Midterm Exam

• Oct 20. During class (4:00 PM – 5:15 PM): Handwritten; Based on all previous lectures.

Closed Book Exam

- No notes, laptops, phones etc. put them in your bag if you're bringing them to class.
- Calculators are not needed (but allowed if you really need them)
- Okay to leave answers as expressions if you don't want to calculate (example: $\frac{5}{8}*(2^6)$ is fine, final answer 40 is also fine)

Conceptual questions

(we won't test you on your memorization of equations or calculation abilities)

- multiple choice / true-false (quiz questions are a good)
- conceptual problem solving (e.g. the Lincoln image problem in the HW)
- design questions
 (e.g. if I want to find a particular pattern in an image, how would you implement it based on what we have learned in class. We might ask you for your justification, or a rough outline of your design/method.)

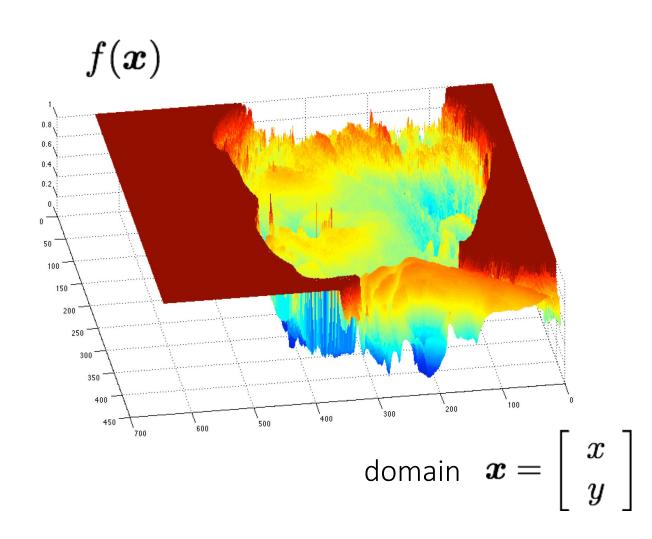
Lecture 12

Image Transformations

Some slides from Yang, Jayasuriya

What is an image?

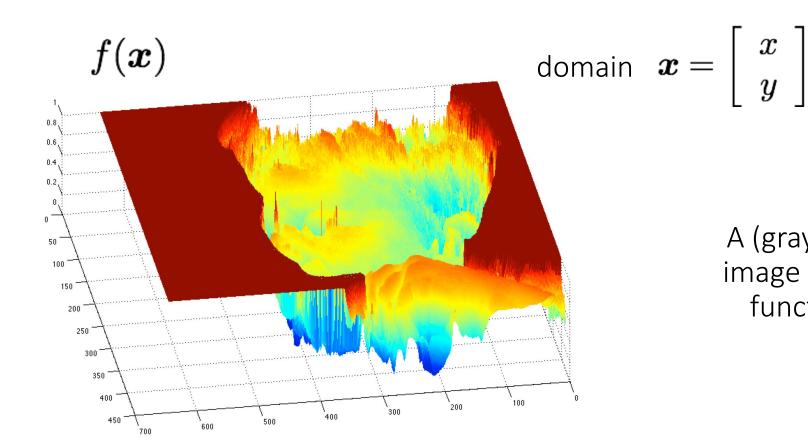
grayscale image



A (grayscale) image is a 2D function.

What is an image?

grayscale image

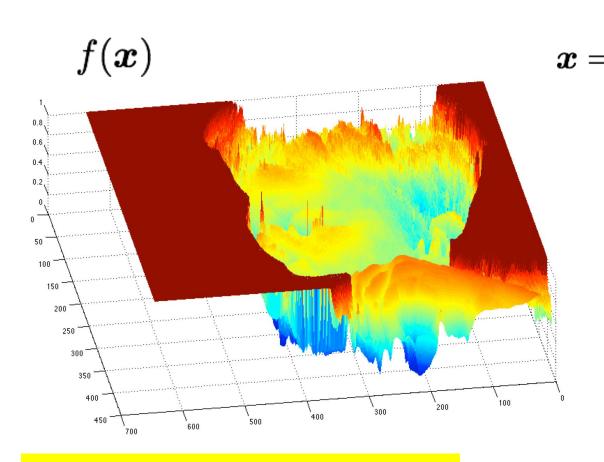


A (grayscale) image is a 2D function.

What is the range of the image function f?

What is an image?

grayscale image



A (grayscale) image is a 2D function.

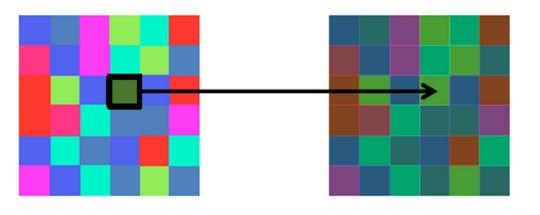
What is the range of the image function f?

