Reminders /| Announcements

* Project Proposal has been graded
o Goal: to give you detailed feedback. Grading is “light” (Min: 90%, Max: 99%)

o Compute: Google Colab Pro is free for 1 year:
https://blog.google/outreach-initiatives/education/colab-higher-education/

o Oct 22: PyTorch tutorial in class (taught by Yu Liu)

 Midterm Exam is on 10/20
o In class; closed-book; 1 hour; everything up to and including 10/15 lecture

o More details in the next class.
- Homework 1 is being graded (ETA ~1 week)

« Homework 2 will be released this weekend (and due ~ Nov 3)


https://blog.google/outreach-initiatives/education/colab-higher-education/
https://blog.google/outreach-initiatives/education/colab-higher-education/
https://blog.google/outreach-initiatives/education/colab-higher-education/
https://blog.google/outreach-initiatives/education/colab-higher-education/
https://blog.google/outreach-initiatives/education/colab-higher-education/
https://blog.google/outreach-initiatives/education/colab-higher-education/
https://blog.google/outreach-initiatives/education/colab-higher-education/

Your Project Topics are Cool !

Self-supervised learning for medical imaging

Combined stereo-mono depth estimation
Interactive Video Generation

Interactive Image Segmentation

Anomaly Detection in Astrophysics
Enhancing Robustness of Al Watermarking

Fish Growth Monitoring via Vision

Calorie/Nutrition Estimation from Images
Vision-based Parking Monitoring
Photogrammetry

Detection of “Al-Generated” Images
Embodied Visual Category Discovery
Adversarial Defense in Event-Based Vision

Paraboloid CNNs
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Convolutional Neural Networks
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(Unrelated) Dog vs Food
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(Unrelated) Dog vs Food
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[Karen Zack, @teenybiscuit]



CNNs in 2012: “SuperVision”
(aka “AlexNet”)

“AlexNet” — Won the ILSVRC2012 Challenge

W

Major breakthrough 15 3% Top-5 error on ILSVRC2012
(Next best: 25.7%)
22 T T T ElL = — % | ’
57 Bn: A = 3|\ piEES 13 dense dense
% “'\’""\"fffss 3| N 1000
X7 192 192 128 Max L | L
224 S"t/r‘ide Max 128 Max pooling 2048 2048
Uof 4 pooling pooling

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440-186,624—-64,896—64,896—43,264—

4096-4096-1000.
[Krizhevsky, Sutskever, Hinton. NIPS 2012]



Recap: Before Deep Learning

e .
T i — [SvM | — Ans
N |'| ‘ 1 /

V- N
Input Extract Concatenate into  Linear
Pixels Features a vector x Classifier

Figure: Karpathy 2016



The last layer of (most) CNNs are
linear classifiers

This piece is just a linear classifier

(GoogLeNet)
Input Perform everything with a big neural
Pixels network, trained end-to-end

Key: perform enough processing so that by the time you get
to the end of the network, the classes are linearly separable



ConvNets

They're just neural networks with
3D activations and weight sharing



What shape should the
activations have?

X — Layer — h(l)—> Layer —> h(z)—p cee —» f

\

- The input Is an image, which is 3D
(RGB channel, height, width)
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What shape should the
activations have?

X — Layer — h(l)—> Layer — h(z)—p cee —p f

\

- The input Is an image, which is 3D
(RGB channel, height, width)

- We could flatten it to a 1D vector, but then
we lose structure

- What about keeping everything in 3D7



ConvNets

They're just neural networks with
3D activations and weight sharing



3D Activations

before:

output layer
input
layer hidden layer (1D vectors)

Figure: Andrej Karpathy



3D Activations

before:

output layer
input
layer hidden layer (1D vectors)

. — E—
NOw: h1 h2

(3D arrays)

Figure: Andrej Karpathy



3D Activations

All Neural Net
activations

arranged in 3
dimensions:

Figure: Andrej Karpathy

HEIGHT
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>

DEPTH



3D Activations

All Neural Net
activations

arranged in 3
dimensions:

HEIGHT

/ WIDTH

For example, a CIFAR-10 image is a 3x32x32 volume
(3 depth — RGB channels, 32 height, 32 width)

Figure: Andrej Karpathy

DEPTH



3D Activations

1D Activations:

™~
70

O OO

Figure: Andrej Karpathy



3D Activations

1D Activations: 3D Activations:

32
a hidden neuron in

—0C =0

O OO

32

Figure: Andrej Karpathy



3D Activations

32

32

Figure: Andrej Karpathy

a hidden neuron in
next layer

- The input is 3x32x32

- This neuron depends

on a 3x5x5 chunk of
the input

- The neuron also has a

3x5x5 set of weights
and a bias (scalar)



3D Activations

Example: consider the
32 region of the input “X"”
xr a hidden neuron in
next layer . 7
@>O With output neuron A
.
5 h
32

Figure: Andrej Karpathy



3D Activations

32

32

Figure: Andrej Karpathy

a hidden neuron in
next layer

hr

Example: consider the
region of the input “X"”

With output neuron i’

Then the output is:

h' = zxrijku/ijk +b

ijk



3D Activations

32

32

Figure: Andrej Karpathy

a hidden neuron in
next layer

hr

Example: consider the
region of the input “X"”

With output neuron i’

Then the output is:

h' = zxrijku/ijk +b

ijk

Sum over 3 axes



3D Activations

32
xr a hidden neuron in
next layer
@>O
hr
5 1
32

Figure: Andrej Karpathy



3D Activations

32
xr a hidden neuron in
next layer
@>@ e
r r
5 h 1 h 2
32

Figure: Andrej Karpathy



3D Activations

3 With 2 output neurons

X a hidden neuron in

tl ro v
o hy = ZJC Wi t by
5 O ijk

n,h
o h, = zxrijkWZIjk +b,

ijk

Figure: Andrej Karpathy



3D Activations

3 With 2 output neurons

X a hidden neuron in
next layer h?’ — zx” + F
| = ijk "M 1k
@>® O "

ijk
r r
hl h2

h', = zxrijkuﬁtjk T

ijk

Figure: Andrej Karpathy



3D Activations

depth dlmensmn

@>ooooo

32

Figure: Andrej Karpathy



3D Activations

32 depth dimension

ﬁ>ooooo

32

Figure: Andrej Karpathy

We can keep adding
more outputs

These form a column
In the output volume:
[depth x 1 x 1]



3D Activations

32

32

Figure: Andrej Karpathy

depth dimension

@>ooooop
|

\I/

Each neuron has its
own 3D filter and
own (scalar) bias

We can keep adding
more outputs

These form a column
In the output volume:
[depth x 1 x 1]



32

3D Activations

32

=0 000D

g

D sets of weights
(also called filters)

Figure: Andrej Karpathy

Now repeat this
across the input



3D Activations

Now repeat this

> across the input

[~
ﬁ\>0 OO0

— Weight sharing:
Each filter shares
32 the same weights

5 (but each depth
« > INndex has its own

D sets of weights set of weights)

(also called filters)

Figure: Andrej Karpathy



32

3D Activations

=0 0000

32

D sets of weights
(also called filters)

Figure: Andrej Karpathy



32

3D Activations

32

=0 000D

g

D sets of weights
(also called filters)

Figure: Andrej Karpathy

With weight

sharing,

this is called
convolution



3D Activations

With weight
sharing,
this Is called

- convolution
ﬁ\>@ OO0OP

Without weight
sharing,

this is called a

P R locally

D sets of weights connected layer
(also called filters)

32

32

Figure: Andrej Karpathy



3D Activations

Output of one filter One set of weights gives

/ one slice Iin the output

N\

To get a 3D output of depth D,
ﬁ§> use D different filters
"
/ In practice, ConvNets use
| | / many filters (~64 to 1024)
(input (output

depth) depth)



3D Activations

Output of one filter One set of weights gives

/ one slice Iin the output

/|

§> use D different filters

To get a 3D output of depth D,

/ In practice, ConvNets use

L _ - many filters (~64 to 1024)
(input (output
depth) depth)

All together, the weights are 4 dimensional:
(output depth, input depth, kernel height, kernel width)



Vertical Sobel filter:
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3D Activations

We can unravel the 3D cube and show each layer separately:

(Input)
“ CINEEREDNNZIIAYREENE SESARTINEEREESR S

one filter = one depth slice (or activation map) ( 32 f i|’[er8, each 3X5X5)
Activations:

.ﬁ..-
=N = AN
Bt AR 7SN
N

Figure: Andrej Karpathy



3D Activations

We can unravel the 3D cube and show each layer separately:

(Input)
) CINEEREDNNZIIAYREENE SESARTINEEREESR S

u one filter = one depth slice (or activation map) ( 32 fj |’[erS, each 3X5X5)

Activations:

Figure: Andrej Karpathy



3D Activations

We can unravel the 3D cube and show each layer separately:
(Input)

Activations:

GO ELREFIEY B TASTUEET BV T LB
one filter =\gne depth slice (or activation map) (32 fi|’[er8, each 3)(5)(5)

Figure: Andrej Karpathy




3D Activations

We can unravel the 3D cube and show each layer separately:
(Input)

’
L

Activations:

O ERETRIEYD B TASTEET BE 1] LB
one filter =\gne depth slice (or activation map) (32 fi|’[er8, each 3)(5)(5)

T H
A | 2B ) 2l

s @ :
Figure: Andrej Karpathy
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A ConvNet is a sequence of convolutional layers, interspersed with
activation functions (and possibly other layer types)

32

32

CONV,
RelLU
e.g.6
5x5x3
filters

28

28

CONV,

RelLU
e.g. 10
5x5x6
filters

10

24

24

CONV,
RelLU



Convolution Layer

32x32x3 image

32 height

3 depth



Convolution Layer

32x32x3 image

5x5x3 filter
32 ‘4
I| Convolve the filter with the image
I.e. “slide over the image spatially,

computing dot products”

32




Convolution Layer S ——
_————  depthof the input volume

32x32x3 image /
ox5x3 filter
32 ‘4
I' Convolve the filter with the image
I.e. “slide over the image spatially,

computing dot products”

32




Convolution Layer
__— 32x32x3 image

5x5x3 filter w
=
the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image

32 (i.e. 5*5*3 = 75-dimensional dot product + bias)

2 wlz +b

1 number:




What will the output size be?

_ You will need to make some
Convolution Layer assumptions ...

__— 32x32x3 image
5x5x3 filter w

-
the result of taking a dot product between the
filter and a small 5x5x3 chunk of the image

32 (i.e. 5*5*3 = 75-dimensional dot product + bias)

] wliz +b

1 number:




Convolution Layer

activation map

__— 32x32x3 image
5x5x3 filter

=

32

convolve (slide) over all
spatial locations




Convolution Layer

I

Consider a second filter ...

__— 32x32x3 image
_ 5x5xa3 filter

32

.-“/

——0

32

convolve (slide) over all
spatial locations

activation maps

y

L

28



Convolution Layer

4

o

32 _—

,-/—.'

——0

32

What will the output size be
if we have 6 filters?

_—— 32x32x3 image
__ ox9x3 filter

convolve (slide) over all
spatial locations

activation maps

y

[

28



For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

32

32

3

Convolution Layer

-

activation maps

y 4

28

A

We stack these up to get a “new image” of size 28x28x6!



Convolution: Stride

During convolution, the weights “slide™ along the input to
generate each output

Weights
L

Output

Input
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Convolution: Stride

During convolution, the weights “slide™ along the input to

generate each output

Input

Recall that at each position,
we are doing a 3D sum:

h' = zxrzjijk +b

ijk

(channel, row, column)



Convolution: Stride

But we can also convolve with a stride, e.g. stride = 2

Output

Input
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Convolution: Stride

But we can also convolve with a stride, e.g. stride = 2

Output

Input



Convolution: Stride

But we can also convolve with a stride, e.g. stride = 2

Output

- Notice that with certain
strides, we may not be able to
cover all of the input

- The output is also half the
Size of the input

Input



Convolution: Padding

We can also pad the input with zeros.
Here, pad =1, stride = 2

OO0 0|]0]10]10(O0

Output

||l OO || O |OC O | O | O
||l OO || O |OC|OC O] O

Input



Convolution: Padding

We can also pad the input with zeros.
Here, pad =1, stride = 2

OO PO L0 0|0 (O

Output

||l OO || O |OC|OC O] O
||l OO || O |OC|OC O] O

Input



Convolution: Padding

We can also pad the input with zeros.
Here, pad =1, stride = 2

OO0 |0 pFOFO O O

Output

||l OO || O |OC|OC O] O
||l OO || O |OC|OC O] O

Input



Convolution: Padding

We can also pad the input with zeros.
Here, pad =1, stride = 2

O[O0 ]1]010]10 OO

Output

||l OO || O |OC|OC O] O
||l OO || O | OO | O | O

Input



Convolution:
How big is the output?

