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Lecture 13

Image Transformations Il: Homographies




Recap: Image Transformations
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Classification of 2D transformations
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Classification of 2D transformations

Euclidean (rigid):
rotation + translation




Classification of 2D transformations
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Euclidean (rigid):
rotation + translation




Classification of 2D transformations

Similarity:
uniform scaling + rotation Ta Ts5 Tg
+ translation 0 0 1




Classification of 2D transformations

multiply these four by scale s
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Classification of 2D transformations

Affine transform a4 Qa5 Qg
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Affine transformations

Affine transformations are combinations of
e arbitrary (4-DOF) linear transformations; and

 translations

Properties of affine transformations:

e origin does not necessarily map to origin
* lines map to lines

e parallel lines map to parallel lines

* ratios are preserved

e compositions of affine transforms are also affine transforms
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Projective transformations

image plane
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coordinates 1




Projective transformations

Projective transformations are combinations of !

X
e affine transformations; and Y

I
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* projective wraps L !
How many degrees of freedom?
Properties of projective transformations:

e origin does not necessarily map to origin

* lines map to lines —
e parallel lines do not necessarily map to parallel lines

e ratios are not necessarily preserved

e compositions of projective transforms are also projective

transforms
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Projective transformations

Projective transformations are combinations of x' a b cllx
' —

e affine transformations; and Y| = d e f Y

w' g h il||lw

* projective wraps L :

8 DOF: vectors (and therefore
Properties of projective transformations: matrices) are defined up to scale)

e origin does not necessarily map to origin

* lines map to lines —
e parallel lines do not necessarily map to parallel lines

e ratios are not necessarily preserved

e compositions of projective transforms are also projective

transforms



Classification of 2D transformations
Name Matrix #D.O.F.
translation { I ‘ t ] 2
rigid (Euclidean) [ R ‘ t ]_ i 3
similarity [ sR ‘ t ] 3
atfine [ A ] . 6
projective { H ] 3




Determining unknown 2D transformations



Determining unknown transformations

Suppose we have two triangles: ABC and DEF.




Determining unknown transformations

Suppose we have two triangles: ABC and DEF.
 What type of transformation willmap Ato D, Bto E, and Cto F?
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Determining unknown transformations

Suppose we have two triangles: ABC and DEF.
 What type of transformation willmap Ato D, Bto E, and Cto F?
* How do we determine the unknown parameters?
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C
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Affine transform: Ca, ag asg |

uniform scaling + shearing ay a5 Qg

+ rotation + translation | 0 0 1 |



Determining unknown transformations

Suppose we have two triangles: ABC and DEF.
 What type of transformation willmap Ato D, Bto E, and Cto F?
* How do we determine the unknown parameters?
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point correspondences



Determining unknown transformations

Suppose we have two triangles: ABC and DEF.
 What type of transformation willmap Ato D, Bto E, and Cto F?
* How do we determine the unknown parameters?

B E

—_—

D
C
- F
unknowns N
/
r = Mzx
How do we solve this for M?
“~_—7

point correspondences
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Least Squares Error

brs = Z | f(zi;p) — =|°



f (@i p)

Find parameters that minimize squared error

p= arg;ninz | f(zi;p) — xi°
7



Determining unknown transformations
_ ! :I:
Affine transformation: m, — | 1 P2 P8 Y Why can wgdrop
Y P4a D5  Ds 1 the last line?
Vectorize transformation | [z y 1 0 0 0 [ pp |
parameters: y | |0 0 0 z vy 1 Do
N 'z y 1 0 0 0] | ps3
Y 0 0 0 =z y 1 || pa
Stack equations from point : : D5
correspondences: : : De
x’ r y 1 0 0 0| i
y’ 0 0 0 = vy 1
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Notation in system form: b A 45



Solving the linear system

Convert the system to a linear least-squares problem:

Eris = ||Az — b

Solve this using least squares in Python: numpy.linalg.Istsq



Linear least squares estimation only works when the transform function is linear!

Also doesn’t deal well with outliers
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How do you create a panorama?

Panorama: an image of (near) 360° field of view.

o TR




How do you create a panorama?

Panorama: an image of (near) 360° field of view.

o TR

1. Use avery wide-angle lens.



Wide-angle lenses

Fish-eye lens: can produce (near)
hemispherical field of view.

What are the pros and cons of this?




How do you create a panorama?

Panorama: an image of (near) 360° field of view.