$$f(x)$$
: $domain \rightarrow range$

$$f(x): [0, H] \times [0, W] \rightarrow [0, 1]^3$$

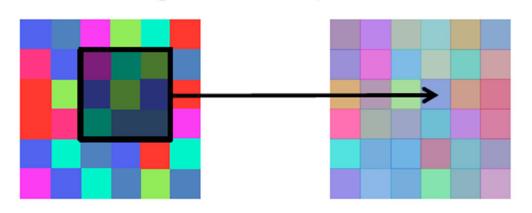
RECALL

Point Processing and Image Filtering



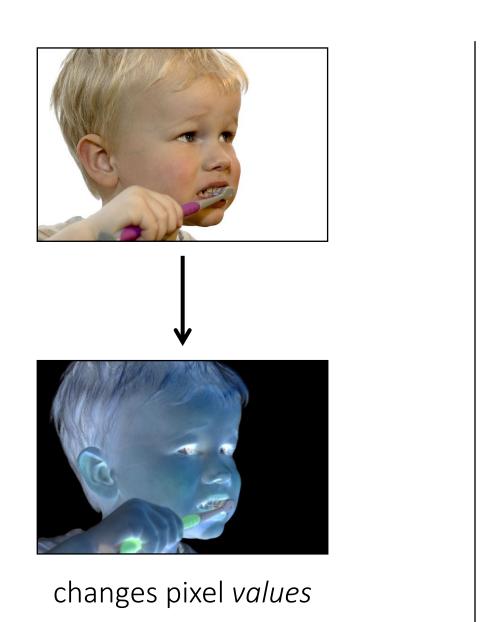
point processing

Neighborhood Operation

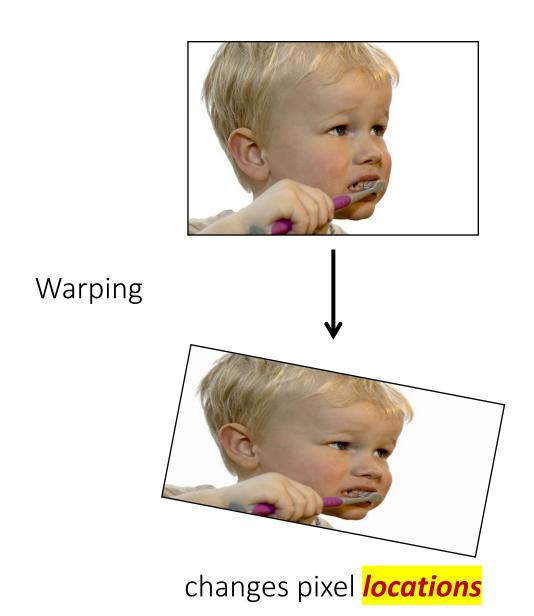


"filtering"

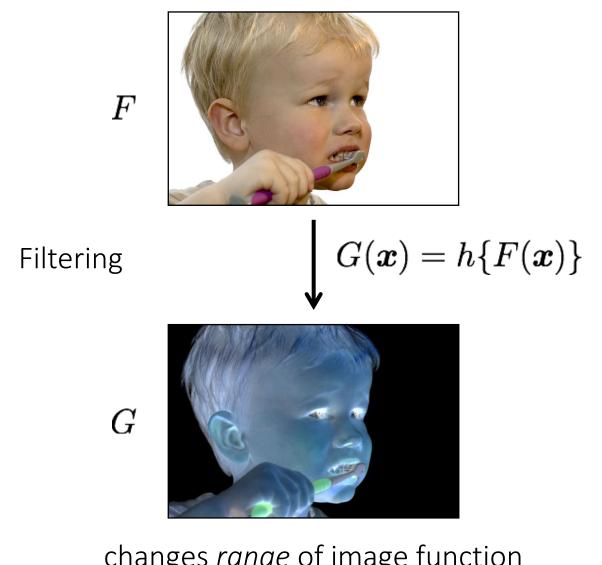
What types of image transformations can we do?



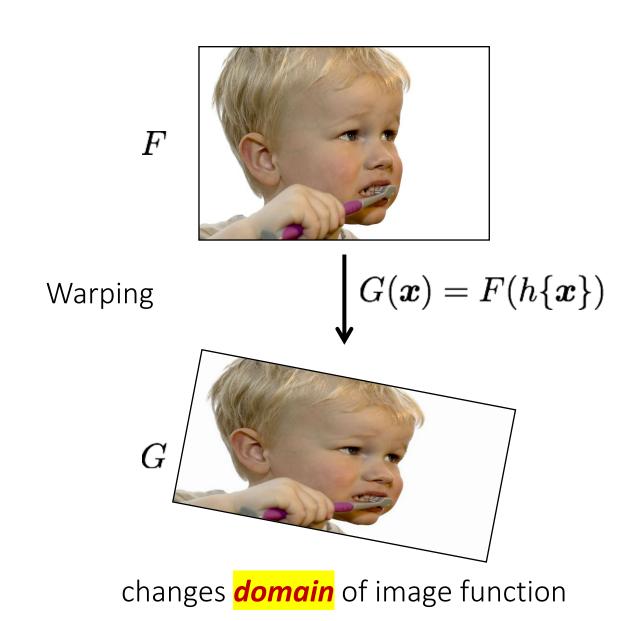
Filtering



What types of image transformations can we do?



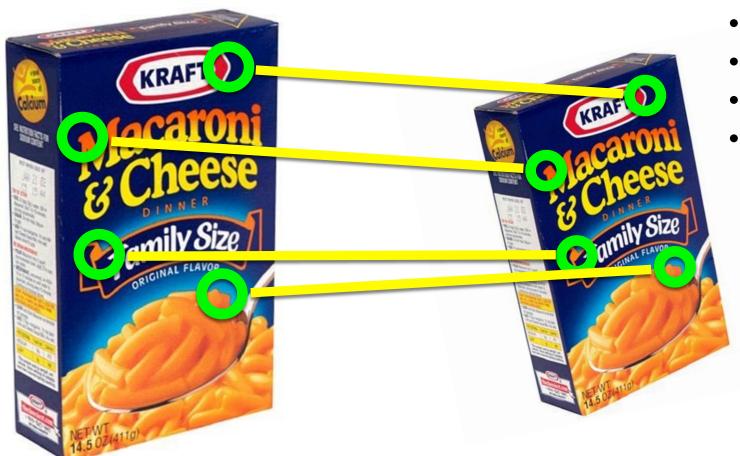
changes range of image function





- object recognition
- 3D reconstruction
- augmented reality
- · image stitching

How can we compute the transformation?



- object recognition
- 3D reconstruction
- augmented reality
- image stitching

How can we compute the transformation?

If we can, feature matching and image stitching will be easy! (HW3)

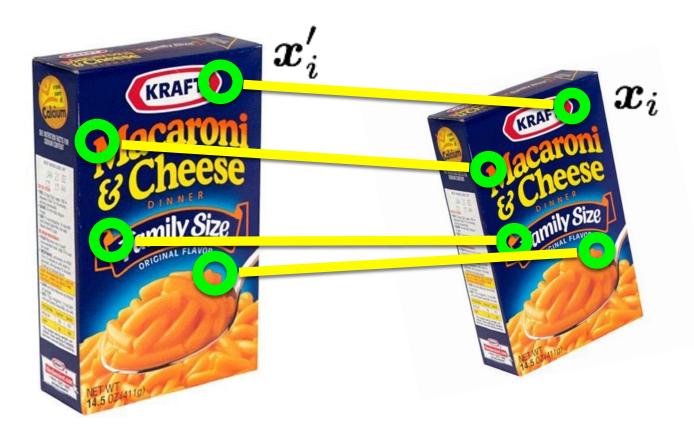
Given a set of matched feature points:

$$\{m{x_i}, m{x_i'}\}$$
 point in one point in the image other image

and a transformation:

$$oldsymbol{x}' = oldsymbol{f}(oldsymbol{x}; oldsymbol{p})$$
 transformation $oldsymbol{\wedge}$ parameters function

find the best estimate of the parameters



 \boldsymbol{p}

What kind of transformation functions $m{f}$ are there?