stride s
4+—lp
ololoflo|lo]o|lo]oOo|oO
0 . g 0
0 kerrnel| & 0
0 O 1 In general, the output has size:
0 0
w.+2p—k
0 0 Wout = +1
S S —
0 0
0 0
ofoloflolo]o|lo]oOo|oO
<) » 4P

P width w,_ P



Convolution:

How big is the output?

stride s

O191919191°9 Y| Example: k=3, s=1, p=1

0 . 0

0 kernel k 0 W = Win+2p—kJ+1

0 0 i S

0 . w.+2-3

0 0 — + 1

i |

0 0

0 0 = Wi

ofoflofofo]oO 0

VGGNet [Simonyan 2014]

28 width w,_ "P uses filters of this shape



Knowledge Check ...

128

:> Filter Bank with :>
| 3x3 filters |
128

3 06

How many parameters does each filter have?

128

@9 (b)27 (c)96 (d)864



Knowledge Check ...

128

:> Filter Bank with :>
| 3x3 filters |
128

3 06

How many filters are in the bank?

128

(@) 3 (b)27 (c)96 (d)can't say



Computation in a neural net

o) &
'Y @ V 6
W Q@ S

QO

— — e — —  “heron”

fx)=fu(...120/1(x)))



Max Pooling

Single depth slice

Jlr]1]2]4
max pool with 2x2 filters
516 |7 |8 and stride 2 6 | 8
31 2|1]0 3| 4
112 1|3 | 4
y

What's the backprop rule for max pooling?
- In the forward pass, store the index that took the max

- The backprop gradient is the input gradient at that index

Figure: Andrej Karpathy



Pooling — Why?

Pooling across spatial locations achieves
stability w.r.t. small translations:




Pooling — Why?

Pooling across spatial locations achieves
stability w.r.t. small translations:

large response
regardless of exact
position of edge




Pooling — Why?

Pooling across spatial locations achieves
stability w.r.t. small translations:




Pooling across channels — \WWhy?

Pooling across feature channels (filter outputs)

can achieve other kinds of invariances:

/
N

I
/
 _

AV

large response
for any edge,
regardless of its
orientation



Computation in a neural net

o) &
'Y @ V 6
W Q@ S

QO

— — e — —  “heron”

fx)=fu(...120/1(x)))



Computation in a neural net

\Z
DD K O
R\ N 70 S
N %

— — e — —  “heron”

fx)=fu(...120/1(x)))



Pooling vs Downsampling



Dilated Convolutions

Allows increasing the receptive field
of the convolutional layer

Useful for looking at larger spatial
context without looking at every pixel




Transposed Convolution

The transposed convolution a.k.a

- deconvolution layer
- fractionally strided convolution




Dilated

VS.

Transposed Conv

Conv




1x1 convolution

How is this not just multiplication?

Multiplications followed by a RELU

activation

0.......
([ [ [ [ [ [/

Good for dimensionality reduction

efficient storage



Example ConvNet
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Figure: Andrej Karpathy



Example ConvNet

CONV POOL
l RelLU l

G ol -

RelLU

— |RREEE u.:-u No

CONV POOL CONV
'
]
=

= =
|
Ry
i
=
-
- 4
- | B

> ‘

: - E3EEERREN S
: — [AEENE

RN [ [[TTITIT
- 3

o —»

O

Figure: Andrej Karpathy



Example ConvNet

CONV CONV POOLCONV CONV POOL CONV CONV POOL FC
l RelLU l RelLU RelLU RelU RelLU l ReLUl (Fu“y-connected)
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Figure: Andrej Karpathy



Example ConvNet

CONV CONV POOLCONV CONV POOL CONV CONV POOL FC
l RelLU l RelLU RelLU RelU RelLU l ReLUl (Fu“y-connected)
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10x3x3 conv filters, stride 1, pad 1
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input image

alexnet

resnetl8




Layer Visualizations




Which pixels matter: Saliency via Occlusion

Mask part of the image before feeding to CNN,
check how much predicted probabilities change

