
Lecture 9

Neural Network
Optimization

CMSC 472/672

Some slides from Owens, Jayasuriya, Karpathy

Neural
Network

CMSC 472/672

Output
representation

Intermediate
representation

Input
representation

Stacking layers

𝐡𝐡 = “hidden units”

Stacking layers
Output

representation
Intermediate

representation
Input

representation

𝐡𝐡 = “hidden units”

Given several examples

Modify weight such that gets ‘closer’ to

and a perceptron

perceptron
output

true
label

perceptron
parameter

An Incremental Learning Strategy
(gradient descent)

Recap: Linear Regression

Recap: Linear Regression

Naïve Idea:

Linear Regression by Random Guessing

!!!

Better Idea:

An optimization algorithm called

“Gradient Descent”

Recall: Gradient of a vector

Gradient Descent

• Go down the path of “steepest descent”

Gradient Descent
• Go down the path of steepest descent

Gradient Descent
• Go down the path of steepest descent

Gradient descent:

update rule:

vector of parameter update equations

vector of parameter partial derivatives

Gradient Descent

For each example sample

1. Predict

a. Forward pass

b. Compute Loss

2. Update

a. Back Propagation

b. Gradient update

Step size: learning rate
Too big: will miss the minimum
Too small: slow convergence

-

Learning rates

GD for LR: Python Step-by-Step Example

• https://colab.research.google.com/drive
/17dK6cynECzk2ObyCqDk5gKcUyN1k
MjSR?usp=sharing

https://colab.research.google.com/drive/17dK6cynECzk2ObyCqDk5gKcUyN1kMjSR?usp=sharing
https://colab.research.google.com/drive/17dK6cynECzk2ObyCqDk5gKcUyN1kMjSR?usp=sharing
https://colab.research.google.com/drive/17dK6cynECzk2ObyCqDk5gKcUyN1kMjSR?usp=sharing
https://colab.research.google.com/drive/17dK6cynECzk2ObyCqDk5gKcUyN1kMjSR?usp=sharing

Backpropagation

Example of a
multi-layer perceptron

function of FOUR parameters and FOUR layers!

hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1

hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1

hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1

hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1

hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1

hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1

hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1

hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1

hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1

Entire network can be written out as one long equation

What is known? What is unknown?
We need to train the network:

Entire network can be written out as one long equation

What is known? What is unknown?

known

We need to train the network:

Entire network can be written out as one long equation

What is known? What is unknown?

unknown

We need to train the network:

activation function
sometimes has

parameters

Given a set of samples and a MLP

Estimate the parameters of the MLP

Learning an MLP

Gradient Descent

For each random sample

1. Predict

a. Forward pass

b. Compute Loss

2. Update

a. Back Propagation

b. Gradient update
vector of parameter update equations

vector of parameter partial derivatives

So we need to compute the partial derivatives

Partial derivative describes…

(loss layer)

Remember,

rest of the network

Intuitively, the effect of weight on loss function :

depends on

depends on
depends on

According to the chain rule…

rest of the network

Chain Rule!

rest of the network

Just the partial
derivative of L2 loss

rest of the network

Let’s use a Sigmoid function

rest of the network

already computed.
re-use (propagate)!

The chain rule says…

depends ondepends on
depends on

depends ondepends on

depends on

depends on

The chain rule says…

depends ondepends on
depends on

depends ondepends on

depends on

depends on

already computed.
re-use (propagate)!

depends ondepends on
depends on

depends ondepends on

depends on

depends on

depends ondepends on
depends on

depends ondepends on

depends on

depends on

depends ondepends on
depends on

depends ondepends on

depends on

depends on

Gradient Descent

For each example sample

1. Predict

a. Forward pass

b. Compute Loss

2. Update

a. Back Propagation

b. Gradient update

vector of update equations

vector of partial derivatives

Gradient Descent

For each example sample

1. Predict

a. Forward pass

b. Compute Loss

2. Update

a. Back Propagation

b. Gradient update

Single Output Neural Networl
Let’s write the equation

Objective Functions for NNs

Objective Functions for NNs

some history / controversy …
Nature volume 323, pages533–536 (1986)

Nobel Prize in Physics 2024
• An efficient application of the chain rule (first

written down by Leibniz, 1676)

• Precursors to backpropagation appeared in
optimal control theory since 1950s.

• LeCun et al 1985 credits 1950s work by
Pontryagin.