2D transformations

2D transformations

translation

rotation

aspect

affine

perspective

cylindrical

u

- Each component multiplied by a scalar
- Uniform scaling same scalar for each component

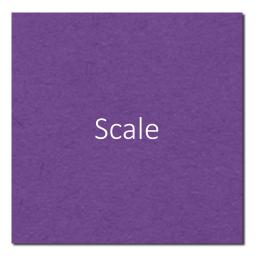
$$x' = ax$$

$$x' = ax$$
$$y' = by$$

• Each component multiplied by a scalar

• Uniform scaling - same scalar for each component

y

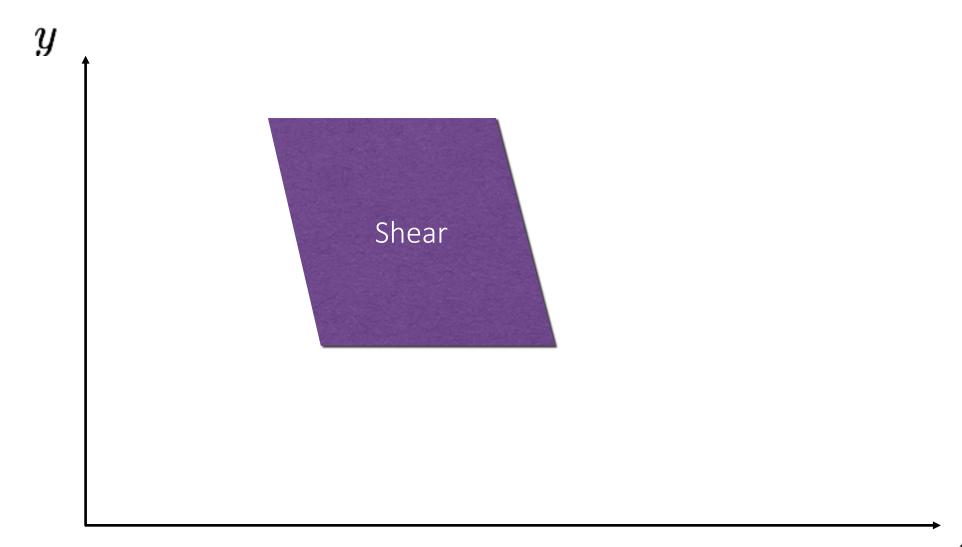


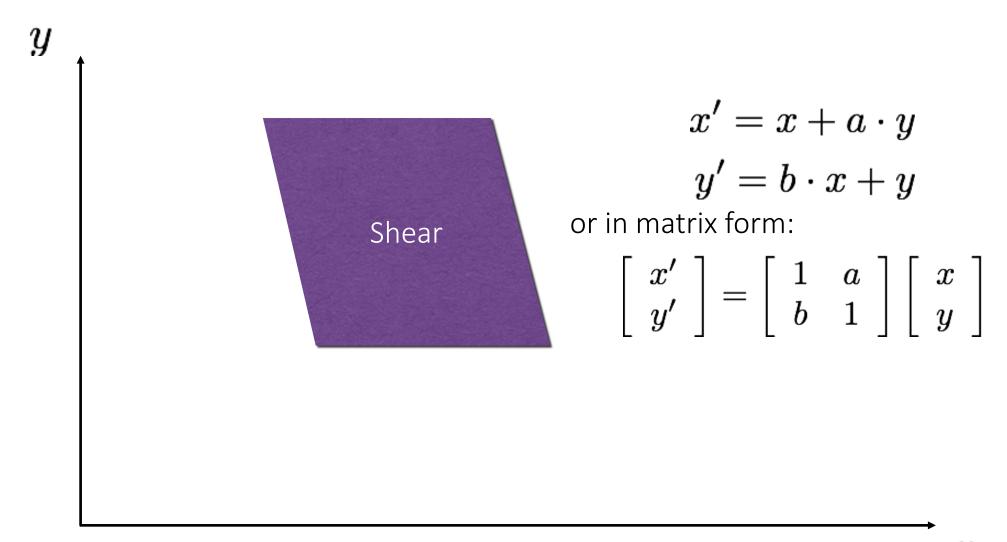
$$x' = ax$$
$$y' = by$$

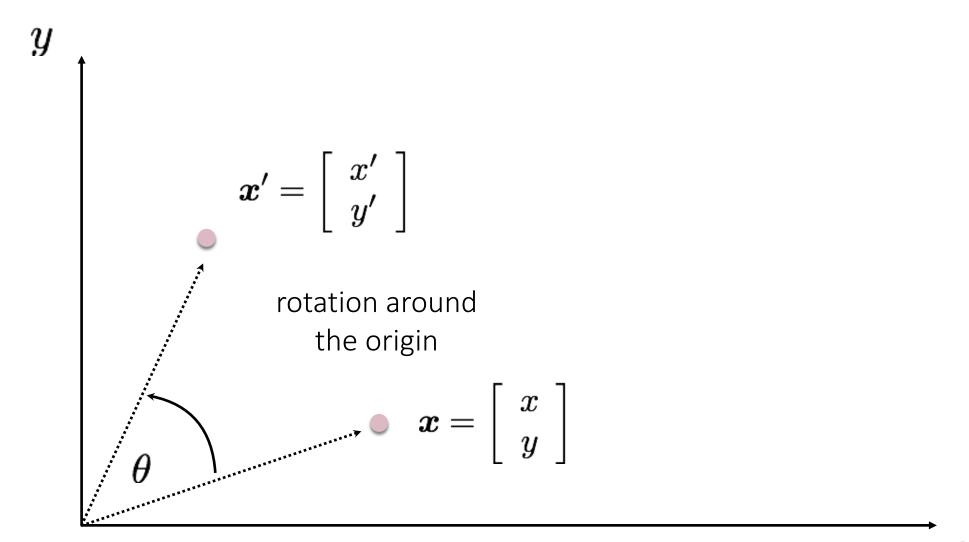
matrix representation of scaling:

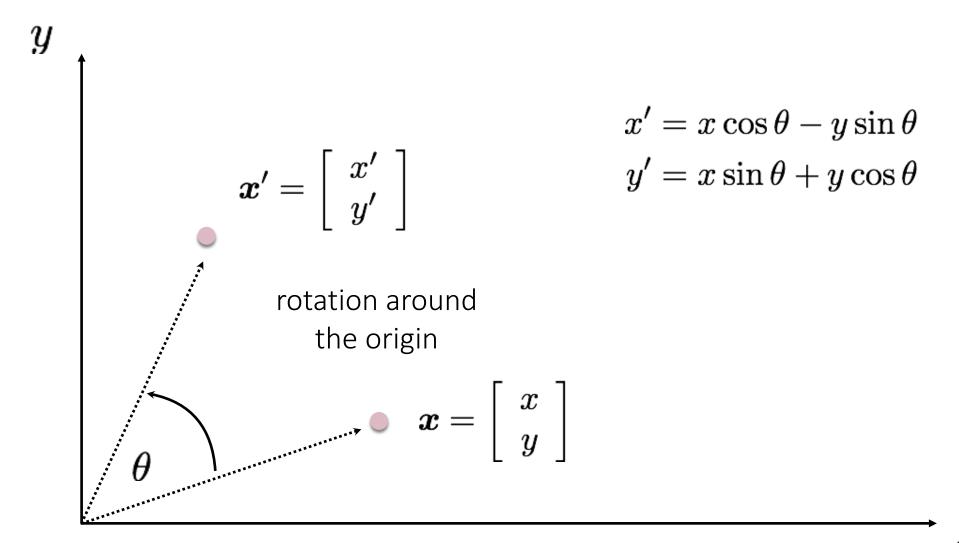
$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
scaling matrix S

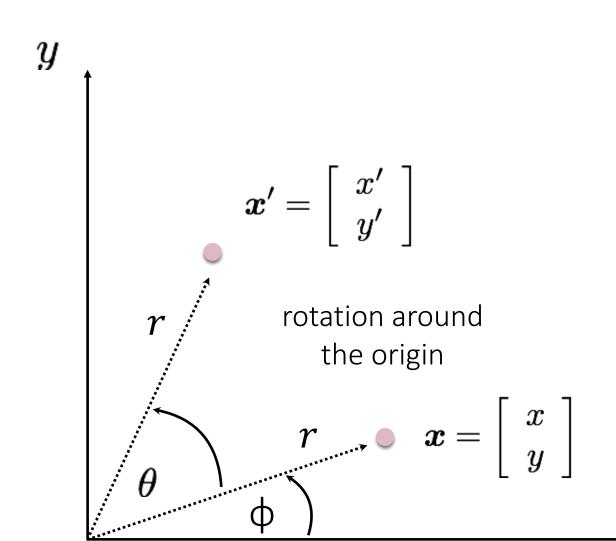
- Each component multiplied by a scalar
- Uniform scaling same scalar for each component











Polar coordinates...

$$x = r \cos (\phi)$$

 $y = r \sin (\phi)$
 $x' = r \cos (\phi + \theta)$
 $y' = r \sin (\phi + \theta)$

Trigonometric Identity...

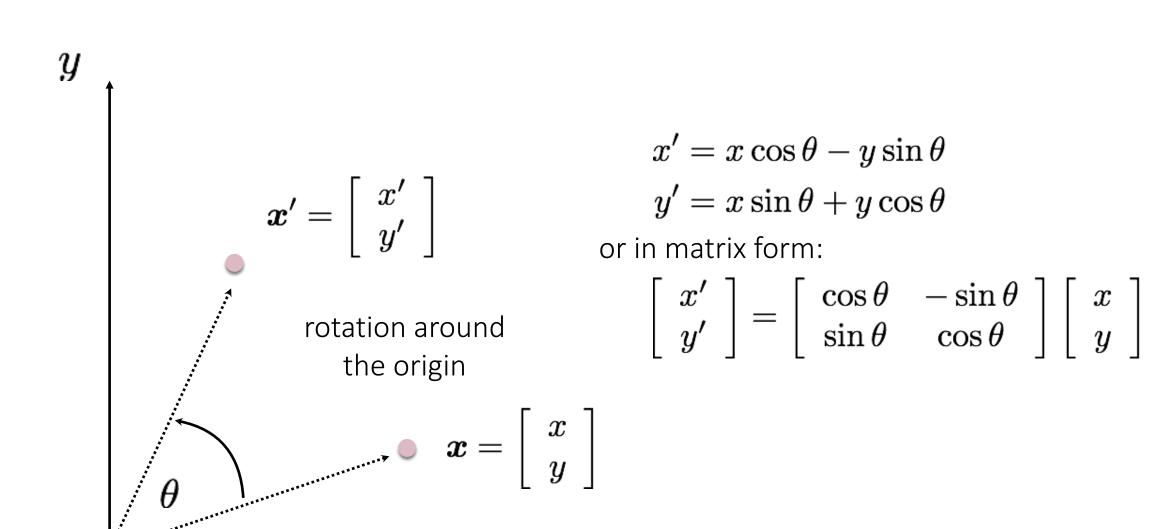
$$x' = r \cos(\phi) \cos(\theta) - r \sin(\phi) \sin(\theta)$$

 $y' = r \sin(\phi) \cos(\theta) + r \cos(\phi) \sin(\theta)$

Substitute...

$$x' = x \cos(\theta) - y \sin(\theta)$$

 $y' = x \sin(\theta) + y \cos(\theta)$



2D planar and linear transformations

$$x' = f(x; p)$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = M \begin{bmatrix} x \\ y \end{bmatrix}$$
parameters p point x

2D planar and linear transformations

Scale

$$\mathbf{M} = \left[egin{array}{ccc} s_x & 0 \ 0 & s_y \end{array}
ight]$$

Flip across y
$$\mathbf{M} = \left[\begin{array}{cc} s_x & 0 \\ 0 & s_y \end{array} \right] \qquad \mathbf{M} = \left[\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array} \right]$$

Rotate

$$\mathbf{M} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \qquad \mathbf{M} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