P(elephant) = 0.95

P(elephant) = 0.75

Boat image is CCO public domain
Zeiler and Fergus, “Visualizing and Understanding Convolutional Elephant image is CCO public domain
Networks”, ECCV 2014 Go-Karts image is CCO public domain



https://pixabay.com/en/sailboat-ship-sailing-greenland-459794/
https://pixabay.com/en/sailboat-ship-sailing-greenland-459794/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/elephant-african-bush-elephant-114543/
https://pixabay.com/en/elephant-african-bush-elephant-114543/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/gokart-fun-car-go-kart-racing-1089893/
https://pixabay.com/en/gokart-fun-car-go-kart-racing-1089893/
https://pixabay.com/en/gokart-fun-car-go-kart-racing-1089893/
https://pixabay.com/en/gokart-fun-car-go-kart-racing-1089893/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Which pixels matter:
Saliency via Occlusion

Mask part of the image before feeding to CNN,
check how much predicted probabilities change

pooling

ENRY i
138 :
. v
128 Max

2
ense
2

pooling v

fjﬁﬂ

pooling

Zeiler and Fergus, “Visualizing and Understanding Convolutional
Networks”, ECCV 2014

ENg v
g
128 20
\ 13
jamER
13 dense’
128 Max L]

pooling 20

Boat image is CCO public domain

dense

1000

dense

1000

schooner

Elephant image is CCO public domain

Go-Karts image is CCO public domain
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https://pixabay.com/en/sailboat-ship-sailing-greenland-459794/
https://pixabay.com/en/sailboat-ship-sailing-greenland-459794/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/elephant-african-bush-elephant-114543/
https://pixabay.com/en/elephant-african-bush-elephant-114543/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/gokart-fun-car-go-kart-racing-1089893/
https://pixabay.com/en/gokart-fun-car-go-kart-racing-1089893/
https://pixabay.com/en/gokart-fun-car-go-kart-racing-1089893/
https://pixabay.com/en/gokart-fun-car-go-kart-racing-1089893/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Common Architectures



Common Architectures

(We will revisit these in detail when we study specific
tasks like object detection, image generation, etc.)



VGG 224 x 224 x 3 224 x 224 x 64

112 x 112 x 128

e Simonyan and Zisserman,
“Very Deep Convolutional
Networks for Large-Scale
Image Recognition”

////56|x 56 x 256

— TXTx512
AP E=% 14 x 14 x 512

1x1x4096 1x1x1000

) convolution+RelLU

1 max pooling
fully nected+RelLU
e Used to be very common s
(before ResNets)
VGG-16

‘T"?‘m 'T'ru\lm 'T”?lr?m 'T”T‘r?m 'T‘ﬁnlr?m v o o =
S [7H [N mmn g (¢t (wvv e | 6lo a3
o >I>% [2>0 [>>>0° |2 >>7 |>>>T0° & & & =
=77 |55/2 |552| |55 52|55 5|2 |55 5 < aalal
S|o|™*| |S|S|%*| [S|S|8|* |S8|S|S|* |§|S|S|™ o




34-layer plain 34-layer residual

ResNet

* He, Kaiming; Zhang, Xiangyu; Ren, Shaoqing; | l
Sun, Jian (2016). "Deep Residual Learning for =
Image Recognition" (PDF). Proc. Computer ==
Vision and Pattern Recognition (CVPR), IEEE. —

* Deep networks with more layers does not always
mean better performance (vanishing gradient
problem) ——
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* Residual blocks = has skip connections
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3x3 conv, 256

« Skipped layers train faster at the beginning, then [
later are filled out =
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http://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
http://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf

Autoencoder

* Can be done with either fully connected
or convolutional layers

* |dea is to reduce the input to a
bottleneck or latent code, then
reconstruct It again

e Sometimes can be used to train a feature
extractor by enforcing the output =
input, and then use the first part of the
network as a feature extractor

-



U-Net

 Common architecture for image
reconstruction tasks

2562 ="

t

112 224 224 448 112 112

Conv 3x3, RelLU

* Features skip connections and

=
: S 2 0alzl ¥ Maxpool 22
transposed convolutions (up-conv) | A S
1y ¢ B b IR
' Cop
448 448 448 Y

: - . = Conv 1x1, sigmoid
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Encoder
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Image-to-image
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Skip connection
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Convolutions In time
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Training ConvNets



How do you actually
train these things?