R

1. Use avery wide-angle lens.

. Pros: Everything is done optically, single capture.

. Cons: Lens is super expensive and bulky, lots of distortion (can be dealt-with in post).
(is it still expensive? This slide is old ... iPhone 0.5x mode?)



How do you create a panorama?

1. Use avery wide-angle lens.

. Pros: Everything is done optically, single capture.
. Cons: Lens is super expensive and bulky, lots of distortion (can be dealt-with in post).

2. Capture multiple images and combine them.



Panoramas from image stitching

1. Capture multiple images
from different viewpoints.

2. Stitch them togetherintoa o
virtual wide-angle image.




How do we stitch images from different viewpoints?

Will standard stitching work?
1. Translate one image relative to another.
2. (Optionally) find an optimal seam.



How do we stitch images from different viewpoints?

Will standard stitching work?
1. Translate one image relative to another.
2. (Optionally) find an optimal seam.

left on top [ right on top

Translation-only stitching is not enough to mosaic these images.



How do we stitch images from different viewpoints?

What else can we try?



How do we stitch images from different viewpoints?




Back to warping: image homographies



Classification of 2D transformations
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Name Matrix #D.O.F.

translation [ I ‘ t ]2 ; 2
oy

rigid (Euclidean) [ R ‘ L ]2 ; 3
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similarity [ sR | L ]2 \ 4
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projective [ H ]‘3><3 8




The Image Alignment Problem:

Input to a panorama-creating system:

« Multiple Images of the same scene
* taken by a camera (or different cameras)
 from different locations (x,y,z,0, d, {)

PP3




Classification of 2D transformations
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Which kind transformation is needed to warp
projective plane 1 into projective plane 27




Classification of 2D transformations
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translation
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Emhdeau aﬂule

Which kind transformation is needed to warp
projective plane 1 into projective plane 27

* A projective transformation (a.k.a. a homography).




Applications



Warping with different transformations

translation affine projective (homography)




View warping

original view synthetic top view synthetic side view




Virtual camera rotations
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Image rectification

two
original
Images

rectified and stitched






Understanding geometric patterns

What is the pattern on the floor?
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magnified view of floor



Understanding geometric patterns

reconstruction from
rectified view

magnified view of floor rectified view



Understanding geometric patterns

Very popular in renaissance drawings
(when Europe first learnt about the concept of perspectives)

rectified view
of floor

reconstruction




A Historical Note on Perspective

* The assertion in many books on art, optics, graphics, etc. that “perspective was
discovered during the European Renaissance” is questionable

* The Renaissance was the first time that European artists used perspective after the dark ages

* evidence from other older civilizations: China 1%t century BC, Japan 8t century AD
* Used “oblique” projection, but still looked realistic — why?

Because the observer (camera) was “very far from the scene
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* This looks like a panorama, right? ©
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Unknown, Heiji Monogatari Emaki (Sanjo Scroll) (2

% B{aE (= FEREEET)) (Night Attack on the Sanjo Palace) (detail) (Kamakura, late 1200s)
colour and ink on paper, 41. 3 X 699.7 cm, Museum of Fine Arts, Boston, MA. Wikimedia Commons



A Historical Note on Perspective

* The assertion in many books on art, optics, graphics, etc. that “perspective was
discovered during the European Renaissance” is questionable

* The Renaissance was the first time that European artists used perspective after the dark ages

s el - R o b e e A o TS . 3 o e e

* evidence from other older civilizations: AncientR

ome (1t centure BC)
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* The assertion in many books that “perspective was discovered
during the European Renaissance” is questionable

* The Renaissance was the first time that European artists used
perspective after the dark ages

* evidence from other older civilizations: (ruins of Pompeii)

Philip Stinson. (2011).
Perspective Systems in
Roman Second Style Wall
Painting. American Journal of
Archaeology, 115(3), 403—
426.
https://doi.org/10.3764/aja.
115.3.0403
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Fig. 7. Diagram showing perspective systems on the west wall of Room 14, Villa of Oplontis; nos. 1-3 represent
three distinct convergence systems (courtesy Ministero per i Beni e le Artivith Culturali, Soprintendenza Speciale
per i Beni Archeologici di Napoli ¢ Pompei).

Fig. 5. Diagram showing perspective systems on the back wall
of Alcove B, Room 16, Villa of the Mysteries, Pompeii {courte-
sy Ministero peri Beni e le Attivita Culturali, Soprintendenza
Speciale per i Beni Archeologici di Napoli e Pompei).



