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Recap:  Linear Regression



Recap:  Linear Regression



Naïve Idea:

Linear Regression by Random Guessing

!!!







Better Idea:

An optimization algorithm called

“Gradient Descent”



Recall:  Gradient of a vector













Gradient Descent

• Go down the path of “steepest descent”
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Gradient descent:

update rule:



vector of parameter update equations

vector of parameter partial derivatives

Gradient Descent

For each example sample

1. Predict

a. Forward pass

b. Compute Loss

2. Update

a. Back Propagation

b. Gradient update



Step size: learning rate
Too big: will miss the minimum
Too small: slow convergence

-

Learning rates







GD for LR: Python Step-by-Step Example

• https://colab.research.google.com/drive
/17dK6cynECzk2ObyCqDk5gKcUyN1k
MjSR?usp=sharing 

https://colab.research.google.com/drive/17dK6cynECzk2ObyCqDk5gKcUyN1kMjSR?usp=sharing
https://colab.research.google.com/drive/17dK6cynECzk2ObyCqDk5gKcUyN1kMjSR?usp=sharing
https://colab.research.google.com/drive/17dK6cynECzk2ObyCqDk5gKcUyN1kMjSR?usp=sharing
https://colab.research.google.com/drive/17dK6cynECzk2ObyCqDk5gKcUyN1kMjSR?usp=sharing


Backpropagation



Example of a 
multi-layer perceptron

function of FOUR parameters and FOUR layers!
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Entire network can be written out as one long equation

What is known? What is unknown?
We need to train the network:
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Entire network can be written out as one long equation

What is known? What is unknown?

unknown

We need to train the network:

activation function 
sometimes has 

parameters



Given a set of samples and a MLP

Estimate the parameters of the MLP

Learning an MLP



Gradient Descent

For each random sample

1. Predict

a. Forward pass

b. Compute Loss

2. Update

a. Back Propagation

b. Gradient update
vector of parameter update equations

vector of parameter partial derivatives



So we need to compute the partial derivatives



Partial derivative describes…

(loss layer)

Remember,



rest of the network

Intuitively, the effect of weight on loss function :

depends on

depends on
depends on

According to the chain rule…



rest of the network

Chain Rule!



rest of the network

Just the partial 
derivative of L2 loss



rest of the network

Let’s use a Sigmoid function



rest of the network





already computed.
re-use (propagate)!
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Gradient Descent

For each example sample

1. Predict

a. Forward pass

b. Compute Loss

2. Update

a. Back Propagation

b. Gradient update



vector of update equations

vector of partial derivatives

Gradient Descent

For each example sample

1. Predict

a. Forward pass

b. Compute Loss

2. Update

a. Back Propagation

b. Gradient update



Single Output Neural Networl
Let’s write the equation



Objective Functions for NNs



Objective Functions for NNs







some history / controversy …
Nature volume 323, pages533–536 (1986)

Nobel Prize in Physics 2024
• An efficient application of the chain rule (first 

written down by Leibniz, 1676)

• Precursors to backpropagation appeared in 
optimal control theory since 1950s. 

• LeCun et al 1985 credits 1950s work by 
Pontryagin.

• Modern backpropagation was first published 
by Seppo Linnainmaa as "reverse mode of 
automatic differentiation" (1970) for discrete 
connected networks of nested differentiable 
functions.

• Rumelhart “independently developed” 
backpropagation.  He did not cite previous 
work as he was “unaware” of them.

https://people.idsia.ch/~juergen/who-
invented-backpropagation.html 

https://www.nature.com/
https://www.nature.com/collections/ehbjaifcgc
https://people.idsia.ch/%7Ejuergen/who-invented-backpropagation.html
https://people.idsia.ch/%7Ejuergen/who-invented-backpropagation.html
https://people.idsia.ch/%7Ejuergen/who-invented-backpropagation.html
https://people.idsia.ch/%7Ejuergen/who-invented-backpropagation.html
https://people.idsia.ch/%7Ejuergen/who-invented-backpropagation.html


Why are NNs such good function approximators?

Universal Approximation Theorem:

“A neural network 𝑓𝑓 𝑥𝑥  with a single hidden-layer 
can approximate any continuous real function 𝑓𝑓(𝑥𝑥) 

to within any arbitrary degree of accuracy 𝜖𝜖
given a sufficient number of neurons in the hidden layer”

Nice Explanation:
https://www.deep-mind.org/2023/03/26/the-universal-approximation-theorem/ 

https://www.deep-mind.org/2023/03/26/the-universal-approximation-theorem/
https://www.deep-mind.org/2023/03/26/the-universal-approximation-theorem/
https://www.deep-mind.org/2023/03/26/the-universal-approximation-theorem/
https://www.deep-mind.org/2023/03/26/the-universal-approximation-theorem/
https://www.deep-mind.org/2023/03/26/the-universal-approximation-theorem/
https://www.deep-mind.org/2023/03/26/the-universal-approximation-theorem/
https://www.deep-mind.org/2023/03/26/the-universal-approximation-theorem/
https://www.deep-mind.org/2023/03/26/the-universal-approximation-theorem/
https://www.deep-mind.org/2023/03/26/the-universal-approximation-theorem/


Why are NNs such good function approximators?

Universal Approximation Theorem (UAT) limitations:

1. Does not specify what the network size should be

2. Only guarantees function approximation on the given training data; does not 
guarantee generalization on new test data

3. Only assures that approximation exists; does not provide insights on how to 
train the network to achieve that optimal function

“A neural network 𝑓𝑓 𝑥𝑥  with a single hidden-layer 
can approximate any continuous real function 𝑓𝑓(𝑥𝑥) 

to within any arbitrary degree of accuracy 𝜖𝜖
given a sufficient number of neurons in the hidden layer”



Step size: learning rate
Too big: will miss the minimum
Too small: slow convergence

-

Learning rates



Learning rate scheduling
• Use different learning rate at each iteration.
• Most common choice: 

η𝑡𝑡 =
η0
𝑡𝑡

 Need to select initial learning rate η0
More modern choice: Adaptive learning rates.

η𝑡𝑡 = 𝐺𝐺
𝜕𝜕𝜕𝜕
𝜕𝜕θ 𝑖𝑖=0

𝑡𝑡

 Many choices for G (Adam, Adagrad, Adadelta).



-

Δθ ← 𝑤𝑤
𝜕𝜕𝜕𝜕
𝜕𝜕θ

+ 1 − 𝑤𝑤 Δθ Take direction history 
into account!



- No consensus on Adam etc.: Seem to give faster 
performance to worse local minima.
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