• Modern backpropagation was first published
by Seppo Linnainmaa as "reverse mode of
automatic differentiation" (1970) for discrete
connected networks of nested differentiable
functions.

• Rumelhart “independently developed”
backpropagation. He did not cite previous
work as he was “unaware” of them.

https://people.idsia.ch/~juergen/who-
invented-backpropagation.html

https://www.nature.com/
https://www.nature.com/collections/ehbjaifcgc
https://people.idsia.ch/%7Ejuergen/who-invented-backpropagation.html
https://people.idsia.ch/%7Ejuergen/who-invented-backpropagation.html
https://people.idsia.ch/%7Ejuergen/who-invented-backpropagation.html
https://people.idsia.ch/%7Ejuergen/who-invented-backpropagation.html
https://people.idsia.ch/%7Ejuergen/who-invented-backpropagation.html

Why are NNs such good function approximators?

Universal Approximation Theorem:

“A neural network 𝑓𝑓 𝑥𝑥 with a single hidden-layer
can approximate any continuous real function 𝑓𝑓(𝑥𝑥)

to within any arbitrary degree of accuracy 𝜖𝜖
given a sufficient number of neurons in the hidden layer”

Nice Explanation:
https://www.deep-mind.org/2023/03/26/the-universal-approximation-theorem/

https://www.deep-mind.org/2023/03/26/the-universal-approximation-theorem/
https://www.deep-mind.org/2023/03/26/the-universal-approximation-theorem/
https://www.deep-mind.org/2023/03/26/the-universal-approximation-theorem/
https://www.deep-mind.org/2023/03/26/the-universal-approximation-theorem/
https://www.deep-mind.org/2023/03/26/the-universal-approximation-theorem/
https://www.deep-mind.org/2023/03/26/the-universal-approximation-theorem/
https://www.deep-mind.org/2023/03/26/the-universal-approximation-theorem/
https://www.deep-mind.org/2023/03/26/the-universal-approximation-theorem/
https://www.deep-mind.org/2023/03/26/the-universal-approximation-theorem/

Why are NNs such good function approximators?

Universal Approximation Theorem (UAT) limitations:

1. Does not specify what the network size should be

2. Only guarantees function approximation on the given training data; does not
guarantee generalization on new test data

3. Only assures that approximation exists; does not provide insights on how to
train the network to achieve that optimal function

“A neural network 𝑓𝑓 𝑥𝑥 with a single hidden-layer
can approximate any continuous real function 𝑓𝑓(𝑥𝑥)

to within any arbitrary degree of accuracy 𝜖𝜖
given a sufficient number of neurons in the hidden layer”

Step size: learning rate
Too big: will miss the minimum
Too small: slow convergence

-

Learning rates

Learning rate scheduling
• Use different learning rate at each iteration.
• Most common choice:

η𝑡𝑡 =
η0
𝑡𝑡

 Need to select initial learning rate η0
More modern choice: Adaptive learning rates.

η𝑡𝑡 = 𝐺𝐺
𝜕𝜕𝜕𝜕
𝜕𝜕θ 𝑖𝑖=0

𝑡𝑡

 Many choices for G (Adam, Adagrad, Adadelta).

-

Δθ ← 𝑤𝑤
𝜕𝜕𝜕𝜕
𝜕𝜕θ

+ 1 − 𝑤𝑤 Δθ Take direction history
into account!

- No consensus on Adam etc.: Seem to give faster
performance to worse local minima.

	Lecture 9
	CMSC 472/672
	Slide Number 3
	Stacking layers
	Stacking layers
	Slide Number 6
	Slide Number 7
	Recap: Linear Regression
	Recap: Linear Regression
	Naïve Idea:��Linear Regression by Random Guessing��!!!
	Slide Number 11
	Slide Number 12
	Better Idea:��An optimization algorithm called��“Gradient Descent”
	Recall: Gradient of a vector
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Gradient Descent
	Gradient Descent
	Gradient Descent
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Learning rates
	Slide Number 29
	Slide Number 30
	GD for LR: Python Step-by-Step Example
	Backpropagation
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Single Output Neural Networl�Let’s write the equation
	Objective Functions for NNs
	Objective Functions for NNs
	Slide Number 67
	Slide Number 68
	some history / controversy …
	Why are NNs such good function approximators?
	Why are NNs such good function approximators?
	Learning rates
	Learning rate scheduling
	Slide Number 74
	Slide Number 75
	Slide Number 76