Flip across origin

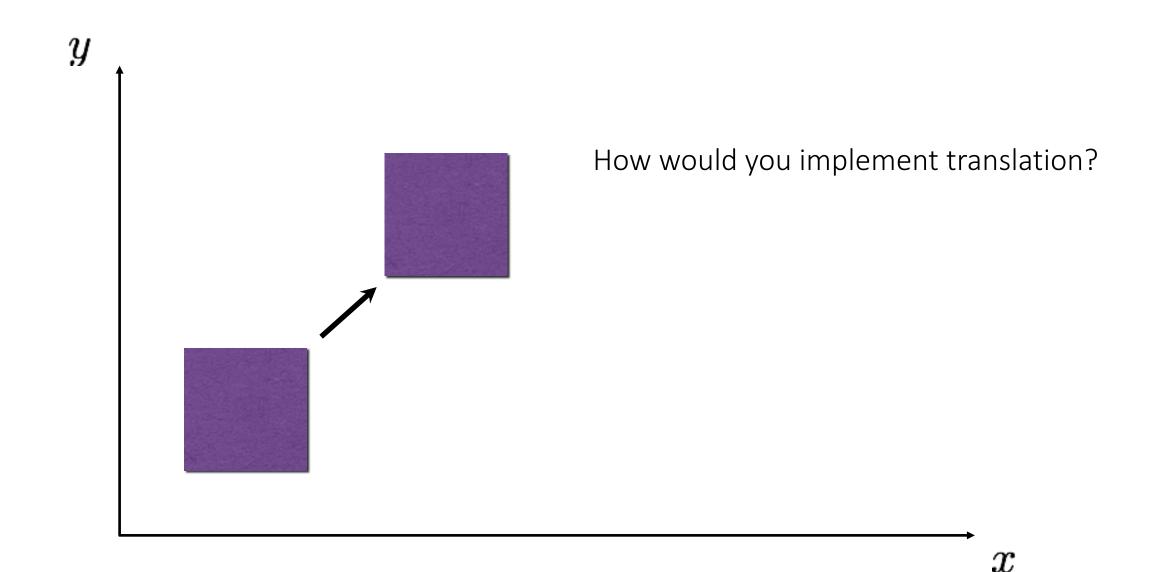
$$\mathbf{M} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

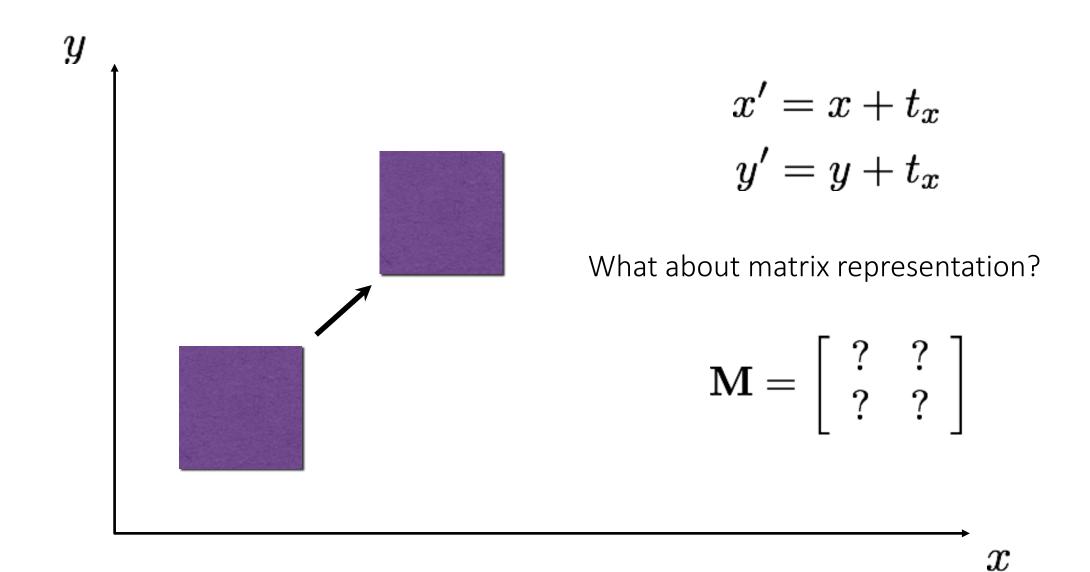
Shear

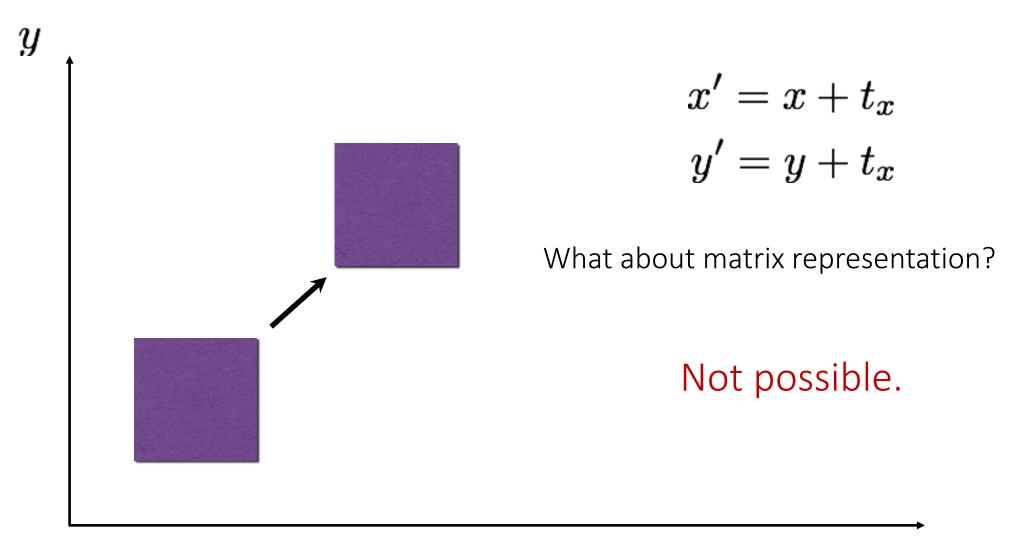
$$\mathbf{M} = \left[egin{array}{ccc} 1 & s_x \ s_y & 1 \end{array}
ight] \qquad \qquad \mathbf{M} = \left[egin{array}{ccc} 1 & 0 \ 0 & 1 \end{array}
ight]$$

Identity

$$\mathbf{M} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$







Projective geometry 101

Homogeneous coordinates

heterogeneous homogeneous coordinates coordinates

$$\begin{bmatrix} x \\ y \end{bmatrix} \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
 add a 1 here