A weird drawing

Holbein, “The Ambassadors”




A weird drawing

Holbein, “The Ambassadors”

= What’s this???




A weird drawing

Holbein, “The Ambassadors”

rectified view

skull under anamorphic perspective




A weird drawing

Holbein, “The Ambassadors”




Extra Credit Assignment (due date: Dec 9)

Go to these (or any other) art museums:
(both are FREE and open Wed-Sun 1000—1700)

Baltimore Museum of Art
10 Art Museum Dr, Baltimore, MD 21218

Walters Art Museum
600 N. Charles St, Baltimore, MD 21201

Find examples in which perspective projection
is weird ...

Take pictures, note down the region and year
(e.g. “China 11t century A.D.”)

Tell us what is weird about the perspective ©



How do we stitch images from different viewpoints?




Panoramas from image stitching

1. Capture multiple images
from different viewpoints.

2. Stitch them togetherintoa o
virtual wide-angle image.




When can we use homographies?



Under what conditions can you know where
to translate each point of image A to where it
would appear 1n camera B (with calibrated

cameras), knowing nothing about image
depths?




We can use homographies when...

1. The scene is captured under camera rotation only (no translation or pose change)




camera A camera B

common pinhol v
position M‘ '
/ .."th

Can generate any synthetic camera view
as long as it has the same center of projection!




We can use homographies when...

2. The scene is planar; or

3. ...the scene is very far or has
small (relative) depth variation -
scene is approximately planar




Images of planar
objects, taken by
generically offset
cameras, are also
related by a
homography.

camera A

r=iFrZ1)
(= L)
(znyw L ds)
WM o
{a) (b}

I'Im.II'E' Ll A IJ'l:H.I'Il | 1] F‘UPIL'EII.I iy faece III:IE.E,EE'. I:_a,_l EEI.E.IJI.'.IISI'II'FI eween the A1) Fl:I'IIII co-
ordinate (X, Y, Z, 1) and the 2D projected point (. y, 1. d). (b) planar homography induced
by poinis all fying on a common plane mig - p +cp = 0



Computing with homographies



Classification of 2D transformations
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Which kind transformation is needed to warp
projective plane 1 into projective plane 27

* A projective transformation (a.k.a. a homography).




Applying a homography

X
1. Convert to homogeneous coordinates: p = [y] = P =

What is the size of the homography matrix? \

2. Multiply by the homography matrix: P'=H-.-P
_x,_

3. Convert back to heterogeneous coordinates: P = y' — p’ —
w'.

=

=




Applying a homography

X
1. Convert to homogeneous coordinates: p = [y] = P =

N\
H-P

2. Multiply by the homography matrix: P’

How many degrees of freedom does the homography matrix have? /

3. Convert back to heterogeneous coordinates: P = y' = p =

=

=




Applying a homography

1. Convert to homogeneous coordinates:

=[] = o=

What is the size of the homography matrix? \ Answer: 3 x 3

2. Multiply by the homography matrix:

How many degrees of freedom does the homography matrix have? / Answer: 8

3. Convert back to heterogeneous coordinates:

Pl

P'=H-P
y'| = p =
w'.

. ,/W,_

_y /W’_



Applying a homography

What is the size of the homography matrix? \ Answer: 3 x 3
P'=H-P

How many degrees of freedom does the homography matrix have? / Answer: 8

How do we compute the homography matrix?



The direct linear transform (DLT) using the SVD



Create point correspondences

Given a set of matched feature points {p;, p;} find the best estimate of H such that

P'=H:-P

original image target image

How many correspondences do we need?



Determining the homography matrix

Write out linear equation for each correspondence:

x’ hl hg h3 T
P'=H-P or y | =a| ha hs he
1

= 2



Determining the homography matrix

Write out linear equation for each correspondence:

x’ i hl hg h3 T
P'=H-P or y | =a| ha hs he Y
i 1 | i h- hg hg 1L 1 |

Expand matrix multiplication:
' = a(hi1z + hoy + h3)
y' = a(hazx + hsy + hg)
1 = a(h7z + hgy + hg)



Determining the homography matrix

Write out linear equation for each correspondence:

x’ i hl hg h3 T
P'=H-P or y | =a| ha hs he Y
i 1 | i h- hg hg 1L 1 |

Expand matrix multiplication:
' = a(hi1z + hoy + h3)
y' = a(hazx + hsy + hg)
1 = a(h7z + hgy + hg)

Divide out unknown scale factor:

' (h7x + hgy + ho) = (h1x + hay + h3)
y'(h7x + hey + ho) = (haz + hsy + he)



t'(h7x + hgy + hg) = (h1z + hoy + h3)
y' (hrx + hgy + hg) = (haz + hsy + he)

Just rearrange the terms

hrxx' + hgyxr' + hor' — hiz — hoy — hg =0
hrzy' + hsyy' + hoy' — hax — hsy — he =0



Determining the homography matrix

Re-arrange terms:
h-xx' + hgy:r;’ + hoz' — hix — hoy — hg =0
hrxy' + hgyy' + hoy' — hax —hsy —he =0

Re-write in matrix form:

—x —y -1 0 0 0 zz' yz' =z
0 0 0 -z —y -1 zv yy 4

-
h=|hy hy hy hy hs hsg hy hg hg |



Determining the homography matrix

Stack together constraints from multiple point correspondences:

Ah=0

C OO OO OO oo

Homogeneous linear least squares problem



Reminder: Determining

unknown transformations

el

T
Affine transformation: v =
Vectorize transformation 2] -
parameters: y |
-
Y
Stack equations from point :
correspondences: :
:C_f
H_/
Notation in system form: b

P1 DP2 D3 v Why can we drop
P4 D5 De Y the last line?
z y 1 0 0 O p1 |
z yv 1 0 0 0 D3
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Reminder: Determining unknown transformations

Convert the system to a linear least-squares problem:

Eris = ||Az — b

Solve using linear least squares solver in Python



Determining the homography matrix

Stack together constraints from multiple point correspondences:

Ah=0

C OO OO OO oo

Homogeneous linear least squares problem
* How do we solve this?



Determining the homography matrix

Stack together constraints from multiple point correspondences:

Ah=0

C OO OO OO oo

Homogeneous linear least squares problem
* Solve with SVD



Singular Value Decomposition (SVD)



Singular Value Decomposition (SVD)

 SVD is a matrix technique that has some important
uses in computer vision

* These include:

— Solving a set of homogeneous linear equations

 Namely we solve for the vector x in the equation Ax=0

— Guaranteeing that the entries of a matrix estimated
numerically satisfy some given constraints (e.g.,
orthogonality)

* For example, we have computed R and now want to make sure
that it is a valid rotation matrix



Singular Value Decomposition (SVD)

* Any (real) mxn matrix A can be written as the product of three matrices
A=UDV’
— U (mxm) and V(nxn) have columns that are mutually orthogonal unit vectors

— D (mxn) is diagonal; its diagonal elements ¢; are called singular values, and
012052...G,, 20



Some properties of SVD

We can represent A in terms of the vectorsuand v
or p-1
A= Zc:r u v
JUiT
—

The vectors u; are called the “principal components” of A

Sometimes we want to compute an approximation to A using fewer
principal components

If we truncate the expansion, we obtain the best possible least squares
approximation! to the original matrix A

t r 1In terms of the Frobenius
Ax z OV, norm, defined as
=0

. 2
Al =24,
r.J




Singular Value Decomposition

ortho-normal diagonal  ortho-normal ———

A

A UZ}VT et

E Jzu;v-'_

‘E,_

Each column of V represents a solution for A h — 0

where the singular value represents the reprojection error



Solving for H using DLT

Given {:I:Ej m;} solve for H such that :I:! — H:I:

1. For each correspondence, create 2x9 matrix A’l

2. Concatenate into single 2n x 9 matrix A

3. Compute SVD of A — UEVT

4. Store singular vector of the smallest singular value h, — V-

(]
5. Reshape to get H



General form of total least squares

(Warning: change of notation. x is a vector of parameters!)

ErLs = Z(aim)2

()
p— | _A_:B || 2 (matrix form)

Hm' 2 p— ]_ constraint

2 (Rayleigh quotient)

minimize HA:I:H l .A.:Bl 2
‘ minimize 5

subject to H;]’j”2 — ]_ H:‘BH
Solution is the eigenvector Solution is the column of V
corresponding to smallest corresponding to smallest singular
eigenvalue of (equivalent) value

ATA A=UxV'



Application: Solving a System of Homogeneous
Equations (continued)

* The solution X is the eigenvector corresponding to the only
zero eigenvalue of A’A

— Proof: We want to minimize
HAI”2 = (AK)T Ax=x'A"Ax subjectto x'x=1
— Introducing a Lagrange multiplier A, this is equivalent to minimizing
L(x)=x"A"Ax— A(x"x—1)
— Take derivative wrt x and set to zero
ATAx—1x=0

— Thus, A is an eigenvalue of A’A, and x = e, is the corresponding eigenvector.
L(e,) = A is minimized at A=0, so x = e, is the eigenvector corresponding to the
zero eigenvalue.



