Midterm Exam

* Oct 20. During class (4:00 PM - 5:15 PM): Handwritten; Based on all previous lectures.

 Closed Book Exam

* No notes, laptops, phones etc. — put them in your bag if you're bringing them to class.
« Calculators are not needed (but allowed if you really need them)
« Okay to leave answers as expressions if you don’t want to calculate

(example: g* (2°) is fine, final answer 40 is also fine)

« Conceptual questions
(we won't test you on your memorization of equations or calculation abilities)

» multiple choice / true-false (quiz questions are a good)
« conceptual problem solving (e.g. the Lincoln image problem in the HW)
» design questions (e.g. if | want to find a particular pattern in an image,

how would you implement it based on what we have learned in class. We might ask
you for your justification, or a rough outline of your design/method.)



CMSC 472 /672

Lecture 12

Image Transtormations

Some slides from
Yang, Jayasuriya



What is an image?

A (grayscale)
image is a 2D
function.

grayscale image

_ T
domain & =



What is an image?

f(x)

T
domain mz{ }
Yy

"\
A (grayscale)
image is a 2D
function.

grayscale image

What is the range of
the image function f?



What is an image?

A (grayscale)
image is a 2D
function.

grayscale image

What is the range of f(X) domain — range
the image function f? f(X) [O, H] X [0, W] — [O, 1]3



RECALL Point Processing and Image Filtering

Point Operation

point processing

Neighborhood Operation

“filtering”




What types of image transformations can we do?

Filtering l Warping

changes pixel values changes pixel locations



What types of image transformations can we do?

F F
Filtering l G(x) = h{F(x)} Warping
G

changes range of image function changes domain of image function



Warping example: feature matching




Warping example: feature matching




Warping example: feature matching

How can we compute the transformation?

object recognition
3D reconstruction
augmented reality
image stitching



Warping example: feature matching

* object recognition
3D reconstruction
augmented reality
image stitching

How can we compute the transformation?

If we can, feature matching and image stitching will be easy! (HW3)



Warping example: feature matching

Given a set of matched feature points:

!/
{:B’i} :B*z.}
point in one \ point in the
image other image

and a transformation:

z' = f(x;p)

transformation
: / \parameters
function

find the best estimate of the parameters

p

What kind of transformation functions fare there?



2D transformations

What kind of transformation functions fare there?



2D transformations

perspective cylindrical



2D planar transformations




2D planar transformations

« Each component multiplied by a scalar
« Uniform scaling - same scalar for each component




2D planar transformations

« Each component multiplied by a scalar
« Uniform scaling - same scalar for each component




2D planar transformations

!
LI = ax

y' = by

matrix representation of scaling:

vl sl

scaling matrix S

« Each component multiplied by a scalar
« Uniform scaling - same scalar for each component




2D planar transformations




2D planar transformations

m"::.':—l—a-'y

y =b-z+y

or in matrix form:

MR




2D planar transformations

rotation around
the origin
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2D planar transformations

xr =xcosf —ysinl
/ { ' } y = zsinf + ycosb

rotation around
the origin

.
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.
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2D planar transformations

r i rotation around
the origin

.
.
.
PR

Polar coordinates...
X =r oS ()

y =rsin ()

X' =rcos (P +0)

V' =rsin (¢ + 0)

Trigonometric ldentity...
X" =r cos(P) cos(B) —r sin(d) sin(O)
vy’ =rsin(d) cos(B) + r cos(P) sin(6)

Substitute...
X" =x cos(B) -y sin(6)
vy’ =xsin(B) +y cos(6)




2D planar transformations

' = xcos — ysin b

o — { ' } y = zsinf + ycosH
- !
Yy or in matrix form:
p ' | | cosf —sinf T
rotation around y | | sinf cos0 Y
the origin

.
.
.
PR

.
.
“““
.
.....
P
wer®
et




2D planar and linear transformations

x'=f(x;p)

l
- M[y]\

parameters p point X



2D planar and linear transformations

Scale Flip across 'y
Sz U | -1 0
M=% ] M-l
Rotate Flip across origin
cosf) —sinf -1 0
M_[sinﬁ cos @ } M_[ 0 —1}
Shear ldentity
M oz

M=lo 1)



2D translation

. How would you implement translation?

/!