Represent 2D point with a 3D vector

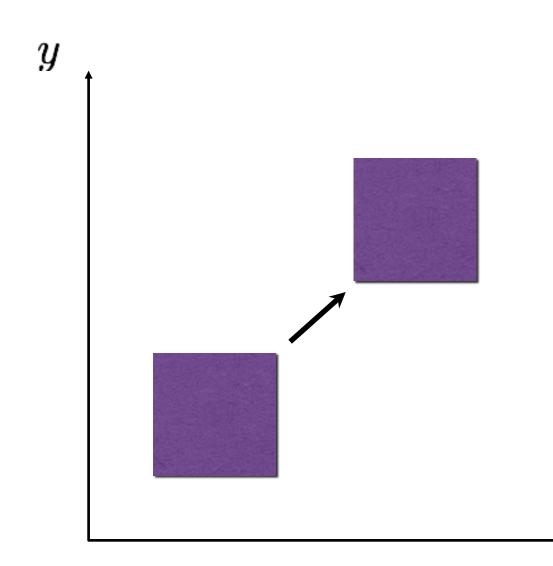
Homogeneous coordinates

heterogeneous coordinates

homogeneous coordinates

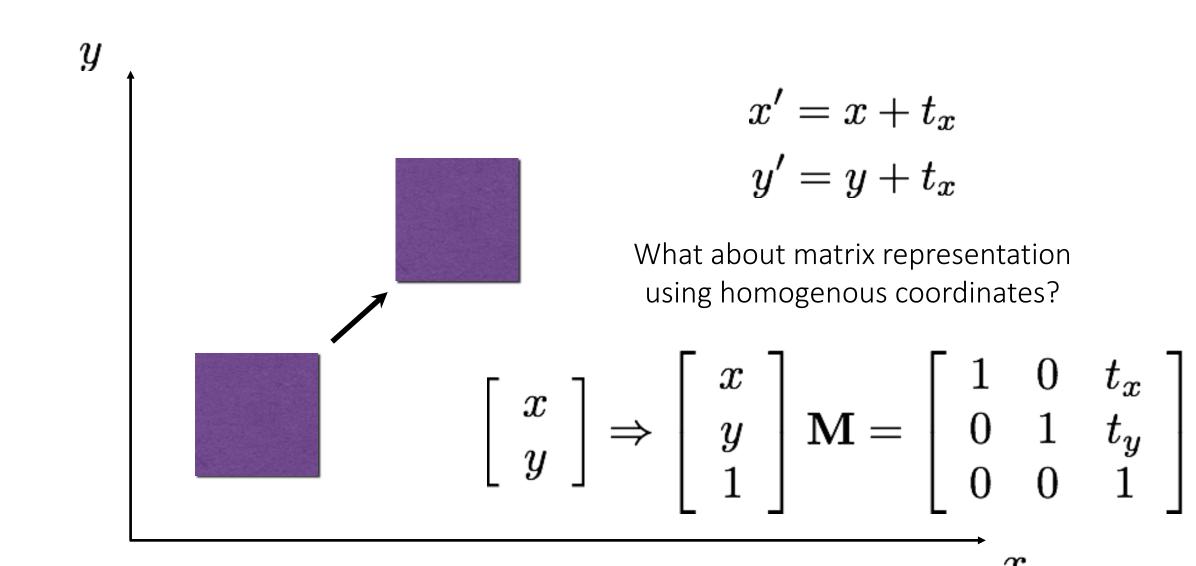
$$\begin{bmatrix} x \\ y \end{bmatrix} \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \stackrel{\text{def}}{=} \begin{bmatrix} ax \\ ay \\ a \end{bmatrix}$$

- Represent 2D point with a 3D vector
- 3D vectors are only defined up to scale



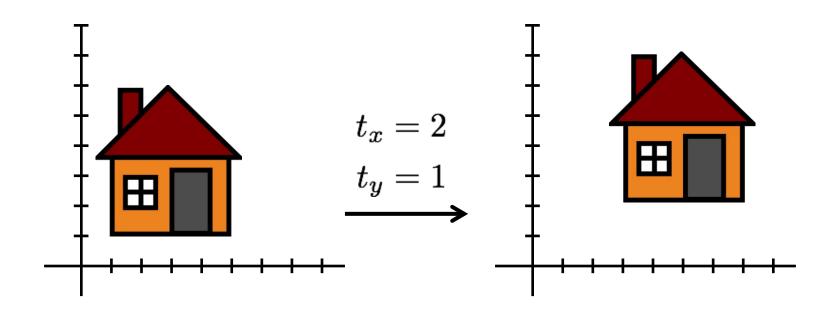
$$x' = x + t_x$$
$$y' = y + t_x$$

What about matrix representation using homogeneous coordinates?



2D translation using homogeneous coordinates

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x + t_x \\ y + t_y \\ 1 \end{bmatrix}$$



Homogeneous coordinates

Conversion:

heterogeneous → homogeneous

$$\left[\begin{array}{c} x \\ y \end{array}\right] \Rightarrow \left[\begin{array}{c} x \\ y \\ 1 \end{array}\right]$$

homogeneous → heterogeneous

$$\left[\begin{array}{c} x \\ y \\ w \end{array}\right] \Rightarrow \left[\begin{array}{c} x/w \\ y/w \end{array}\right]$$

scale invariance

Special points:

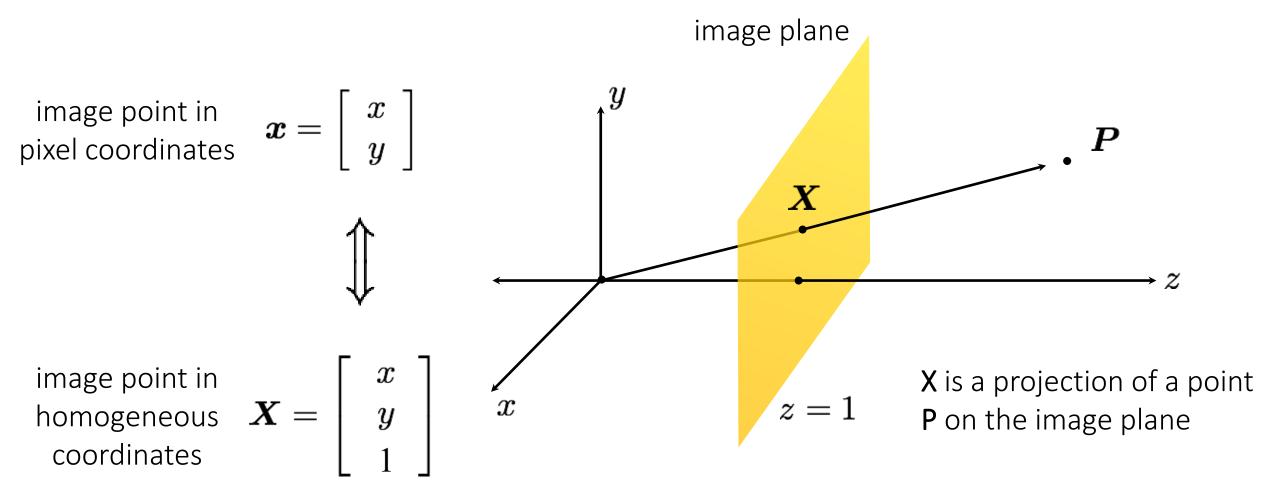
point at infinity

$$\left[egin{array}{cccc} x & y & 0 \end{array}
ight]$$

undefined

$$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$$

Projective geometry



What does scaling **X** correspond to?