Solving Homogeneous Equations with SVD

Given a system of linear equations Ax=0

Then the solution x is the eigenvector corresponding to the only zero
eigenvalue of ATA

Equivalently, we can take the SVD of A;ie., A=UDV’

— And x is the column of V corresponding to the zero singular value of A
— (Since the columns are ordered, this is the rightmost column of V)

Example
1 0 0

A=
[0 1 U]

1
1 01 0 0

Svd: A=UDV! = 0
0 100 1 0

So the last column of V is indeed the solution x



Solving for H using DLT

Given {:I:Ej m;} solve for H such that :I:! — H:I:

1. For each correspondence, create 2x9 matrix A’l

2. Concatenate into single 2n x 9 matrix A

3. Compute SVD of A — UEVT

4. Store singular vector of the smallest singular value h, — V-

(]
5. Reshape to get H



Solving the homogenous linear system

Fitting homographies

* Homography has 9 parameters

* But can’t determine scale factor, so only 8: 4
points!

Ah =0s.t |[h]| =1

* Or because we will have noise:

m&n |AR|]” s.t ||h|| =1

Solving for H using DLT

Given {mij w;} solve for H such that m’ —_ Hm

1. For each correspondence, create 2x9 matrix A‘i

N

. Concatenate into single ?2n x 9 matrix A

3. Compute SVD of A prmmmn UEVT

4. Store singular vector of the smallest singular wvalue h = P

2
. Reshape to get H

o



How to deal with outliers?




Random Sample Consensus (RANSAC)
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(with outliers) o ©
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Algorithm:

1. Sample (randomly) the number of points required to fit the model
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence
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Fitting lines O ~
i i O
(with outliers) o ©
@ ® 0
O o
o
Algorithm:

1. Sample (randomly) the number of points required to fit the
model

2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence



Fitting lines
(with outliers)

Algorithm:

1. Sample (randomly) the number of points required to fit the model
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence



Fitting lines
(with outliers)

Algorithm:

1. Sample (randomly) the number of points required to fit the model

2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the

model

Repeat 1-3 until the best model is found with high confidence



Fitting lines
(with outliers)

Algorithm:

1. Sample (randomly) the number of points required to fit the model
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence



* Number of samples N

ow to choose parameters?

— Choose N so that, with probability p, at least one random sample is free from

outliers (e.g. p=0.99) (outlier ratio: e )

 Number of sampled points s

—Minimum number needed to fit the model

e Distance threshold 6

— Choose 6 so that a good point with noise is likely (e.g., prob=0.95) within threshold

— Zero-mean Gaussian noise with std. dev. o: t2=3.84¢2

proportion of outliers e
— B 5% [10% PR0% P5% B0% WU0% [50%
N = log(l p) PP B b B 7 11 17
3B 4 [ b 11 19 j35
_ _ s U b p 13 17 PB4 |72
log 1 (1 8) B B 12 [17 P68 7 [146
6u 16 P4 pB7 P7 93
74 B PO B3 B4 [163 588
B5 P P66 W4 8 P72 177




Given two images...

Leldl
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find matching features (e.g., SIFT) and a translation transform



Matched points will usually contain bad correspondences

good correspondence

how should we estimate the transform?



al

LLS will find the ‘average’ transform
i | "*" " i ||| || !i i

\ A NAd

transform

solution is corrupted by bad correspondences



Use RANSAC

How many correspondences to compute translation transform?



Need only one correspondence, to find translation model



Pick one correspondence, count inliers

correspondence




Pick one correspondence, count inliers




Pick one correspondence, count inliers

correspondence




Pick one correspondence, count inliers




Pick one correspondence, count inliers

Pick the model with the highest number of inliers!



Estimating homography using RANSAC

 RANSAC loop
1. Get four point correspondences (randomly)
2. Compute H using DLT
3. Count inliers
4. Keep H if largest number of inliers

 Recompute H using all inliers



RANSAC

* An example of a “voting”-based fitting scheme

* Each hypothesis gets voted on by each data point,
best hypothesis wins

* There are many other types of voting schemes
e E.g., Hough transforms...
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