Roughly speaking:

Gather Find a ConvNet Minimize
labeled data architecture the loss
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Recap
Learning network parameters through optimization

while True:
weights grad = evaluate gradient(loss_ fun, data, weights)
weights += - step size * weights grad # perform parameter update

Landscape image is CCO 1.0 public domain
Walking man image is CCO 1.0 public domain



http://maxpixel.freegreatpicture.com/Mountains-Valleys-Landscape-Hills-Grass-Green-699369
http://maxpixel.freegreatpicture.com/Mountains-Valleys-Landscape-Hills-Grass-Green-699369
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/
http://www.publicdomainpictures.net/view-image.php?image=139314&picture=walking-man
http://www.publicdomainpictures.net/view-image.php?image=139314&picture=walking-man
http://www.publicdomainpictures.net/view-image.php?image=139314&picture=walking-man
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/

Mini-batch Gradient Descent

Loop:

1. Sample a batch of training data (~100 images)
2. Forwards pass: compute loss (avg. over batch)
3. Backwards pass: compute gradient

4. Update all parameters

Note: usually called “stochastic gradient descent” even
though SGD has a batch size of 1



Training a convolutional
neural network

Split and preprocess your data

Choose your network architecture

Initialize the weights

Find a learning rate and regularization strength
Minimize the loss and monitor progress

Fiddle with knobs



Recall: Overfitting



Overfitting

Overfitting: modeling noise in the training set instead
of the “true” underlying relationship

Underfitting: insufficiently modeling the relationship in
the training set

15

General rule: models that are
“bigger” or have more capacity
are more likely to overfit

-
o
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Regularization

Regularization reduces overfitting:

|
L — Ldata T Lreg Lreg — /’LEHW‘E

A =0.001 A =0.01 A=0.1

[Andre| Karpathy http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html]




Example Regularizers

L2 regularization L. = /1%‘ ‘W‘E

(L2 regularization encourages small weights)

L1 regularization L., =AW = XZ‘WU‘
ij

(L1 regularization encourages sparse weights:
weights are encouraged to reduce to exactly zero)

“Elastic net” Lreg — /’LIHWHI T /’LZHW‘E

(combine L1 and L2 regularization)

Max norm
Clamp weights to some max norm

Wl <c



“Weight decay”

Regularization is also called “weight decay” because
the weights “decay” each iteration:

| I oL
L — —_ —_— —_—
reg A 2 ‘ ‘W‘ ‘2 aW ﬁ/W
Gradient descent step: 37

W« W—oAW — —2
oW

Weight decay: ggAd {weights always decay by this amount)

Note: biases are sometimes excluded from regularization

[Andre| Karpathy http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html]




Dropout

Simple but powerful technique to reduce overfitting:

w PW
Present with Always
probability p present

(a) At training time (b) At test time

[Srivasta et al, “Dropout: A Simple Way to Prevent Neural Networks from
Overfitting”, JMLR 2014]



Dropout

Simple but powerful technique to reduce overfitting:
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(a) Standard Neural Net (b) After applying dropout.

Note: Dropout can be interpreted as an approximation to taking the
geometric mean of an ensemble of exponentially many models

[Srivasta et al, “Dropout: A Simple Way to Prevent Neural Networks from
Overfitting”, JMLR 2014]



Dropout

Case study: [Krizhevsky 2012]

“Without dropout, our network exhibits Dropout here
substantial overfitting.” l 1
48 ’ . | 192 192 128 2048 Jo4g \dense
s 27 128 - T
I 1305, \13 A\
224 Rgss‘ ‘ 3 EN A A 3| ].-
| N T I L3 N AR ' 13 dense| [dense
i P 3 N | 1600
! 192 192 128 Max | | ]
\ Stride Max 128 Max pooling 2048 A~
Uof 4 pooling pooling T
3 78

But not here — why?

[Krizhevsky et al, “ImageNet Classification with Deep Convolutional
Neural Networks”, NIPS 2012]



Summary of things to fiddle

* Network architecture
* [earning rate, decay schedule, update type

e Regularization (L2, L1, maxnorm, dropouit, ...)

* Loss function (softmax, SVM, ...)

Weight initialization

Neural network
parameters
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