Transformations in projective geometry

Re-write these transformations as 3x3 matrices:

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} & & \\ &$$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} & & \\ & & \\ & & \\ & & \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
scaling

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} & & \\ & & \\ & & \\ & & \\ & & \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
shearing

Re-write these transformations as 3x3 matrices:

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
translation

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} & & \\ & & \\ & & \\ & & \\ \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

rotation

$$\begin{bmatrix} \mathbf{x'} \\ \mathbf{y'} \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{s}_{x} & 0 & 0 \\ 0 & \mathbf{s}_{y} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix}$$
scaling

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} & & \\ &$$

Re-write these transformations as 3x3 matrices:

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
translation

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

rotation

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{s}_{x} & 0 & 0 \\ 0 & \mathbf{s}_{y} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix}$$
scaling

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & \beta_x & 0 \\ \beta_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
shearing

Re-write these transformations as 3x3 matrices:

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \Theta & -\sin \Theta & 0 \\ \sin \Theta & \cos \Theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

rotation

$$\begin{bmatrix} \mathbf{x'} \\ \mathbf{y'} \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{s}_{x} & 0 & 0 \\ 0 & \mathbf{s}_{y} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix}$$
scaling

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & \beta_x & 0 \\ \beta_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
shearing

Matrix composition

Transformations can be combined by matrix multiplication:

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} 1 & 0 & tx \\ 0 & 1 & ty \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \Theta & -\sin \Theta & 0 \\ \sin \Theta & \cos \Theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} sx & 0 & 0 \\ 0 & sy & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

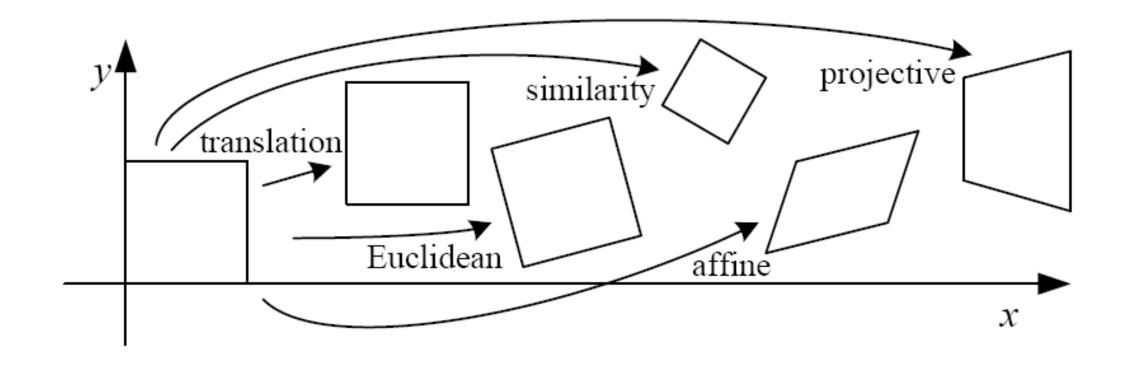
$$p' = ? ? ? ? p$$

Matrix composition

Transformations can be combined by matrix multiplication:

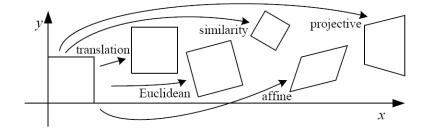
$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} 1 & 0 & tx \\ 0 & 1 & ty \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \Theta & -\sin \Theta & 0 \\ \sin \Theta & \cos \Theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} sx & 0 & 0 \\ 0 & sy & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

$$p' = \text{translation}(t_{x},t_{y}) \quad \text{rotation}(\theta) \qquad \text{scale}(s,s) \quad p$$

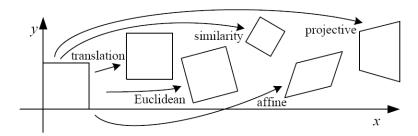


Name	Matrix	# D.O.F.
translation	$\left[egin{array}{c c} I & t \end{array} ight]$?
rigid (Euclidean)	$\left[egin{array}{c c} oldsymbol{R} & t \end{array} ight]_{}$?
similarity	$\left[\begin{array}{c c} sR & t \end{array}\right]$?
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]_{}$?
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]$?

Translation: $\left[\begin{array}{cccc} 1 & 0 & t_1 \\ 0 & 1 & t_2 \\ 0 & 0 & 1 \end{array} \right]$

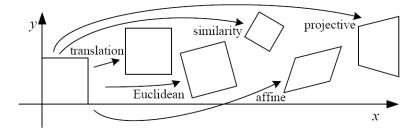


Euclidean (rigid): $egin{array}{c|c} r_1 & r_2 & r_3 \ \hline r_0 & r_1 & r_5 & r_6 \ \hline 0 & 0 & 1 \ \hline \end{array}$



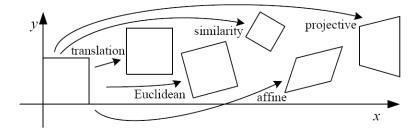
Euclidean (rigid): rotation + translation

$$egin{bmatrix} \cos heta & -\sin heta & r_3 \ \sin heta & \cos heta & r_6 \ 0 & 0 & 1 \end{bmatrix}$$



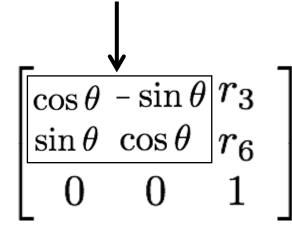
```
Similarity: uniform scaling + rotation + translation egin{array}{c|cccc} r_1 & r_2 & r_3 \\ \hline r_4 & r_5 & r_6 \\ \hline 0 & 0 & 1 \\ \hline \end{array}
```

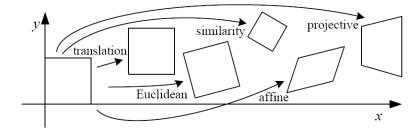
$$\left[egin{array}{cccc} r_1 & r_2 & r_3 \ r_4 & r_5 & r_6 \ 0 & 0 & 1 \end{array}
ight]$$



multiply these four by scale s

Similarity: uniform scaling + rotation + translation

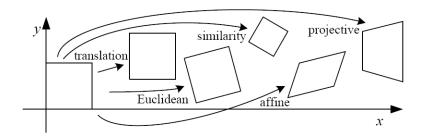




Affine transform
$$egin{bmatrix} a_1 & a_2 & a_3 \ a_4 & a_5 & a_6 \ 0 & 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} \cos(-\Phi) & -\sin(-\Phi) \\ \sin(-\Phi) & \cos(-\Phi) \end{bmatrix} \dots$$
$$\dots \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \begin{bmatrix} \cos\Phi & -\sin\Phi \\ \sin\Phi & \cos\Phi \end{bmatrix}$$

