$

The Essential matrix operates on image points expressed in **normalized coordinates**

(points have been aligned (normalized) to camera coordinates)

$$\hat{m{x}'} = \mathbf{K}^{-1} m{x}'$$
 $\hat{m{x}} = \mathbf{K}^{-1} m{x}$

$$\hat{\boldsymbol{x}}'^{\top}\mathbf{E}\hat{\boldsymbol{x}} = 0$$

The Essential matrix operates on image points expressed in **normalized coordinates**

(points have been aligned (normalized) to camera coordinates)

$$\hat{m{x}}' = \mathbf{K}^{-1} m{x}'$$
 $\hat{m{x}} = \mathbf{K}^{-1} m{x}$

$$\hat{\boldsymbol{x}}'^{\top}\mathbf{E}\hat{\boldsymbol{x}} = 0$$

The Essential matrix operates on image points expressed in **normalized coordinates**

(points have been aligned (normalized) to camera coordinates)

$$\hat{m{x}}' = \mathbf{K}^{-1} m{x}'$$
 $\hat{m{x}} = \mathbf{K}^{-1} m{x}$

Writing out the epipolar constraint in terms of image coordinates

$$\mathbf{x}'^{\top} \mathbf{K}'^{-\top} \mathbf{E} \mathbf{K}^{-1} \mathbf{x} = 0$$

 $\mathbf{x}'^{\top} (\mathbf{K}'^{-\top} \mathbf{E} \mathbf{K}^{-1}) \mathbf{x} = 0$
 $\mathbf{x}'^{\top} \mathbf{F} \mathbf{x} = 0$

Same equation works in image coordinates!

$$\boldsymbol{x}'^{\top}\mathbf{F}\boldsymbol{x} = 0$$

it maps pixels to epipolar lines

properties of the E matrix

Longuet-Higgins equation

$$\mathbf{x}'^{\top} \mathbf{E} \mathbf{x} = 0$$

Epipolar lines

$$\boldsymbol{x}^{\mathsf{T}}\boldsymbol{l} = 0$$

$$oldsymbol{l}' = oldsymbol{\mathbb{E}} oldsymbol{x}$$

$$\boldsymbol{x}'^{\top} \boldsymbol{l}' = 0$$

$$oldsymbol{l} = \mathbf{E}^T oldsymbol{x}'$$

Epipoles

$$e'^{\top}\mathbf{E} = \mathbf{0}$$

$$\mathbf{E}e=\mathbf{0}$$

(points in **image** coordinates)

The 8-point algorithm

Assume you have *M* matched *image* points

$$\{\boldsymbol{x_m}, \boldsymbol{x_m'}\}$$
 $m = 1, \dots, M$

Each correspondence should satisfy

$$\boldsymbol{x}_m^{\prime \top} \mathbf{F} \boldsymbol{x}_m = 0$$

How would you solve for the 3 x 3 **F** matrix?

Assume you have *M* matched *image* points

$$\{\boldsymbol{x}_{m}, \boldsymbol{x}'_{m}\}$$
 $m = 1, \ldots, M$

Each correspondence should satisfy

$$\boldsymbol{x}_m^{\prime \top} \mathbf{F} \boldsymbol{x}_m = 0$$

How would you solve for the 3 x 3 **F** matrix?

Assume you have *M* matched *image* points

$$\{\boldsymbol{x}_{m}, \boldsymbol{x}'_{m}\}$$
 $m = 1, \ldots, M$

Each correspondence should satisfy

$$\boldsymbol{x}_m^{\prime \top} \mathbf{F} \boldsymbol{x}_m = 0$$

How would you solve for the 3 x 3 **F** matrix?

Set up a homogeneous linear system with 9 unknowns

$$\boldsymbol{x}_m'^{\top} \mathbf{F} \boldsymbol{x}_m = 0$$

How many equation do you get from one correspondence?

ONE correspondence gives you ONE equation

$$x_m x'_m f_1 + x_m y'_m f_2 + x_m f_3 + y_m x'_m f_4 + y_m y'_m f_5 + y_m f_6 + x'_m f_7 + y'_m f_8 + f_9 = 0$$

Set up a homogeneous linear system with 9 unknowns

$$\begin{bmatrix} x_1x'_1 & x_1y'_1 & x_1 & y_1x'_1 & y_1y'_1 & y_1 & x'_1 & y'_1 & 1 \\ \vdots & \vdots \\ x_Mx'_M & x_My'_M & x_M & y_Mx'_M & y_My'_M & y_M & x'_M & y'_M & 1 \end{bmatrix} \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ f_4 \\ f_5 \\ f_6 \\ f_7 \\ f_8 \\ f_9 \end{bmatrix} = \mathbf{0}$$

Each point pair (according to epipolar constraint) contributes only one <u>scalar</u> equation

$$\boldsymbol{x}_m^{\prime \top} \mathbf{F} \boldsymbol{x}_m = 0$$

Note: This is different from the Homography estimation where each point pair contributes 2 equations.

We need at least 8 points

Hence, the 8 point algorithm!

Eight-Point Algorithm

- 1. Construct the M x 9 matrix A
- 2. Find the SVD of A
- 3. Entries of **F** are the elements of column of **V** corresponding to the least singular value

Doesn't work in practice!

Eight (8+)-Point Algorithm

- 0. (Normalize points)
- 1. Construct the M x 9 matrix A [M > 8 pts]
- 2. Find the SVD of A
- 3. Entries of **F** are the elements of column of **V** corresponding to the least singular value
- 4. (Enforce rank 2 constraint on F)
- 5. (Un-normalize F)

Can use **RANSAC**to improve Fundamental Matrix Estimation

use RANSAC to improve Fundamental Matrix Estimation Can

https://youtu.be/1YNjMxxXO-E?feature=shared