2D translation

r =x+t,

/
. o )
What about matrix representation?
7?7
. o o




2D translation

r =x+t,

/
. o )
What about matrix representation?
. Not possible.




Projective geometry 101



Homogeneous coordinates

heterogeneous  homogeneous
coordinates coordinates

X
=Pl

* Represent 2D point with a 3D vector



Homogeneous coordinates

heterogeneous  homogeneous
coordinates coordinates

X ax

[;C/]: 31/O‘=efa£/

 Represent 2D point with a 3D vector
e 3D vectors are only defined up to scale



2D translation

!

r =x+ 1,

Yy =y +ts

What about matrix representation
using homogeneous coordinates?




2D translation

r =x+t,
Yy =y+ts

What about matrix representation
using homogenous coordinates?

- o 1 0 t,
= |y | M=|0 1 ¢,
- 1 0 0 1




2D translation using homogeneous coordinates

X+t ]

0 ¢
Lot |l|y|=|r+e,
0 1]|1 1

I
[EE—
[




Homogeneous coordinates

Conversion: Special points:
* heterogeneous - homogeneous e point at infinity
T Ea
[ } = | v [ z y 0O ]
Y 1
* homogeneous —> heterogeneous e undefined
[ | x/w
y | = 0 0 0
v = 00 0]

 scale invariance
-
oy w ]



Projective geometry

image plane
Ima INt | 4
ge point In &£
. . T = P
pixel coordinates Y .
X/

ﬂ ) “
Image pointin T X is a projection of a point
homogeneous X = Y L z =1 P on the image plane

coordinates 1

What does scaling X correspond to?



Transformations in projective geometry



2D transformations in heterogeneous coordinates

Re-write these transformations as 3x3 matrices:

x'T [1 0 ¢] X (X |
yI=10 1 ¢ ||y V' = P Y
1 0 0 1|1 _1_ _ __1_
translation scaling
X (X "]
V' = ? y Vispoo2 ||y
1 1 1 1

rotation shearing



2D transformations in heterogeneous coordinates

Re-write these transformations as 3x3 matrices:

x'T [1 0 ¢ ][x] x'l [s, O Offx]
yI=10 1 ¢ ||y (=10 s, Oy
1 0O 0 111 1 0 0 1ff1
translation scaling
! [ X | x']
y'| = P y V= ? Y
1 1 1 1

rotation shearing



2D transformations in heterogeneous coordinates

Re-write these transformations as 3x3 matrices:

x'T [1 0 ¢ ][x] x'] [s., O O]fx]
yI=10 1 ¢ ||y (=10 s, Oy
1 0 0 1|1 1 0O 0 1]|1
translation scaling
! X X' 1 B, O
Y= 7 y Yi=|B, 1 Ofy
1 _1_ 1 0O 0 11

rotation shearing



2D transformations in heterogeneous coordinates

Re-write these transformations as 3x3 matrices:

x'T [1 0 ¢ ][x] x'] [s., O O]fx]

yI=10 1 ¢ ||y (=10 s, Oy

1 0 0 1|1 1 0O 0 1]|1
translation scaling

"1 [cos® —smmB® O][x’ x'T [1 B, O]fx]

y'[=|sin® cos® Offy =B, 1 Ofy

1 0 0 1111 1 0O 0 11

rotation shearing



Matrix composition

Transformations can be combined by matrix multiplication:

X'l ([1 0 tx][cos® -sin® O][sx

V=110 1 #l||sn® cos® Off0

w' \0 0 11| 0 0 1_ 0
?

p° = ?

ol O

I_I OQI

B




Matrix composition

Transformations can be combined by matrix multiplication:

(x'T ([1 0 tx][cos® -sin® 0][sx
V=110 1 #l||sn® cos® Off0
wi ([oo 1 0 0 1o
p° = translation(t,t) rotation(0)

0
Sy
0

scale(s,s)

0
0
1

e




Classification of 2D transformations



Classification of 2D transformations

) / similarity Q projective
translation

,———"""--’.-/
/J R
—V
Euclidean affine -
N X




Classification of 2D transformations
Name Matrix #D.O.F.
translation { 1 ‘ t ] ?
rigid (Euclidean) [ R ‘ t ]_ | ?
similarity [ sR ‘ t ] ?
atfine [ A ] . 7
projective { H ] ?