Linear part can be decomposed

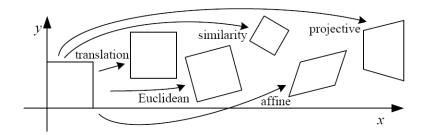


Affine transform
$$\mathbf{x}' = H_A \mathbf{x} = \begin{bmatrix} A & \mathbf{t} \\ \mathbf{0}^T & 1 \end{bmatrix} \mathbf{x}$$

$$A = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} \cos(-\Phi) & -\sin(-\Phi) \\ \sin(-\Phi) & \cos(-\Phi) \end{bmatrix} \dots$$
$$\dots \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \begin{bmatrix} \cos\Phi & -\sin\Phi \\ \sin\Phi & \cos\Phi \end{bmatrix}$$

Linear part can be decomposed

$$A = R(\theta)R(-\Phi)D(\lambda_1,\lambda_2)R(\Phi)$$



Affine transformations

Affine transformations are combinations of

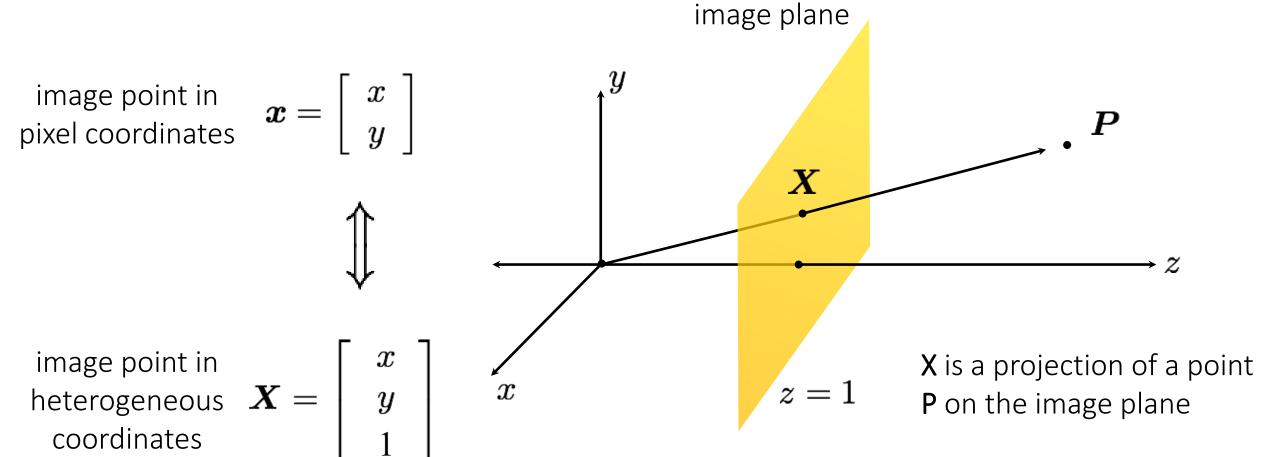
- arbitrary (4-DOF) linear transformations; and
- translations

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

Properties of affine transformations:

- origin does not necessarily map to origin
- lines map to lines
- parallel lines map to parallel lines
- ratios are preserved
- compositions of affine transforms are also affine transforms

Projective transformations



Projective transformations

Projective transformations are combinations of

- affine transformations; and
- projective wraps

Properties of projective transformations:

- origin does not necessarily map to origin
- lines map to lines
- parallel lines do not necessarily map to parallel lines
- ratios are not necessarily preserved
- compositions of projective transforms are also projective transforms

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

How many degrees of freedom?

Projective transforms = 8Dof

$$k_{p2} \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} k_{p1} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \frac{k_{p1}}{k_{p2}} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \frac{k_{p1}}{k_{p2}} \begin{bmatrix} a_{11}/a_{33} & a_{12}/a_{33} & a_{13}/a_{33} \\ a_{21}/a_{33} & a_{22}/a_{33} & a_{23}/a_{33} \\ a_{31}/a_{33} & a_{32}/a_{33} & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = k \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Projective transformations

Projective transformations are combinations of

- affine transformations; and
- projective wraps

Properties of projective transformations:

- origin does not necessarily map to origin
- lines map to lines
- parallel lines do not necessarily map to parallel lines
- ratios are not necessarily preserved
- compositions of projective transforms are also projective transforms

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

8 DOF: vectors (and therefore matrices) are defined up to scale)

Name	Matrix	# D.O.F.
translation	$\left[egin{array}{c c} I & t \end{array} ight]$	2
rigid (Euclidean)	$\left[egin{array}{c c} oldsymbol{R} & oldsymbol{t} \end{array} ight]_{}$	3
similarity	$\left[\begin{array}{c c} sR & t \end{array}\right]$	3
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]_{}$	6
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]$	8

Properties

Group	Matrix	Distortion	Invariant properties
Projective 8 dof	$\left[\begin{array}{ccc} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{array}\right]$	\triangle	Concurrency, collinearity, order of contact: intersection (1 pt contact); tangency (2 pt con- tact); inflections (3 pt contact with line); tangent discontinuities and cusps. cross ratio (ratio of ratio of lengths).
Affine 6 dof	$\left[\begin{array}{cccc} a_{11} & a_{12} & t_x \\ a_{21} & a_{22} & t_y \\ 0 & 0 & 1 \end{array}\right]$		Parallelism, ratio of areas, ratio of lengths on collinear or parallel lines (e.g. midpoints), linear combinations of vectors (e.g. centroids). The line at infinity, \mathbf{l}_{∞} .
Similarity 4 dof	$\left[\begin{array}{cccc} sr_{11} & sr_{12} & t_x \\ sr_{21} & sr_{22} & t_y \\ 0 & 0 & 1 \end{array}\right]$		Ratio of lengths, angle. The circular points, I, J (see section 2.7.3).
Euclidean 3 dof	$\left[\begin{array}{cccc} r_{11} & r_{12} & t_x \\ r_{21} & r_{22} & t_y \\ 0 & 0 & 1 \end{array}\right]$	\Diamond	Length, area