Classification of 2D transformations

-
= O
&+ o
N

Translation:

-
-
-




Classification of 2D transformations

Euclidean (rigid):
rotation + translation




Classification of 2D transformations

cos@ -sinf T'3
sinf cosf T6

0O 0 1

Euclidean (rigid):
rotation + translation




Classification of 2D transformations

Similarity:
uniform scaling + rotation Ta Ts5 Tg
+ translation 0 0 1




Classification of 2D transformations

multiply these four by scale s

L

Similarity: cosf -sinf|T3

uniform scaling + rotation sinf cost |rg
+ translation

0 0 1




Classification of 2D transformations

Affine transform a4 Qa5 Qg

0 0 1

cosf —sinﬂ-.cos[—tb) —sin(—®)
sinf CDSG-_SiH(—(I)) cos(—@) |
A, O (cos®  —sind
0 A, sin® cos®

A =

Linear part can be
decomposed




Classification of 2D transformations

Affine transform x'= H,x = [

cosf —sinf

a4 = sin@ cosBO

cos(—®) —sin(—®)

sin(—®) cos(—®@) |
cos® —sin®
sin® cos®

, Linear part can be decomposed
0
1

0 A,

A = R(8)R(-®@)D(A,,1,)R(®)




Affine transformations

Affine transformations are combinations of

e arbitrary (4-DOF) linear transformations; and Y

 translations

Properties of affine transformations:

e origin does not necessarily map to origin
* lines map to lines

e parallel lines map to parallel lines

* ratios are preserved

e compositions of affine transforms are also affine transforms

‘o a o

S N O

<




Projective transformations

image plane
Ima INt | J
ge point In &£
. . T = P
pixel coordinates { (7] } .
X/
ﬂ ’ z
Image point in [z X is a projection of a point
heterogeneous X = Y L z =1 P on the image plane
coordinates 1




Projective transformations

Projective transformations are combinations of !

X
e affine transformations; and Y

I
e XK
> QO

S < o=

A
l-

* projective wraps L !
How many degrees of freedom?
Properties of projective transformations:

e origin does not necessarily map to origin

* lines map to lines —
e parallel lines do not necessarily map to parallel lines

e ratios are not necessarily preserved

e compositions of projective transforms are also projective

transforms



Projective transforms = 8Dof

a, a;, dapj X
a,; dy dy kpl y
[d31 Q3 i3 1
k dy a;, 4y x
pl

ay, Ay Aysfly
k
p2

[d31 d3; O3 1

|

a3,/ 033 a3,/ aq

ﬂ11f‘:-"33 {112!033 ‘113“]33
a,/a;,, aplay, aylay

1

—

ay
ay

a,
a,,

a4

HEH




Projective transformations

Projective transformations are combinations of x' a b cllx
' —

e affine transformations; and Y| = d e f Y

w' g h il||lw

* projective wraps L :

8 DOF: vectors (and therefore
Properties of projective transformations: matrices) are defined up to scale)

e origin does not necessarily map to origin

* lines map to lines —
e parallel lines do not necessarily map to parallel lines

e ratios are not necessarily preserved

e compositions of projective transforms are also projective

transforms



Classitication of 2D transtormations
Name Matrix #D.O.F.
translation { I ‘ t ] 2
rigid (Euclidean) [ R ‘ t ]_ 3
similarity [ sR ‘ t ] 3
atfine [ A ] 6
projective { H ] 3




Properties

Group Matnx Distortion Invanant properties
Concurrency, collinearsty, order of comtact:
h“ h|g h|;| ﬂ mmhﬂﬂ-{l pt Cmt}. ta:lgml:]i' I:E-P't con-
?gg}ﬂ“t hay hay hay tact); inflections
hay has  has (3 pt contact with hne); tangent discontimuties
and cusps. cross ratio (ratio of ratio of lengths).
; Parallelism. ratio of areas. ratio of lengths on
Affine :“ E_” K Q collinear or parallel lines (e.g. mudpoints), lin-
6 dof 0 0 { ear combinations of vectors (e g. centroids).
D The line at infinity, 1.,
Sumulanty z:” ::::'2 :’ - Ratio of lengths, angle The circular pomnts_ I..J
4 dof R (see section 2.7 3).
. ri Tz Le
E";'];dcm [ rn rmz iy Q Length, area
- 0 0 1 1
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